JP2004208539A - Method for producing diglyceride - Google Patents

Method for producing diglyceride Download PDF

Info

Publication number
JP2004208539A
JP2004208539A JP2002380214A JP2002380214A JP2004208539A JP 2004208539 A JP2004208539 A JP 2004208539A JP 2002380214 A JP2002380214 A JP 2002380214A JP 2002380214 A JP2002380214 A JP 2002380214A JP 2004208539 A JP2004208539 A JP 2004208539A
Authority
JP
Japan
Prior art keywords
reaction
diglyceride
fatty acid
weight
glycerin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002380214A
Other languages
Japanese (ja)
Other versions
JP3929890B2 (en
Inventor
Manabu Sato
学 佐藤
Kazuhiro Onozuka
和洋 小野塚
Takaaki Watanabe
高明 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2002380214A priority Critical patent/JP3929890B2/en
Publication of JP2004208539A publication Critical patent/JP2004208539A/en
Application granted granted Critical
Publication of JP3929890B2 publication Critical patent/JP3929890B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Fats And Perfumes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a diglyciride containing a highly unsaturated fatty acid, by which the diglyciride containing the highly unsaturated fatty acid in a high concentration can efficiently be produced. <P>SOLUTION: This method for producing the diglyciride containing the highly unsaturated fatty acid comprises reacting the highly unsaturated fatty acid or its lower alkyl ester with glycerol in the presence of an immobilized partial glyceride lipase, while removing the reaction produced water outside the reaction system. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、高度不飽和脂肪酸含有ジグリセリドを高濃度に、かつ効率良く製造する方法に関する。
【0002】
【従来の技術】
ジグリセリドは、油脂の可塑性改良用添加剤、食品、医薬品、化粧品等の分野に利用され、最近、ジグリセリドの優れた生理活性に着目した食品が注目されている。一方、アラキドン酸、エイコサペンタエン酸、ドコサヘキサエン酸(DHA)等の高度不飽和脂肪酸(PUFA)の生理活性も注目されており、特にDHAは、血小板凝集抑制作用、血中中性脂肪低下作用、血中コレステロール低下作用、制癌作用、脳機能向上効果等を有することが知られている。このため、高濃度にPUFAを含有する油脂の製造法が精力的に研究開発されている。
【0003】
一般的にPUFAは天然界においてはトリグリセリドの形で存在しているが、その含有量が低い。PUFAを分離・精製する方法としては、クロマトグラフィー法、尿素付加法、ウインタリング法、分子蒸留法、液液分配法、二重結合への付加物による方法、超臨界抽出法、及びこれらを組合わせた方法が知られている。しかしながら、これらの方法においては、いずれも工程が煩雑で効率が悪く、高コストとなってしまう。
【0004】
そこで簡便かつ高効率に、直接トリグリセリドの形でPUFA画分を濃縮する方法として酵素法がある。一般にリパーゼはPUFAに対する作用が弱いため、この特性を利用し、トリグリセリド中のPUFA以外の構成脂肪酸のエステル結合を選択的に加水分解し、除去することでPUFA含有トリグリセリドを濃縮できる。例えば、Candida属由来のリパーゼを用いて濃縮する方法が知られている(特許文献1)。
このように、PUFA含有トリグリセリドを濃縮する方法は多数研究されている。
【0005】
一方、PUFA含有ジグリセリドの製造法についての例は僅かである。PUFA含有グリセリドの製造法としては、PUFA又はその低級アルコールエステルとグリセリンとを耐熱性リパーゼを用いて反応させる方法が一例であるが(特許文献2)、この方法では、反応温度が50〜70℃と酵素反応としてはやや高く、特殊な酵素を使用しており、かつ高濃度にジグリセリドを得ることはできない。また、リパーゼの存在下、PUFA又はそのアルコールエステルに対して過剰量のグリセリンを添加して反応を行うことにより、モノグリセリドとジグリセリドの合計がトリグリセリドより多いPUFA含有油脂を製造する方法も知られているが(特許文献3)、この方法では、未反応のグリセリンが大量に残存するため除去工程が必要であり、かつ高濃度にジグリセリドを得ることはできない。
【0006】
また、エステル化反応によりジグリセリドを合成する場合、原料である脂肪酸又はそのエステルとグリセリンとの仕込み比、反応温度、酵素濃度等によって、高い反応率で高いジグリセリド純度を得るための最適な反応終了点は異なる。特に、反応速度向上のため、グリセリンに対する脂肪酸又はそのエステルの比率を高めた場合、反応時間を長くして反応率を上げるとトリグリセリドが生成してジグリセリド純度が低下するという問題がある。
【0007】
【特許文献1】
特開昭58−165796号公報
【特許文献2】
特開昭62−91188号公報
【特許文献3】
特開平10−265795号公報
【0008】
【発明が解決しようとする課題】
したがって、本発明の目的は、高濃度のPUFA含有ジグリセリドを効率良く製造する方法を提供することにある。
【0009】
更に、本発明の他の目的は、様々な脂肪酸/グリセリン比、反応温度、酵素濃度の場合に対応でき、特に高い脂肪酸/グリセリン比の場合にも、高い反応率で高濃度のPUFA含有ジグリセリドを製造する方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明者は、エステル化反応に用いるリパーゼとして、特許文献1〜3のいずれにおいても対象とされていない部分グリセリドリパーゼを採用し、かつこれを固定化し、反応時に生成する水を反応系外に除去させながらPUFA含有脂肪酸又はその低級アルキルエステルとグリセリンを反応させることにより、飛躍的にジグリセリド生成率が高くなり、高濃度のPUFA含有ジグリセリドが効率良く得られることを見出した。また本発明者は、反応液の酸価が、原料であるPUFA含有脂肪酸又はその低級アルキルエステルとグリセリンとの比率との関係で一定の範囲内となったときに、反応を終了させることにより、できるだけ高い反応率で、高濃度のジグリセリドを製造することが可能となることを見いだした。
【0011】
すなわち本発明は、PUFA又はその低級アルキルエステルとグリセリンとを、固定化部分グリセリドリパーゼの存在下に、反応生成水を反応系外に除去しながら反応させるPUFA含有ジグリセリドの製造方法を提供するものである。
【0012】
【発明の実施の形態】
本発明において、高度不飽和脂肪酸(PUFA)とは、二重結合を3個以上有する炭素数20以上の脂肪酸を意味する。具体的には、ドコサヘキサエン酸(DHA)、エイコサペンタエン酸(EPA)、アラキドン酸(AA)等が好ましいものとして挙げられる。また、イワシ、サバ、マグロなどの魚油や藻類、菌類など天然油脂由来のPUFAを利用することもできる。またPUFAとエステルを形成する低級アルコールとしては、炭素数1〜6の低級アルコール類が好ましい。炭素数1〜6の低級アルコールとしては、例えばメタノール、エタノール、1−プロパノール、2−プロパノール、ブタノール、ペンタノール、ヘキサノールなどが挙げられる。これらのPUFA又はその低級アルキルエステルは、2種以上を併用することもできる。
【0013】
本発明で使用する部分グリセリドリパーゼは、モノグリセリド及びジグリセリドの部分グリセリドを加水分解するが、トリグリセリドを加水分解しないリパーゼである。部分グリセリドリパーゼとしては、ラット小腸、ブタ脂肪組織などの動物臓器由来のモノグリセリドリパーゼ又はジグリセリドリパーゼ;バチルス・スピーシーズ(Bacillus sp.)H−257由来モノグリセリドリパーゼ(J. Biochem., 127, 419−425, 2000)、シュードモナス・スピーシーズ(Pseudomonas sp.)LP7315由来モノグリセリドリパーゼ(Journal of Bioscience and Bioengineering, 91(1), 27−32, 2001)、ペニシリウム・サイクロピウム由来リパーゼ(J. Biochem, 87(1), 205−211, 1980)、ペニシリウム・カメンベルティ(Penicilliumcamembertii)U−150由来リパーゼ(J. Fermentation and Bioengineering, 72(3), 162−167, 1991)等が挙げられる。なかでも、至適温度を30℃以上50℃未満、特に30〜45℃に有するものが好ましい。
【0014】
本発明で使用する固定化部分グリセリドリパーゼは、上記部分グリセリドリパーゼが、セライト、ケイソウ土、カオリナイト、シリカゲル、モレキュラーシーブス、多孔質ガラス、活性炭、炭酸カルシウム、セラミックス等の無機担体;セルロースパウダー、ポリビニルアルコール、ポリプロピレン、キトサン、イオン交換樹脂、疎水吸着樹脂、キレート樹脂、合成吸着樹脂等の有機高分子等の固定化担体に固定されたものであるが、特にイオン交換樹脂に固定化されたものが好ましい。
【0015】
イオン交換樹脂としては、多孔性の陰イオン交換樹脂が好ましい。樹脂の粒子径は100〜1000μmが望ましく、細孔径は100〜1500Åが望ましい。この細孔が酵素吸着に大きな表面積を与え、より大きな吸着量を得ることができる。樹脂の材質としては、フェノールホルムアルデヒド系、ポリスチレン系、アクリルアミド系、ジビニルベンゼン系等が挙げられる。特にフェノールホルムアルデヒド系樹脂(商品名Duolite A−568)が望ましい。
【0016】
部分グリセリドリパーゼの固定化温度は、酵素の失活の起きない温度であればよく、0〜60℃、特に5〜45℃が好ましい。また固定化に用いる酵素水溶液のpHは、酵素の変性が起きないような範囲であればよく、pH3〜9が好ましい。特に至適pHが酸性とされているリパーゼを用いる場合に最大の活性を得るには、pH4〜6とするのがよい。また酵素水溶液に用いる緩衝液としては、一般的な酢酸緩衝液、リン酸緩衝液、トリス塩酸緩衝液等を用いることができる。酵素水溶液中の部分グリセリドリパーゼの濃度は、固定化効率の点から、該酵素の溶解度以下で、かつ十分な濃度であることが望ましい。また必要に応じて不溶部を遠心分離により除去し、上清を使用してもよい。また部分グリセリドリパーゼと固定化担体の使用割合は、固定化担体1重量部に対して、部分グリセリドリパーゼ0.05〜10重量部、特に0.1〜5重量部が好ましい。
【0017】
本発明では、高活性を発現するような吸着状態にするため、固定化の前処理として、固定化担体を脂溶性脂肪酸又はその誘導体で処理することが好ましい。またこれらは単一で用いてもよいが、2種以上を組み合わせることで一層の効果が発揮される。これらの脂溶性脂肪酸又はその誘導体と固定化担体の接触法としては、水又は有機溶剤中にこれらをそのまま加えてもよいが、分散性を良くするため、有機溶剤に脂溶性脂肪酸又はその誘導体を一旦分散・溶解させた後、水に分散させた固定化担体に加えてもよい。この有機溶剤としては、クロロホルム、ヘキサン、エタノール等が挙げられる。脂溶性脂肪酸又はその誘導体と固定化担体の比率は、固定化担体1重量部(乾燥重量)に対し、脂溶性脂肪酸又はその誘導体0.01〜5重量部、特に0.1〜2重量部が好ましい。接触温度は、0〜100℃、特に20〜60℃が好ましい。接触時間は、5分〜5時間程度でよい。本処理後濾過して固定化担体を回収するが、この時乾燥してもよい。乾燥温度は室温〜100℃が良く、減圧乾燥を行ってもよい。
【0018】
この固定化担体処理に用いられる脂溶性脂肪酸としては、炭素数4〜24の直鎖又は分岐鎖の、飽和又は不飽和の、水酸基が置換していてもよい脂肪酸が挙げられる。好ましい脂溶性脂肪酸としては、炭素数8〜18の脂肪酸、例えば、カプリン酸、ラウリン酸、ミリスチン酸等の直鎖飽和脂肪酸、オレイン酸、リノール酸等の不飽和脂肪酸、リシノール酸等のヒドロキシ脂肪酸、イソステアリン酸等の分岐脂肪酸が挙げられる。脂溶性脂肪酸誘導体としては、炭素数8〜18の脂肪酸と水酸基を有する化合物とのエステルが挙げられ、1価アルコールエステル、多価アルコールエステル、リン脂質、あるいはこれらのエステルに更にエチレンオキサイドを付加した誘導体等が例示される。1価アルコールエステルとしては、メチルエステル、エチルエステル等が、多価アルコールエステルとしては、モノグリセリド、ジグリセリド、及びそれらの誘導体、あるいはポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、蔗糖脂肪酸エステル等が挙げられる。
これらの脂肪酸及びその誘導体は、いずれも常温で液状であることが工程上望ましい。これらの脂溶性脂肪酸又はその誘導体としては、上記脂肪酸の混合物、例えば大豆脂肪酸などの天然由来の脂肪酸を用いることもできる。
【0019】
上記固定化部分グリセリドリパーゼの存在下でのPUFA又はその低級アルキルエステルとグリセリンとの反応において、両者の反応モル比R〔R=PUFA又はその低級アルキルエステル(mol)/グリセリン(mol)〕は、1.5〜2.6が好ましく、特に1.7〜2.4であるのが好ましい。
【0020】
本反応は、反応生成水を反応系外に除去しながら行われる。すなわちリパーゼ製剤に含まれる水分を除き、実質的に無水条件下で行われ、エステル化反応により生成した反応生成水は、減圧;ゼオライト、モレキュラーシーブス等の吸収剤の利用;反応槽中への乾燥した不活性ガスの通気等の方法により、系外に除去される。
【0021】
エステル化反応の反応温度は、原料及び生成物の融点、酵素の熱安定性により変化するが、30℃以上50℃未満、特に30〜45℃が反応性及びPUFAの安定性の点で好ましい。
【0022】
本発明方法によれば、ジグリセリド純度〔ジグリセリド/(ジグリセリド+トリグリセリド)×100〕が80重量%以上、更には85重量%以上、特に90重量%以上のジグリセリドを、60重量%以上、好ましくは65重量%以上、更に好ましくは70重量%以上の高い反応率(反応液中のジグリセリドとトリグリセリドの合計重量百分率)で製造することができる。
【0023】
得られるジグリセリドのジグリセリド純度をより高めるために、反応は、反応液の酸価(AV)を経時的に測定しながら行い、反応率60重量%以上、ジグリセリドの濃度80重量%以上を達成するためには、酸価が、50R−55>AV>70R−150(ただし、AV>0)を満たす範囲内で、反応を終了させることが好ましい。更には、反応率70重量%以上、ジグリセリド純度85重量%以上を達成するためには、50R−70>AV>70R−145(ただし、AV>0)、特に反応率80重量%以上、ジグリセリドの濃度90重量%以上を達成するためには、50R−80>AV>70R−140(ただし、AV>0)を満たす範囲内で、反応を終了させることが好ましい。
【0024】
本条件に従うことにより、原料仕込み比、反応温度、酵素濃度等の条件が変わった場合にも、当該変更に影響なく、できるだけ高い反応率で、高濃度のジグリセリドを製造することができる。すなわち、酸価が上記範囲より高い時点で反応を終了させた場合には、ジグリセリド純度は高いが、反応率が低いために生産性が低く、また酸価が上記範囲より低くなってから反応を終了させた場合には、反応液中のトリグリセリドの比率が高くなり、十分なジグリセリド純度が得られないため、いずれも好ましくない。
【0025】
【実施例】
実施例1
Duolite A−568(Rohm & Hass社,平均粒径480μm)10gを0.1mol/Lの水酸化ナトリウム水溶液100mL中で1時間攪拌した。攪拌した後500mMの酢酸緩衝液(pH5)100mLで2時間pHの平衡化を行った。その後50mMの酢酸緩衝液(pH5)100mLで2時間ずつ2回、pHの平衡化を行った。この後濾過を行い担体を回収した後、エタノール50mLでエタノール置換を30分間行った。濾過した後、リシノール酸を10g含むエタノール50mLを加え30分間、リシノール酸を担体に吸着させた。この後濾過し、担体を回収した後、50mMの酢酸緩衝液(pH5)50mLで4回洗浄し、エタノールを除去し、濾過して担体を回収した。その後市販の部分グリセリドリパーゼ(リパーゼG「アマノ」50,天野エンザイム社)20gを50mMの酢酸緩衝液(pH5)180mLに溶解した酵素液と2時間接触させ、固定化を行った。濾過し、固定化酵素を回収して、50mMの酢酸緩衝液(pH5)50mLで洗浄を行い、固定化していない酵素や蛋白を除去した。以上の操作はいずれも20℃で行った。固定化後の酵素液の残存活性と固定化前の酵素液の活性差より固定化率を求めたところ、95%であった。その後、実際に反応を行う基質である大豆脂肪酸40gを加え、40℃下で減圧脱水を行った。その後、濾過して大豆脂肪酸と分離し、固定化酵素とした。
こうして得られた固定化酵素を実際に反応を行う基質であるPUFA含有脂肪酸(DHA含有率44重量%)で洗浄した。洗浄した固定化酵素20g(乾燥重量8g)を200mL容の四つ口フラスコに秤量した。そこへPUFA含有脂肪酸(DHA含有率44重量%)とグリセリン80g(モル比で脂肪酸/グリセリン=2.30)を添加し、40℃、減圧下で、反応液の酸価を経時的に測定しながら、エステル化反応を45時間行った。このときの反応液の酸価は27.8であった。反応液をHPLCで分析し、グリセリド組成及び未反応物の分析を行った。また反応液をTLCプレートに展開(展開溶媒:クロロホルム/アセトン/メタノール=93.5/4.5/2.0容量%)して各グリセリドに分画、酢酸エチルで溶離させ、脱溶剤後、GCで脂肪酸組成分析を行った。結果を表1に示す。反応率は74.2重量%であり、DG濃度は85.3重量%と高濃度であった。また、DG中のDHA含有率も44重量%と高かった。
【0026】
実施例2
実施例1で得られた洗浄済みの固定化酵素20g(乾燥重量8g)を200mL容の四つ口フラスコに秤量した。そこへPUFA含有脂肪酸(DHA含有率44重量%)とグリセリン80g(モル比で脂肪酸/グリセリン=1.87)を添加し、40℃、減圧下で、反応液の酸価を経時的に測定しながら、エステル化反応を165時間行った。このときの反応液の酸価は3.6であった。反応液の分析を実施例1と同様に行った結果、反応率は83.8重量%、DG濃度は88.3重量%と高濃度であった。また、DG中のDHA含有率も37重量%と高かった。
【0027】
比較例1
市販の固定化酵素である1,3位選択性リパーゼ:Lipozyme RM IM(Novozymes社製)4gを200mL容の四つ口フラスコに秤量した。そこへPUFA含有脂肪酸(DHA含有率44重量%)とグリセリン80g(モル比で脂肪酸/グリセリン=2.36)を添加し、50℃、減圧下で、反応液の酸価を経時的に測定しながら、エステル化反応を48時間行った。このときの反応液の酸価は45.2であった。反応液の分析を実施例1と同様に行った結果、反応率は57.1重量%、DG濃度は65.8重量%と低く、高濃度にDGを製造できなかった。
【0028】
比較例2
実施例1で得られた洗浄済みの固定化酵素20g(乾燥重量8g)を200mL容の四つ口フラスコに秤量した。そこへPUFA含有脂肪酸(DHA含有率44重量%)とグリセリン80g(モル比で脂肪酸/グリセリン=2.66)を添加し、40℃、減圧下で、反応液の酸価を経時的に測定しながら、エステル化反応を18時間行った。このときの反応液の酸価は30.6であった。反応液の分析を実施例1と同様に行った結果、反応率は77.2重量%、DG濃度は66.2重量%と低く、高濃度にDGを製造できなかった。
【0029】
【表1】

Figure 2004208539
【0030】
【発明の効果】
本発明の製造方法によれば、高濃度のPUFA含有ジグリセリドが効率良く得られる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for efficiently producing a highly unsaturated fatty acid-containing diglyceride at a high concentration.
[0002]
[Prior art]
Diglycerides are used in the fields of additives for improving the plasticity of fats and oils, foods, medicines, cosmetics, and the like. Recently, foods that focus on the excellent physiological activity of diglycerides have been receiving attention. On the other hand, the physiological activity of highly unsaturated fatty acids (PUFA) such as arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid (DHA) has also been attracting attention. In particular, DHA has an inhibitory effect on platelet aggregation, a lowering effect on blood triglyceride, It is known that it has a medium cholesterol lowering effect, an anticancer effect, a brain function improving effect, and the like. For this reason, methods for producing fats and oils containing PUFA at a high concentration have been vigorously researched and developed.
[0003]
Generally, PUFA exists in the form of triglyceride in the natural world, but its content is low. Methods for separating and purifying PUFA include chromatography, urea addition, wintering, molecular distillation, liquid-liquid partitioning, addition to double bonds, supercritical extraction, and combinations thereof. A combined method is known. However, in these methods, the steps are complicated, the efficiency is low, and the cost is high.
[0004]
Therefore, there is an enzymatic method as a simple and highly efficient method for directly enriching the PUFA fraction in the form of triglycerides. In general, lipase has a weak effect on PUFA. Therefore, by utilizing this property, PUFA-containing triglyceride can be concentrated by selectively hydrolyzing and removing ester bonds of constituent fatty acids other than PUFA in triglyceride. For example, a method of concentrating using a lipase derived from the genus Candida is known (Patent Document 1).
Thus, many methods for concentrating PUFA-containing triglycerides have been studied.
[0005]
On the other hand, there are few examples of a method for producing a PUFA-containing diglyceride. An example of a method for producing PUFA-containing glyceride is a method in which PUFA or a lower alcohol ester thereof is reacted with glycerin using a thermostable lipase (Patent Document 2). In this method, the reaction temperature is 50 to 70 ° C. As a result, the enzyme reaction is somewhat expensive, a special enzyme is used, and diglyceride cannot be obtained at a high concentration. Also known is a method for producing a PUFA-containing fat or oil in which the total of monoglyceride and diglyceride is larger than triglyceride by adding an excess amount of glycerin to PUFA or an alcohol ester thereof in the presence of lipase to carry out the reaction. However, in this method, a large amount of unreacted glycerin remains, so that a removal step is required, and diglyceride cannot be obtained at a high concentration.
[0006]
Further, when synthesizing diglyceride by an esterification reaction, the optimal reaction end point for obtaining high diglyceride purity at a high reaction rate, depending on the charge ratio of the raw material fatty acid or its ester to glycerin, reaction temperature, enzyme concentration, etc. Is different. In particular, when the ratio of a fatty acid or an ester thereof to glycerin is increased to improve the reaction rate, there is a problem that if the reaction time is increased by increasing the reaction time, triglyceride is generated and the diglyceride purity is reduced.
[0007]
[Patent Document 1]
JP-A-58-165796 [Patent Document 2]
JP-A-62-91188 [Patent Document 3]
Japanese Patent Application Laid-Open No. 10-265795
[Problems to be solved by the invention]
Therefore, an object of the present invention is to provide a method for efficiently producing a high-concentration PUFA-containing diglyceride.
[0009]
Further, another object of the present invention is to cope with various fatty acid / glycerin ratios, reaction temperatures and enzyme concentrations. Particularly, even at a high fatty acid / glycerin ratio, a high reaction rate and a high concentration of PUFA-containing diglyceride can be obtained. It is to provide a manufacturing method.
[0010]
[Means for Solving the Problems]
The present inventors have adopted, as a lipase used in the esterification reaction, a partial glyceride lipase not targeted in any of Patent Literatures 1 to 3, and immobilized the same to remove water generated during the reaction from the reaction system. By reacting PUFA-containing fatty acid or its lower alkyl ester with glycerin while removing it, it has been found that the diglyceride production rate is dramatically increased, and that a high concentration of PUFA-containing diglyceride can be obtained efficiently. Further, the present inventors, when the acid value of the reaction solution is within a certain range in relation to the ratio of the raw material PUFA-containing fatty acid or its lower alkyl ester and glycerin, by terminating the reaction, It has been found that it is possible to produce high concentrations of diglycerides with the highest possible conversion.
[0011]
That is, the present invention provides a method for producing a PUFA-containing diglyceride in which PUFA or a lower alkyl ester thereof and glycerin are reacted in the presence of an immobilized partial glyceride lipase while removing reaction product water outside the reaction system. is there.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, a polyunsaturated fatty acid (PUFA) means a fatty acid having 20 or more carbon atoms having 3 or more double bonds. Specifically, docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), arachidonic acid (AA) and the like are preferable. PUFAs derived from natural oils and fats such as fish oils such as sardines, mackerel and tuna, algae and fungi can also be used. As the lower alcohol forming an ester with PUFA, lower alcohols having 1 to 6 carbon atoms are preferable. Examples of the lower alcohol having 1 to 6 carbon atoms include methanol, ethanol, 1-propanol, 2-propanol, butanol, pentanol, and hexanol. These PUFAs or lower alkyl esters thereof may be used in combination of two or more.
[0013]
The partial glyceride lipase used in the present invention is a lipase that hydrolyzes partial glycerides of monoglyceride and diglyceride but does not hydrolyze triglyceride. Examples of the partial glyceride lipase include monoglyceride lipase or diglyceride lipase derived from animal organs such as rat small intestine and porcine adipose tissue; monoglyceride lipase derived from Bacillus sp. H-257 (J. Biochem., 127, 419-425, 2000), Pseudomonas sp. LP7315-derived monoglyceride lipase (Journal of Bioscience and Bioengineering, 91 (1), 27-32, 2001), Penicillium cyclopium-derived lipase, 87 (1), 87 (1), 87 (1), 87 (1), 87 (1), 87 (1), 87 (1). -211, 1980), Penicillium camemberti. U-0.99 lipase (J. Fermentation and Bioengineering, 72 (3), 162-167, 1991) and the like can be mentioned. Among them, those having an optimum temperature of 30 ° C. or more and less than 50 ° C., particularly 30 to 45 ° C. are preferable.
[0014]
The immobilized partial glyceride lipase to be used in the present invention may be an inorganic carrier such as celite, diatomaceous earth, kaolinite, silica gel, molecular sieves, porous glass, activated carbon, calcium carbonate, ceramics, etc .; cellulose powder, polyvinyl Alcohol, polypropylene, chitosan, ion-exchange resin, hydrophobic adsorption resin, chelate resin, is fixed on a carrier such as organic polymer such as synthetic adsorption resin, especially those immobilized on ion-exchange resin preferable.
[0015]
As the ion exchange resin, a porous anion exchange resin is preferable. The particle size of the resin is desirably 100 to 1000 μm, and the pore diameter is desirably 100 to 1500 °. These pores provide a large surface area for enzyme adsorption, and a larger adsorption amount can be obtained. Examples of the resin material include phenol formaldehyde, polystyrene, acrylamide, and divinylbenzene. Particularly, a phenol formaldehyde resin (trade name: Duolite A-568) is desirable.
[0016]
The immobilization temperature of the partial glyceride lipase may be any temperature at which the inactivation of the enzyme does not occur, and is preferably 0 to 60 ° C, particularly preferably 5 to 45 ° C. The pH of the aqueous enzyme solution used for immobilization may be in a range that does not cause denaturation of the enzyme, and is preferably from 3 to 9. In particular, when lipase whose optimal pH is acidified is used, the pH is preferably 4 to 6 in order to obtain the maximum activity. As a buffer used for the enzyme aqueous solution, a general acetate buffer, phosphate buffer, Tris-HCl buffer and the like can be used. The concentration of the partial glyceride lipase in the enzyme aqueous solution is desirably not more than the solubility of the enzyme and a sufficient concentration from the viewpoint of immobilization efficiency. If necessary, the insoluble portion may be removed by centrifugation, and the supernatant may be used. Further, the use ratio of the partial glyceride lipase and the immobilized carrier is preferably 0.05 to 10 parts by weight, particularly preferably 0.1 to 5 parts by weight, based on 1 part by weight of the immobilized carrier.
[0017]
In the present invention, as a pretreatment for immobilization, it is preferable to treat the immobilization carrier with a fat-soluble fatty acid or a derivative thereof in order to obtain an adsorption state that exhibits high activity. These may be used singly, but a combination of two or more of them can provide a further effect. As a method of contacting these fat-soluble fatty acids or derivatives thereof with the immobilized carrier, these may be added as they are in water or an organic solvent, but in order to improve dispersibility, the fat-soluble fatty acids or derivatives thereof are added to the organic solvent. Once dispersed and dissolved, it may be added to an immobilized carrier dispersed in water. Examples of the organic solvent include chloroform, hexane, and ethanol. The ratio of the fat-soluble fatty acid or its derivative to the immobilized carrier is such that the fat-soluble fatty acid or its derivative is 0.01 to 5 parts by weight, particularly 0.1 to 2 parts by weight, relative to 1 part by weight (dry weight) of the immobilized carrier. preferable. The contact temperature is preferably from 0 to 100C, particularly preferably from 20 to 60C. The contact time may be about 5 minutes to 5 hours. After this treatment, the immobilized carrier is recovered by filtration, but may be dried at this time. The drying temperature is preferably room temperature to 100 ° C., and drying under reduced pressure may be performed.
[0018]
Examples of the fat-soluble fatty acid used for the treatment with the immobilized carrier include a linear or branched, saturated or unsaturated fatty acid having 4 to 24 carbon atoms, which may be substituted with a hydroxyl group. Preferred fat-soluble fatty acids include fatty acids having 8 to 18 carbon atoms, for example, linear saturated fatty acids such as capric acid, lauric acid, and myristic acid, unsaturated fatty acids such as oleic acid and linoleic acid, and hydroxy fatty acids such as ricinoleic acid. And branched fatty acids such as isostearic acid. Examples of the fat-soluble fatty acid derivative include esters of a fatty acid having 8 to 18 carbon atoms and a compound having a hydroxyl group. Monohydric alcohol esters, polyhydric alcohol esters, phospholipids, and ethylene oxide are further added to these esters. Derivatives and the like are exemplified. Examples of the monohydric alcohol ester include methyl ester and ethyl ester, and examples of the polyhydric alcohol ester include monoglyceride, diglyceride, and derivatives thereof, and polyglycerin fatty acid ester, sorbitan fatty acid ester, and sucrose fatty acid ester.
It is desirable in the process that all of these fatty acids and their derivatives are liquid at room temperature. As these fat-soluble fatty acids or derivatives thereof, a mixture of the above-mentioned fatty acids, for example, naturally-occurring fatty acids such as soybean fatty acids can also be used.
[0019]
In the reaction between PUFA or its lower alkyl ester and glycerin in the presence of the immobilized partial glyceride lipase, the reaction molar ratio R [R = PUFA or its lower alkyl ester (mol) / glycerin (mol)] is as follows: It is preferably from 1.5 to 2.6, and particularly preferably from 1.7 to 2.4.
[0020]
This reaction is carried out while removing the reaction water outside the reaction system. That is, the reaction is carried out under substantially anhydrous conditions except for the water contained in the lipase preparation, and the reaction product water generated by the esterification reaction is reduced in pressure; use of an absorbent such as zeolite and molecular sieves; drying in the reaction tank The inert gas is removed from the system by a method such as ventilation.
[0021]
The reaction temperature of the esterification reaction varies depending on the melting points of the raw materials and products, and the thermal stability of the enzyme, and is preferably 30 ° C. or more and less than 50 ° C., particularly preferably 30 to 45 ° C., from the viewpoints of reactivity and PUFA stability.
[0022]
According to the method of the present invention, diglycerides having a diglyceride purity [diglyceride / (diglyceride + triglyceride) × 100] of 80% by weight or more, more preferably 85% by weight or more, especially 90% by weight or more are converted to 60% by weight or more, preferably 65% by weight or more. It can be produced at a high reaction rate of at least 70% by weight, more preferably at least 70% by weight (total weight percentage of diglyceride and triglyceride in the reaction solution).
[0023]
In order to further increase the diglyceride purity of the obtained diglyceride, the reaction is carried out while measuring the acid value (AV) of the reaction solution over time to achieve a reaction rate of 60% by weight or more and a diglyceride concentration of 80% by weight or more. It is preferred that the reaction be terminated within the range where the acid value satisfies 50R-55>AV> 70R-150 (where AV> 0). Furthermore, in order to achieve a reaction rate of 70% by weight or more and a diglyceride purity of 85% by weight or more, 50R-70>AV> 70R-145 (where AV> 0), particularly a reaction rate of 80% by weight or more, In order to achieve a concentration of 90% by weight or more, it is preferable to terminate the reaction within a range satisfying 50R-80>AV> 70R-140 (where AV> 0).
[0024]
By following these conditions, even when the conditions such as the raw material charging ratio, the reaction temperature, and the enzyme concentration are changed, a high-concentration diglyceride can be produced at the highest possible conversion without affecting the changes. That is, when the reaction is terminated at a time when the acid value is higher than the above range, the diglyceride purity is high, but the reaction rate is low, so that the productivity is low, and the reaction is performed after the acid value becomes lower than the above range. In the case of terminating the reaction, the ratio of triglyceride in the reaction solution is increased, and sufficient diglyceride purity cannot be obtained.
[0025]
【Example】
Example 1
10 g of Duolite A-568 (Rohm & Hass, average particle size: 480 μm) was stirred in 100 mL of a 0.1 mol / L aqueous sodium hydroxide solution for 1 hour. After stirring, the pH was equilibrated with 100 mL of a 500 mM acetate buffer (pH 5) for 2 hours. Thereafter, the pH was equilibrated twice for 2 hours with 100 mL of a 50 mM acetate buffer (pH 5). After that, filtration was performed to recover the carrier, and then ethanol replacement was performed with 50 mL of ethanol for 30 minutes. After filtration, 50 mL of ethanol containing 10 g of ricinoleic acid was added, and ricinoleic acid was adsorbed on the carrier for 30 minutes. Thereafter, the carrier was collected by filtration and washed four times with 50 mL of 50 mM acetate buffer (pH 5) to remove ethanol, and the carrier was recovered by filtration. Thereafter, 20 g of a commercially available partial glyceride lipase (Lipase G "Amano" 50, Amano Enzyme Co., Ltd.) was contacted with an enzyme solution dissolved in 180 mL of 50 mM acetate buffer (pH 5) for 2 hours for immobilization. After filtration, the immobilized enzyme was recovered and washed with 50 mL of 50 mM acetate buffer (pH 5) to remove unimmobilized enzyme and protein. All of the above operations were performed at 20 ° C. The immobilization rate was determined from the difference between the remaining activity of the enzyme solution after immobilization and the activity of the enzyme solution before immobilization, and was 95%. Thereafter, 40 g of soybean fatty acid, which is a substrate for actually performing a reaction, was added, and dehydration under reduced pressure was performed at 40 ° C. Thereafter, the solution was separated from soybean fatty acid by filtration to obtain an immobilized enzyme.
The immobilized enzyme thus obtained was washed with a PUFA-containing fatty acid (DHA content: 44% by weight), which is a substrate for actually performing the reaction. 20 g (dry weight: 8 g) of the washed immobilized enzyme was weighed into a 200 mL four-necked flask. A PUFA-containing fatty acid (DHA content: 44% by weight) and glycerin (80 g (fatty acid / glycerin = 2.30 in molar ratio)) were added thereto, and the acid value of the reaction solution was measured with time at 40 ° C. under reduced pressure. The esterification reaction was performed for 45 hours. At this time, the acid value of the reaction solution was 27.8. The reaction solution was analyzed by HPLC, and glyceride composition and unreacted substances were analyzed. The reaction solution was developed on a TLC plate (developing solvent: chloroform / acetone / methanol = 93.5 / 4.5 / 2.0% by volume), fractionated into glycerides, eluted with ethyl acetate, and after desolvation, Fatty acid composition analysis was performed by GC. Table 1 shows the results. The conversion was 74.2% by weight, and the DG concentration was as high as 85.3% by weight. The DHA content in DG was as high as 44% by weight.
[0026]
Example 2
20 g (dry weight: 8 g) of the washed immobilized enzyme obtained in Example 1 was weighed into a 200 mL four-necked flask. A PUFA-containing fatty acid (DHA content: 44% by weight) and glycerin (80 g (fatty acid / glycerin = 1.87 in molar ratio)) were added thereto, and the acid value of the reaction solution was measured with time at 40 ° C. under reduced pressure. The esterification reaction was performed for 165 hours. At this time, the acid value of the reaction solution was 3.6. The reaction mixture was analyzed in the same manner as in Example 1. As a result, the conversion was 83.8% by weight, and the DG concentration was as high as 88.3% by weight. Further, the DHA content in DG was as high as 37% by weight.
[0027]
Comparative Example 1
A commercially available immobilized enzyme, 1,3-position selective lipase: 4 g of Lipozyme RM IM (manufactured by Novozymes) was weighed into a 200 mL four-neck flask. A PUFA-containing fatty acid (DHA content: 44% by weight) and glycerin (80 g (fatty acid / glycerin = 2.36 in molar ratio)) were added thereto, and the acid value of the reaction solution was measured at 50 ° C. under reduced pressure with time. The esterification reaction was performed for 48 hours. At this time, the acid value of the reaction solution was 45.2. The reaction mixture was analyzed in the same manner as in Example 1. As a result, the conversion was 57.1% by weight, the DG concentration was as low as 65.8% by weight, and DG could not be produced at a high concentration.
[0028]
Comparative Example 2
20 g (dry weight: 8 g) of the washed immobilized enzyme obtained in Example 1 was weighed into a 200 mL four-necked flask. A PUFA-containing fatty acid (DHA content: 44% by weight) and glycerin (80 g (molar ratio fatty acid / glycerin = 2.66)) were added thereto, and the acid value of the reaction solution was measured with time at 40 ° C. under reduced pressure. The esterification reaction was performed for 18 hours. At this time, the acid value of the reaction solution was 30.6. The reaction mixture was analyzed in the same manner as in Example 1. As a result, the conversion was 77.2% by weight, the DG concentration was as low as 66.2% by weight, and DG could not be produced at a high concentration.
[0029]
[Table 1]
Figure 2004208539
[0030]
【The invention's effect】
According to the production method of the present invention, a high concentration of PUFA-containing diglyceride can be efficiently obtained.

Claims (6)

高度不飽和脂肪酸又はその低級アルキルエステルとグリセリンとを、固定化部分グリセリドリパーゼの存在下に、反応生成水を反応系外に除去しながら反応させる高度不飽和脂肪酸含有ジグリセリドの製造方法。A process for producing a highly unsaturated fatty acid-containing diglyceride, comprising reacting a highly unsaturated fatty acid or a lower alkyl ester thereof and glycerin with glycerin in the presence of an immobilized partial glyceride lipase while removing reaction water outside the reaction system. 部分グリセリドリパーゼが、至適温度を30℃以上50℃未満に有するものである請求項1記載の高度不飽和脂肪酸含有ジグリセリドの製造方法。The method for producing a diglyceride containing highly unsaturated fatty acids according to claim 1, wherein the partial glyceride lipase has an optimum temperature of 30 ° C or more and less than 50 ° C. 高度不飽和脂肪酸又はその低級アルキルエステルとグリセリンとの反応モル比R〔R=脂肪酸又はその低級アルキルエステル(mol)/グリセリン(mol)〕が、1.5〜2.6である請求項1又は2記載の製造方法。The reaction molar ratio R [R = fatty acid or lower alkyl ester (mol) / glycerin (mol)] of a highly unsaturated fatty acid or a lower alkyl ester thereof and glycerin is 1.5 to 2.6. 2. The production method according to 2. 固定化部分グリセリドリパーゼが、脂溶性脂肪酸又はその誘導体で前処理された固定化担体に部分グリセリドリパーゼを固定化したものである請求項1〜3のいずれかに記載の製造方法。The method according to any one of claims 1 to 3, wherein the immobilized partial glyceride lipase is obtained by immobilizing a partial glyceride lipase on an immobilized carrier pretreated with a fat-soluble fatty acid or a derivative thereof. ジグリセリド純度〔ジグリセリド/(ジグリセリド+トリグリセリド)×100〕が80重量%以上であるジグリセリドを、60重量%以上の反応率(反応液中のジグリセリドとトリグリセリドの合計重量百分率)で得るものである請求項1〜4のいずれかに記載の製造方法。A diglyceride having a diglyceride purity [diglyceride / (diglyceride + triglyceride) × 100] of 80% by weight or more is obtained at a reaction rate of 60% by weight or more (total weight percentage of diglyceride and triglyceride in a reaction solution). The method according to any one of claims 1 to 4. 反応液の酸価(AV)が、50R−55>AV>70R−150(ただし、AV>0)を満たす範囲内で、反応を終了させる請求項1〜4のいずれかに記載の製造方法。The method according to any one of claims 1 to 4, wherein the reaction is terminated when the acid value (AV) of the reaction solution satisfies 50R-55> AV> 70R-150 (where AV> 0).
JP2002380214A 2002-12-27 2002-12-27 Method for producing diglyceride Expired - Fee Related JP3929890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002380214A JP3929890B2 (en) 2002-12-27 2002-12-27 Method for producing diglyceride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002380214A JP3929890B2 (en) 2002-12-27 2002-12-27 Method for producing diglyceride

Publications (2)

Publication Number Publication Date
JP2004208539A true JP2004208539A (en) 2004-07-29
JP3929890B2 JP3929890B2 (en) 2007-06-13

Family

ID=32816508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002380214A Expired - Fee Related JP3929890B2 (en) 2002-12-27 2002-12-27 Method for producing diglyceride

Country Status (1)

Country Link
JP (1) JP3929890B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018082676A (en) * 2016-11-25 2018-05-31 花王株式会社 Production method of constituent oils and fats
WO2019234057A1 (en) 2018-06-05 2019-12-12 Dsm Ip Assets B.V. Process for the production of diglycerides
CN112266940A (en) * 2020-11-07 2021-01-26 润科生物工程(福建)有限公司 Production process of grease with high DHA (docosahexaenoic acid) content in mono-glyceride and diglyceride
WO2022211017A1 (en) * 2021-04-01 2022-10-06 花王株式会社 Oil/fat composition
WO2024036390A1 (en) * 2022-08-18 2024-02-22 Brasil Bio Fuels S.A Process for producing a renewable additive for use in marine diesel containing partial glycerides and product thus obtained

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018082676A (en) * 2016-11-25 2018-05-31 花王株式会社 Production method of constituent oils and fats
JP7092460B2 (en) 2016-11-25 2022-06-28 花王株式会社 Manufacturing method of structural fats and oils
WO2019234057A1 (en) 2018-06-05 2019-12-12 Dsm Ip Assets B.V. Process for the production of diglycerides
CN112266940A (en) * 2020-11-07 2021-01-26 润科生物工程(福建)有限公司 Production process of grease with high DHA (docosahexaenoic acid) content in mono-glyceride and diglyceride
WO2022211017A1 (en) * 2021-04-01 2022-10-06 花王株式会社 Oil/fat composition
WO2024036390A1 (en) * 2022-08-18 2024-02-22 Brasil Bio Fuels S.A Process for producing a renewable additive for use in marine diesel containing partial glycerides and product thus obtained

Also Published As

Publication number Publication date
JP3929890B2 (en) 2007-06-13

Similar Documents

Publication Publication Date Title
JP6715586B2 (en) Method for producing highly unsaturated fatty acid
JP5242230B2 (en) Method for producing immobilized enzyme
US7141399B2 (en) Process for the production of diglycerides
JP2749587B2 (en) Method for producing immobilized enzyme
JP3929890B2 (en) Method for producing diglyceride
JP5586855B2 (en) Method for producing monoacylglycerol-rich oil and fat
JP3813585B2 (en) Method for producing diglyceride
JP3893107B2 (en) Method for producing fatty acid
JP2007089522A (en) Method for producing fatty acid composition containing specific highly unsaturated fatty acid in concentrated state
JP6645804B2 (en) Manufacturing method of structural fats and oils
JP3813584B2 (en) Method for producing diglyceride
JP7092460B2 (en) Manufacturing method of structural fats and oils
JP4220957B2 (en) Method for producing immobilized enzyme
JP2012034622A (en) Method for producing fat and oil with high diacylglycerol content
JP4012117B2 (en) Method for producing immobilized enzyme
JP3893106B2 (en) Method for producing diglyceride
JP5527983B2 (en) Process for producing docosahexaenoic acid-rich oil
JP3847729B2 (en) Method for producing docosahexaenoic acid-rich oil
JP3037349B2 (en) Enzyme-immobilizing carrier and method for producing immobilized enzyme
JP3720205B2 (en) Method for producing partial glyceride
JPH04258291A (en) Immobilized enzyme and its production
JP4616755B2 (en) Method for producing immobilized enzyme
JPH01153091A (en) Lipid hydrolase and method for ester synthesis and interchange reaction using said enzyme
JP2021073951A (en) Method for producing high-diacylglycerol-content oil and fat

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070307

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140316

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees