JPH0528114B2 - - Google Patents

Info

Publication number
JPH0528114B2
JPH0528114B2 JP60162098A JP16209885A JPH0528114B2 JP H0528114 B2 JPH0528114 B2 JP H0528114B2 JP 60162098 A JP60162098 A JP 60162098A JP 16209885 A JP16209885 A JP 16209885A JP H0528114 B2 JPH0528114 B2 JP H0528114B2
Authority
JP
Japan
Prior art keywords
acid
reaction
lipase
fatty acids
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60162098A
Other languages
Japanese (ja)
Other versions
JPS6222597A (en
Inventor
Osamu Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshin Oillio Group Ltd
Original Assignee
Nisshin Oil Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Oil Mills Ltd filed Critical Nisshin Oil Mills Ltd
Priority to JP60162098A priority Critical patent/JPS6222597A/en
Publication of JPS6222597A publication Critical patent/JPS6222597A/en
Publication of JPH0528114B2 publication Critical patent/JPH0528114B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(a) 産業上の利用分野 本発明は、天然物由来の糖脂質を酵素的に変換
して糖グリセロールおよび脂肪酸を製造する方法
に関する。さらに詳しくは、油脂加水分解酵素の
存在下にグリセロ糖脂質の脂肪酸を部分的あるい
は完全に加水分解し、糖グリセロールまたはアシ
ル糖グリセロールおよび脂肪酸を製造する方法に
関するものである。 (b) 従来の技術 天然物由来の脂質は、高等動植物から採取され
るものは脂肪酸のみのグリセリド(中性脂質)の
ほか、糖やリン酸残基を含む極性脂質と呼ばれる
ものがある。またカビ、酵母、バクテリアなどの
微生物、海草やクロレラなどの藻類、さらには魚
類などの脂質は含糖脂質(以下、単に糖脂質とい
う)や含リン脂質(以下、単にリン脂質という)
の形態で存在することが多く、これらのいわゆる
極性脂質の有効利用が期待されてている。このう
ちグリセロ糖脂質は、例えば藻類ではモノあるい
はジガラクトシルセリド、モノあるいはジグルコ
シルグリセリド、モノあるいはジマノシルグリセ
リド、スルホピラノシルグリセリドなどの分子構
造で存在しており、さらに結合脂肪酸としてはエ
イコサペンタエン酸、ドコサヘキサエン酸、γ−
リノレン酸、アラキドン酸などの高度不飽和脂肪
酸が多く、細胞膜や細胞壁などの成分としても存
在するいわゆる生体構成脂質として生理活性を有
する重要なものが多い。 (c) 発明が解決しようとする問題点 このようなグリセロ糖脂質を原料として糖グリ
セロールまたはアシル糖グリセーロールを製造す
る方法としては、酸あるいはアルカリ触媒で加水
分解により脱脂肪酸を行えばよいが、この方法で
は酸あるいはアルカリの作用により高度不飽和脂
肪酸が劣化し、過酸化、酸敗、重合、着色をひき
おこして後処理の精製が極めて困難になる。ま
た、これらの触媒作用をコントロールして好まし
い構造式の生成物を得ることもむずかしい。 これに対して酵素法では、リパーゼは通常、モ
ノ、ジあるいはドリグリセリド(いずれも脂肪酸
のみのエステル)を加水分解する酵素であり、基
質の変質、劣化を伴わず温和な反応条件で変換さ
せることは可能であるが、リパーゼの基質特異性
のために基質が糖鎖を有するもの、さらには長鎖
高不飽和脂肪酸に対しては反応が全く進まない
か、もしくはわずかの加水分解率にどまるにすぎ
なかつた。さらに、係る糖脂質は通常の脂肪酸ト
リグリセリドに比較して高融点物が多く、また、
熱的に長時間安定な酵素がほとんどなかつたた
め、かかる糖脂質の酵素の適用はなされていなか
つた。 また、グリセロ糖エステルを化学的に合成しよ
うとすれば、通常、グリセリンと当該糖類を混
合、加熱してエーテル化し、必要に応じそれを脂
肪酸と混合、加熱してエステル化せねばならず、
このような合成経路を経ると熱履歴のために糖お
よび二重結合の多い高度不飽和脂肪酸は重合、異
性化、酸化、環化、分解などの副反応を受け、し
たがつて複雑な精製工程を必要とし、結果的には
望ましい高純度の糖グリセロールまたはシアル糖
グリセロールを得ることは困難である。 (d) 問題点を解決するための手段 かかる現状に鑑み、本発明者らは、天然動植物
さらには微生物などの生体中に存在するグリセロ
糖脂質を、苛酷な反応条件を伴わず、したがつて
過酸化、分解、環化などの副反応を生じさせず、
脂肪酸基を脱離させ、糖グリセロールまたはアシ
ル糖グリセロールに改質させることを目的に鋭意
検討を行つた結果、耐熱性油脂加水分解を温和な
反応条件下に作用させることにより、容易に脂肪
酸基を脱離することができ、糖グリセロールまた
はアシル糖グリセロールおよび脂肪酸を製造する
方法を見出し、本発明を完成するに至つたもので
ある。 以下に本発明を詳細に説明する。 本発明において使用するグリセロ糖脂質とは、
天然物由来の中でも、カビ、酵母、バクテリアな
どの微生物、海草やクロレラなどの藻類、淡水産
あるいは海水産魚類、高等動植物などの生体から
抽出される脂質に含まれるものである。その一般
的な構造式は、下記()〜()で示され、こ
こに脂肪酸残基R1およびR2はともに炭素
(a) Industrial Application Field The present invention relates to a method for producing sugar glycerol and fatty acids by enzymatically converting glycolipids derived from natural products. More specifically, the present invention relates to a method for producing sugar glycerol or acyl sugar glycerol and fatty acids by partially or completely hydrolyzing fatty acids of glyceroglycolipids in the presence of fat hydrolase. (b) Prior Art Lipids derived from natural products include those collected from higher animals and plants, including glycerides (neutral lipids) containing only fatty acids, and polar lipids containing sugar and phosphoric acid residues. In addition, the lipids of microorganisms such as mold, yeast, and bacteria, algae such as seaweed and chlorella, and even fish are glycolipids (hereinafter simply referred to as glycolipids) and phospholipids (hereinafter simply referred to as phospholipids).
It is expected that these so-called polar lipids can be used effectively. Among these, glyceroglycolipids exist in algae, for example, in molecular structures such as mono- or digalactosylceride, mono- or diglucosylglyceride, mono- or dimanosylglyceride, or sulfopyranosylglyceride, and furthermore, as bound fatty acids. Eicosapentaenoic acid, docosahexaenoic acid, γ-
There are many highly unsaturated fatty acids such as linolenic acid and arachidonic acid, and there are many important biologically active lipids that exist as components of cell membranes and walls. (c) Problems to be Solved by the Invention As a method for producing sugar glycerol or acyl sugar glycerol using such glyceroglycolipids as raw materials, fatty acid removal can be carried out by hydrolysis using an acid or alkali catalyst. In this method, highly unsaturated fatty acids are degraded by the action of acids or alkalis, causing peroxidation, rancidity, polymerization, and coloration, making post-treatment purification extremely difficult. It is also difficult to control these catalytic actions to obtain products with preferred structural formulas. In contrast, in the enzymatic method, lipase is an enzyme that usually hydrolyzes mono-, di-, or doliglycerides (all esters of fatty acids only), and the conversion can be carried out under mild reaction conditions without altering or degrading the substrate. However, due to the substrate specificity of lipase, the reaction does not proceed at all or only has a small hydrolysis rate for substrates with sugar chains or long-chain highly unsaturated fatty acids. It was nothing more than a simple thing. Furthermore, such glycolipids have a higher melting point than ordinary fatty acid triglycerides, and
Since there are almost no enzymes that are thermally stable for long periods of time, such glycolipid enzymes have not been applied. In addition, if a glycerosugar ester is to be synthesized chemically, it is usually necessary to mix glycerin and the saccharide and etherify it by heating, and if necessary, mix it with a fatty acid and esterify it by heating.
Through this synthetic route, polyunsaturated fatty acids with many sugars and double bonds undergo side reactions such as polymerization, isomerization, oxidation, cyclization, and decomposition due to thermal history, resulting in complicated purification steps. As a result, it is difficult to obtain the desired high purity sugar glycerol or sialic sugar glycerol. (d) Means for Solving the Problems In view of the current situation, the present inventors have developed a method for processing glyceroglycolipids existing in living organisms such as natural animals, plants, and even microorganisms without harsh reaction conditions. Does not cause side reactions such as peroxidation, decomposition, and cyclization,
As a result of extensive research aimed at removing fatty acid groups and modifying them into sugar glycerol or acyl sugar glycerol, we found that fatty acid groups can be easily removed by heat-resistant fat hydrolysis under mild reaction conditions. The inventors have discovered a method for producing sugar glycerol or acyl sugar glycerol and fatty acids, which can be eliminated, and have completed the present invention. The present invention will be explained in detail below. The glyceroglycolipid used in the present invention is
Among natural products, it is contained in lipids extracted from living organisms such as microorganisms such as molds, yeast, and bacteria, algae such as seaweed and chlorella, freshwater or saltwater fish, and higher plants and animals. Its general structural formula is shown below () to (), where fatty acid residues R 1 and R 2 are both carbon

【式】【formula】

【式】【formula】

【式】【formula】

【式】 数が11〜23の飽和あるいは不飽和脂肪酸残基であ
り、かつGが単糖類あるいはその二量体の残基で
表されるものである。かかる脂肪酸としては、オ
クタン酸(C8:0)、ラウリン酸(C12:0)、パル
ミチン酸(C16:0)、パルミトオレイン酸
(C16:1)、ステアリン酸(C18:0)、オレイン酸
(C18:1)、リノール酸(C18:2)、リノレン酸
(C18:3)、ベヘン酸(C22:O)、エルシン酸
(C22:1)、エイコサペンタエン酸(C20:5)、ド
コサヘキサエン酸(C22:6)、アラキドン酸
(C20:4)、テトラコサテトラエン酸(C24:4)な
どがあげられ、また糖類としてはキシロース、グ
ルコース、フルクトース、マンノース、ガラクト
ース、フコースのどの中性単糖、グルクロン酸な
どの酸性単糖、グルコサミン、ガラクトサミンな
どのアミノ単糖など、あるいはそれらの二量体な
どがあげられる。なお、脂肪酸残基R1およびR2
のうち少くとも1つがエイコサペンタエン酸、γ
−リノレン酸またはアラキドン酸のいずれかの残
基である場合には、これらの生理活性作用が有効
に利用できる。 このようなグリセロ糖脂質は一般に融点が高
く、例えば、ある種のクロレラ細胞から抽出され
る糖脂質はモノガラクトシル・ジエイコサペタエ
ン酸グリセリドが主成分で、その融点は50〜60℃
である。このため、従来、油脂の加水分解に用い
られてきた油脂加水分解酵素(至適温度:30〜45
℃)では熱的に長時間安定なものがほとんどなか
つた事実とも相まつて、かかる糖脂質を加水分解
し、糖グリセロールまたはシアル糖グリセロール
および脂肪酸を製造することは産業的に行われた
ことはなかつたが、本発明では耐熱性酵素を使用
することにより、これを可能ならしめることがで
きた。本発明の特徴の1つは、この耐熱性酵素を
糖脂質の加水分解酵素として使用することであ
り、耐熱性酵素は50℃以上でも活性を維持できる
ものであればいずれでもさしつかえない。このよ
うな酵素は、動植物あるいは微生物の生体ないし
分泌液から単離、精製し採取することができる
が、微生物由来のものが簡便である。例えば、シ
ユードモナス属(Pseudomonas)ではシユード
モナス・フルオレツセンス(Pseudomonas
fluorescens)由来のリパーゼ(例えば天野製薬
(株)製、商品名「Lipase P」)、キヤンデイダ属
(Candida)ではキヤンデイダ・シリンドラセ
(Candida cylindracea)由来のリパーゼ(例え
ば 名糖産業(株)製・商品名「リパーゼ−OF」、天
野製薬(株)製・商品名「LipaseAY」)、キヤンデイ
ダ・リポリテイカ(Candida lipolytica)由来の
リパーゼ(例えば天野製薬(株)製・商品名
「LipaseL」)など、ペニシリウム属
(Penicillium)ではペニシリウム・シクロピウム
(Penicillium cyclopium)由来のリパーゼ(例
えば 天野製薬(株)・商品名「LipaseGT(G)」)、ア
ルカリゲネス属(Alcaligenes)では微工研菌寄
第3783号の株由来のリパーゼ(例えば 名糖産業
(株)製・商品名「Lipase−PL)、ヒユーミコラ属
(Humicola)ではヒユーミコラ・ラニユギノサ
(Humicola lanuginosa)由来のリパーゼ(例え
ば天野製薬(株)製、商品名「Lipase CE」)、ムコー
ル属(Mucor)ではムコール・ミーハイ
(Mucor miehei)由来のリパーゼ(例えばノ
ボ・インスタントリー社製・商品名
「Lipase3A」)、リゾプス属(Rhizopus)では、
リゾプス・キネンシス(Rhizopus chinensis)由
来のリパーゼ(特開昭59−156282記載の方法で調
製される耐熱製リパーゼ)などがあげらられる。
なお本発明はこれらの属、種の微生物およびリパ
ーゼに限定されるものではなく、これらの属ある
いは種に属する変異株、栄養要求性株、薬剤耐性
株からの耐熱性リパーゼを用いてもさしつかえな
い。またリパーゼは一般に分子量が数万〜十数万
の糖蛋白質であるが、分子量を巨大化することに
より耐熱性を増すことも可能あり、このような改
質操作によつて得られる耐熱性リパーゼを用いる
こともできる。 次に、上記の耐熱性酵素は、これを固定化物と
して使用することもできる。一般には酵素は、対
PHおよび温度安定性改良、活性維持、再使用など
を目的として水不溶性の固定化物とする方法がと
られているが、固定化用担体としてはセルロー
ス、デキストラン、ポリスチレン、ポリアクリル
アミド、ポリビニルアルコール、イオン交換樹
脂、磁性体、活性炭、アルミナ、光架橋性樹脂、
アルギン酸塩などが使用される。本発明ではこれ
らの固定用担体に吸着、イオン結合、共有結合あ
るいは包括させた耐熱性酵素を使用することがで
きる。例えば、特開昭60−98984号に記載された
ムコール・ミーハイ(Mucor miehei)由来の熱
安定性リパーゼを多孔性弱アニオン交換樹脂に固
定化する方法、特開昭52−104506号に記載のある
キヤンデイダ・シリンドラセ(Candida
cylindracea)由来の耐熱性リパーゼをケイソウ
土粉末に吸着させる方法などによる固定化酵素が
使用できる。 本発明の方法により糖脂質を加水分解するには
次のようにする。すなわち、前記の構造式()
〜()のいずれか1種または2種以上の組成の
糖脂質をガラスまたはステンレス製容器に採り、
必要に応じて最小限の不活性有機溶媒、たとえば
ヘキサン、ヘプタンなどで糖脂質を溶解させ、こ
れに適量の水、さらに必要に応じて酵素反応に最
適なPHに調整した緩衝液、および耐熱製酵素もし
くはその固定化物を添加したのち、撹拌もしくは
振とうしながら不活性気体たとえば、窒素ガスな
どを吹き込みながら、50℃以上好ましくは、50〜
70℃まで昇温し、この状態で酵素反応を行わしめ
る。 なお、糖脂質を前述の不活性有機溶媒に溶解さ
せ、水およびポリビニルアルコールやポリビニル
ピロリドンなどの非反応性乳化剤との共存下で、
常温活性の非耐熱性リパーゼを作用させても加水
分解反応は進行する。しかしながら、この方法で
は有機溶媒および乳化剤を使用することによる製
造コストのアツプがさけられず、また加水分解反
応に長時間を要し、経済的に不利である。これに
対し、本発明の方法では耐熱性酵素を用い、これ
が活性を示す程度の50〜70℃の加温処理のみで、
また糖脂質の融点がさらに高温の場合は50〜70℃
で溶解させるに必要最小限量の溶媒を使用するの
みで、酵素反応を容易に行わしめることができ
る。加水分解反応の進行状況は、遊離する脂肪酸
の中和価を測定することによりチエツクできる。
また本発明の方法によれば、化学反応による糖グ
リセロースまたはシアル糖グリセロールの製造法
に比較して温和な反応であり、また必要に応じて
基質特異性、例えば1,3−位置特異性のある酵
素、例えば前述の酵素のうちMucor miehei由来
のリパーゼ(ノボ・インダストリー社製)、
Penicillium cyclopium由来のリパーゼ(天野製
薬(株)製)などを用いれば生成物である糖グリセロ
ールまたはシアル糖グリセロールが単一組成の高
純度品として得られるなどの利点があり、さらに
適当な反応条件を設定するこによつても、これら
の生成物の組成を調整することも可能である。 反応終了後、水層と油層を分離し、水層からは
必要に応じて吸着処理、溶剤分別処理、噴霧乾燥
処理などを行い、糖グリセロールまたはシアル糖
グリセロールをえることができる。また、油層中
には分離した脂肪酸が含まれており、これは前述
のごとく生理活性のある脂肪酸であり、吸着処
理、蒸留処理、溶剤分別処理などを行い、精製し
た高純度脂肪酸を得ることができる。 (e) 実施例 実施例 1 溶剤分別、カラムクロマトグラフイーにより、
緑藻類の1種である海産性クロレラ細胞からガラ
クトースおよびエイコサペンタエン酸(C20:5ω
−3)からなる糖脂質、モノガラクトシル・ジエ
イコサペンタエン酸グリセリド(以下、MGDE
と略す)を単離した。融点は、48〜52℃であつ
た。撹拌機および冷却管付三ツ口フラスコ(1
)にMGDEG200gを採り、0.1Mリン酸緩衝水
溶液(PH7.0)200mlおよびシユードモナス・フル
オレツセンス(Pseudomonas fluorescens)由来
のリパーゼ(天野製薬(株)製・商品名「LipaseP」)
0.4gを添加した後、窒素ガスを吹き込みながら
撹拌しつつ55℃に加温した。この状態で反応を行
つたところ、3時間後の酸価はAV=71.5となり、
7時間後にはAV=135となつた。これにより、
3時間でMEDEG分子当り平均約1モル、7時間
で約2モルの脂肪酸が加水分解されたことを確認
した。7時間反応終了後、遠心分離法により水層
と油層を分離し、水層の水を留去して粘稠な液状
物を得た。本品は、これを酸加水分解し、酵素分
析した結果、モノガラクトシル・グリセリンであ
ることを確認した。他方、油層をメチルエステル
化し、GLC分析の結果からエイコサペンタエン
酸が高純度に生成していることを認めた。 実施例 2 実施例1で調製したMEDEG200g、0.05Mリ
ン酸緩衝液(PH6.5)50ml、ムコール・ミーハイ
(Mucor miehei)由来の1,3−位特異性のあ
る固定化リパーゼ(ノボ・インダストリー社製・
商品名「Lipase3A」)35gおよびn−ヘキサン50
mlを三角フラスコ(500ml)に採り、窒素ガスを
吹き込みながら、65℃に加温して5時間、振とう
して反応を行つた。反応後のAV=65.0となり、
分子平均約1モルの脂肪酸が加水分解されたこと
を確認した。反応終了後、反応液をn−ブタノー
ル/水=1/1で抽出し、溶剤(n−ブタノー
ル)層の薄層クロマトグラフイーによりエイコサ
ペタエン酸およびモノガラクトシル・モノエイコ
サペンタエン酸グリセリドが生成していることを
確認した。 比較例 1 実施例2において、ムコール・ミーハイ
(Mucor miehei)由来の1,3−位特異性のあ
る耐熱性固定化リパーゼの代わりにムコール・ミ
ーハイ(Mucor miehei)由来の同じく1,3−
位特異性のある非耐熱性リパーゼ(ノボ・インダ
ストリー社製・商品名「sp−225」)におきかえて
40℃で10時間反応を行つたところ、反応物中の遊
離脂肪酸の酸価測定値から算出した脂肪酸分解率
は10%となり、実施例2の場合の分解率46%(理
論分解率=50%)に比較して反応の進行が遅かつ
た。 実施例 3 糸状菌カニンガメラ・エレガンス
(cunninghamella elegane、NRRL1378)を培養
し、菌体から溶剤抽出してγ−リノレン酸
(C18:3ω−6)を主成分とする糖脂質を得た。
この糖脂質の構成脂肪酸はγ−リノレン酸のほか
にリノール酸、オレイン酸、ステアリン酸、パル
ミチン酸などの混合脂肪酸であり、構成糖はガラ
クトース、マンノース、グルコースなどの混合系
であつた。融点は、50〜55℃であつた。かかる糖
脂質を基質とし、この50gを実施例1と同様の反
応容器に採り、0.2M酢酸緩衝液(PH6.5)、10m
M塩化カルシウムおよびヒユーミコラ・ラニユギ
ノサ(Humicola lanuginosa)由来のリパーゼ
(天野製薬(株)社製・商品名「LipaseCE」)2gを
添加し、窒素ガスを吹き込みながら撹拌して55℃
に加温して反応を行つた。反応物の酸価は5時間
後AV=107、8時間後AV=110となり、10時間
後に反応を停止した。反応終了後、反応物のケン
化価を常法により測定したところ、SV=5とな
り、酵素反応によりほぼ完全に脂肪酸が加水分解
されていることを確認した。なお、反応物中の糖
および脂肪酸分析は実施例1記載の方法に準拠し
て行つた。 実施例 4 糸状菌ペニシリウム・チアニウム
(Penicillium tianium、No.250−2株)は菌体内
にアラキドン酸(C20:4ω−6)を生合成する
(日本農芸化会昭和57年度大会講演要旨集、
p191)。同種株を用い、参考文献(Iizuka et al.
E.J.Appl.Micrbiol.Biotechnol.、、173、
(1979))に準じた方法で培養し、菌体から溶剤抽
出して構成脂肪酸がアラキドン酸、リノレン酸、
リノール酸など、構成糖がカラクトース、グルコ
ールなどである糖脂質(融点50〜55℃)を得た。
この糖脂質5gを窒素雰囲気下にn−ヘキサン3
mlに溶解させ、0.1Mリン酸緩衝液(PH7.0)、キ
ヤンデイダ・シリンドラセ(Candida
cylindracea)由来のリパーゼ(名糖産業(株)製・
商品名「リパーゼOF」)0.7gおよびケイソウ土
1.0gを添加し、50℃で実施例3と同様に反応を
行つた。7.5時間反応後の酸価はAV=125となり、
実施例3記載の方法により加水分解がほぼ完全に
進行したことを確認した。また、反応物中の糖お
よび脂肪酸分析は実施例1に準じて行つた。 実施例 5 ナタネ種子から、文献(日本生化学会編、生化
学実験講座3 脂質の化学、p572(1974))の方
法に準拠してカラムクロマトグラフイーで糖脂質
(融点50〜60℃)を単離した。構成脂肪酸はリノ
ール酸、オレイン酸、ステアリン酸、パルミチン
酸など、構成糖はガラクトースが主体であり、モ
ノおよびジガラクトシルジグリセリドが主成分で
あつた。この糖脂質を用い、実施例4と同様に反
応を行い、約5時間後の脂肪酸分解率は96%であ
つた。反応物を実施例1と同様に処理し、水層か
らモノおよびジカラクトシル・グリセリンを、ま
た油層から上記と同様の脂肪酸混合物を得た。 (f) 発明の効果 本発明は、天然物の生体から抽出されるグリセ
ロ糖脂質を耐熱性油脂加水分解酵素を用いて温和
な条件下で容易に脂肪酸を分解し、糖グリセロー
ルまたはアシル糖グリセロールに改質させる方法
であり、従来の化学的分解法もしくは合成法に比
較して熱履歴が極めて少なく、このため反応時の
重合、異性化、環化、分解などの副反応をほぼ完
全に抑制することができ、したがつて後処理とし
ての複雑な精製工程を必要とせず、また生成物で
ある糖グリセロールまたはアシル糖グリセロール
は品質の優れたものであり、化粧品、医薬品をは
じめ、安全性が高度に要求される分野への乳化
剤、界面活性剤としての利用に適するものであ
る。 また、本発明の方法によれば、従来の酵素法に
よる反応に比べて有機溶剤や乳化剤といつた副原
料を必要とせず、しかも短時間に容易にさらにほ
ぼ完全に反応を進行させることができ、経済的メ
リツトは大きい。 さらに本発明の方法では生理活性性のある高度
不飽和脂肪酸を劣化を伴わず分離することが可能
である。
[Formula] A saturated or unsaturated fatty acid residue having a number of 11 to 23, and G is a residue of a monosaccharide or a dimer thereof. Such fatty acids include octanoic acid ( C8 : 0 ), lauric acid ( C12 : 0 ), palmitic acid (C16: 0 ), palmitoleic acid ( C16 : 1 ), and stearic acid ( C18 : 0) . ), oleic acid (C 18 : 1 ), linoleic acid (C 18 : 2 ), linolenic acid (C 18 : 3 ), behenic acid (C 22 : O ), erucic acid (C 22 : 1 ), eicosapentaenoic acid ( C20 : 5 ), docosahexaenoic acid ( C22 : 6 ), arachidonic acid ( C20 : 4 ), tetracosatetraenoic acid ( C24 : 4 ), and sugars such as xylose, glucose, and fructose. Examples include neutral monosaccharides such as mannose, galactose, and fucose, acidic monosaccharides such as glucuronic acid, amino monosaccharides such as glucosamine and galactosamine, and dimers thereof. In addition, fatty acid residues R 1 and R 2
At least one of them is eicosapentaenoic acid, γ
- When the residue is either linolenic acid or arachidonic acid, these physiologically active effects can be effectively utilized. Such glyceroglycolipids generally have a high melting point; for example, glycolipids extracted from certain types of chlorella cells are mainly composed of monogalactosyl dieicosapetenoic acid glyceride, and their melting point is 50 to 60°C.
It is. For this reason, fat and oil hydrolyzing enzymes (optimum temperature: 30-45
Coupled with the fact that there are almost no substances that are thermally stable for long periods of time in the glycolipids (℃), it has never been done industrially to hydrolyze such glycolipids to produce sugar glycerol or sialic sugar glycerol and fatty acids. However, in the present invention, this was made possible by using a thermostable enzyme. One of the features of the present invention is the use of this thermostable enzyme as a glycolipid hydrolase, and any thermostable enzyme may be used as long as it can maintain its activity even at 50°C or higher. Such enzymes can be isolated, purified, and collected from living organisms or secretions of animals, plants, or microorganisms, but enzymes derived from microorganisms are convenient. For example, in the genus Pseudomonas, Pseudomonas fluorescens
fluorescens) derived lipase (e.g. Amano Pharmaceutical Co., Ltd.)
Co., Ltd., trade name "Lipase P"), for Candida, lipase derived from Candida cylindracea (for example, Meito Sangyo Co., Ltd., trade name "Lipase-OF", Amano Pharmaceutical Co., Ltd. In the Penicillium genus, Penicillium cyclopium ) (e.g., Amano Pharmaceutical Co., Ltd., trade name ``LipaseGT(G)''), and in the Alcaligenes genus, lipase derived from the strain No. 3783 of Alcaligenes (e.g., Meito Sangyo Co., Ltd.).
Co., Ltd., product name "Lipase-PL"; for Humicola, lipase derived from Humicola lanuginosa (for example, manufactured by Amano Pharmaceutical Co., Ltd., product name "Lipase CE"); ), lipase derived from Mucor miehei (e.g. Novo Instantly, product name "Lipase3A"), Rhizopus,
Examples include lipase derived from Rhizopus chinensis (heat-resistant lipase prepared by the method described in JP-A-59-156282).
Note that the present invention is not limited to microorganisms and lipases of these genera and species, and thermostable lipases from mutant strains, auxotrophic strains, and drug-resistant strains belonging to these genera or species may also be used. . In addition, lipase is generally a glycoprotein with a molecular weight of tens of thousands to hundreds of thousands of thousands, but it is possible to increase heat resistance by increasing the molecular weight. It can also be used. Next, the above thermostable enzyme can also be used as an immobilized product. In general, enzymes are
For the purpose of improving PH and temperature stability, maintaining activity, and reusing, methods are used to make water-insoluble immobilized substances, but the immobilization carriers include cellulose, dextran, polystyrene, polyacrylamide, polyvinyl alcohol, and ions. Exchangeable resin, magnetic material, activated carbon, alumina, photocrosslinkable resin,
Alginate etc. are used. In the present invention, thermostable enzymes adsorbed, ionically bonded, covalently bonded, or enclosed in these immobilization carriers can be used. For example, the method of immobilizing thermostable lipase derived from Mucor miehei on a porous weak anion exchange resin described in JP-A-60-98984, the method described in JP-A-52-104506, Candida Cylindrace
An immobilized enzyme can be used, such as by adsorbing heat-stable lipase derived from cylindracea to diatomaceous earth powder. Glycolipids are hydrolyzed by the method of the present invention as follows. That is, the above structural formula ()
A glycolipid having a composition of one or more of ~() is taken in a glass or stainless steel container,
If necessary, dissolve the glycolipids in the minimum amount of inert organic solvent such as hexane, heptane, etc., add an appropriate amount of water, and if necessary, add a buffer solution adjusted to the optimal pH for the enzyme reaction, and a heat-resistant solution. After adding the enzyme or its immobilized product, the temperature is heated to 50°C or higher, preferably 50 to 50°C, while stirring or shaking and blowing in an inert gas such as nitrogen gas.
The temperature is raised to 70°C, and the enzymatic reaction is carried out in this state. In addition, glycolipids are dissolved in the above-mentioned inert organic solvent, and in the coexistence with water and a non-reactive emulsifier such as polyvinyl alcohol or polyvinylpyrrolidone,
The hydrolysis reaction proceeds even when a non-thermostable lipase active at room temperature is applied. However, this method unavoidably increases production costs due to the use of organic solvents and emulsifiers, and also requires a long time for the hydrolysis reaction, which is economically disadvantageous. In contrast, the method of the present invention uses a thermostable enzyme, and only requires heating at 50 to 70°C, which is the level at which it shows activity.
In addition, if the melting point of glycolipids is even higher, it is 50 to 70℃.
Enzyme reactions can be easily carried out by using only the minimum amount of solvent necessary for dissolution. The progress of the hydrolysis reaction can be checked by measuring the neutralization value of released fatty acids.
In addition, according to the method of the present invention, the reaction is milder than the method for producing sugar glycerose or sialic sugar glycerol by chemical reaction, and if necessary, substrate specificity, such as 1,3-position specificity, can be obtained. Enzymes, such as lipase from Mucor miehei (manufactured by Novo Industries) among the enzymes mentioned above;
The use of lipase derived from Penicillium cyclopium (manufactured by Amano Pharmaceutical Co., Ltd.) has the advantage that the sugar glycerol or sialic sugar glycerol product can be obtained as a highly purified product with a single composition, and it is also possible to obtain the product by adjusting the appropriate reaction conditions. It is also possible to adjust the composition of these products by setting. After the reaction is completed, the aqueous layer and the oil layer are separated, and the aqueous layer is subjected to adsorption treatment, solvent fractionation treatment, spray drying treatment, etc., as necessary, to obtain sugar glycerol or sialic sugar glycerol. In addition, the oil layer contains separated fatty acids, and as mentioned above, these are physiologically active fatty acids, and it is possible to obtain purified high-purity fatty acids by performing adsorption treatment, distillation treatment, solvent fractionation treatment, etc. can. (e) Examples Example 1 By solvent fractionation and column chromatography,
Galactose and eicosapentaenoic acid (C 20 : 5 ω
-3) monogalactosyl dieicosapentaenoic acid glyceride (MGDE)
) was isolated. The melting point was 48-52°C. Three-necked flask with stirrer and condenser (1
), add 200 ml of 0.1M phosphate buffer aqueous solution (PH7.0) and lipase derived from Pseudomonas fluorescens (manufactured by Amano Pharmaceutical Co., Ltd., trade name "LipaseP").
After adding 0.4 g, the mixture was heated to 55°C while stirring and blowing nitrogen gas. When the reaction was carried out in this state, the acid value after 3 hours was AV = 71.5,
After 7 hours, AV=135. This results in
It was confirmed that an average of about 1 mol of fatty acid per MEDEG molecule was hydrolyzed in 3 hours, and about 2 mol in 7 hours. After 7 hours of reaction, the aqueous layer and oil layer were separated by centrifugation, and the water in the aqueous layer was distilled off to obtain a viscous liquid. As a result of acid hydrolysis and enzymatic analysis, this product was confirmed to be monogalactosyl glycerin. On the other hand, the oil layer was methyl esterified, and the results of GLC analysis confirmed that eicosapentaenoic acid was produced with high purity. Example 2 200 g of MEDEG prepared in Example 1, 50 ml of 0.05 M phosphate buffer (PH6.5), immobilized lipase with 1,3-position specificity derived from Mucor miehei (Novo Industries) Manufactured by
Product name "Lipase3A") 35g and n-hexane 50g
ml was placed in an Erlenmeyer flask (500 ml), heated to 65°C while blowing nitrogen gas, and shaken for 5 hours to carry out the reaction. AV after reaction = 65.0,
It was confirmed that about 1 mole of fatty acids on average per molecule was hydrolyzed. After the reaction, the reaction solution was extracted with n-butanol/water = 1/1, and eicosapetaenoic acid and monogalactosyl monoeicosapentaenoic acid glyceride were produced by thin layer chromatography of the solvent (n-butanol) layer. It was confirmed. Comparative Example 1 In Example 2, instead of the thermostable immobilized lipase with 1,3-position specificity derived from Mucor miehei, the same 1,3-derived lipase derived from Mucor miehei was used.
Replacement with position-specific non-thermostable lipase (manufactured by Novo Industries, product name “sp-225”)
When the reaction was carried out at 40°C for 10 hours, the fatty acid decomposition rate calculated from the measured acid value of free fatty acids in the reaction product was 10%, which was 46% in Example 2 (theoretical decomposition rate = 50%). ) The reaction proceeded slowly compared to Example 3 The filamentous fungus Cunninghamella elegane (NRRL1378) was cultured, and glycolipids containing γ-linolenic acid (C 18 : 3 ω-6) as a main component were obtained by solvent extraction from the cells.
The constituent fatty acids of this glycolipid were mixed fatty acids such as linoleic acid, oleic acid, stearic acid, and palmitic acid in addition to γ-linolenic acid, and the constituent sugars were a mixed system such as galactose, mannose, and glucose. The melting point was 50-55°C. Using this glycolipid as a substrate, 50 g of it was placed in the same reaction vessel as in Example 1, and 10 m of 0.2 M acetate buffer (PH6.5) was added.
M calcium chloride and 2 g of lipase derived from Humicola lanuginosa (manufactured by Amano Pharmaceutical Co., Ltd., trade name "LipaseCE") were added, stirred while blowing nitrogen gas, and heated to 55°C.
The reaction was carried out by heating. The acid value of the reactant was AV=107 after 5 hours, AV=110 after 8 hours, and the reaction was stopped after 10 hours. After the reaction was completed, the saponification value of the reactant was measured by a conventional method, and the result was SV=5, confirming that the fatty acids were almost completely hydrolyzed by the enzymatic reaction. The analysis of sugars and fatty acids in the reaction product was carried out in accordance with the method described in Example 1. Example 4 The filamentous fungus Penicillium tianium (No. 250-2 strain) biosynthesizes arachidonic acid (C 20 : 4 ω-6) within the bacterial body (Collection of lecture abstracts at the 1981 conference of the Japan Agricultural Chemical Society) ,
p191). Using homologous strains, reference (Iizuka et al.
EJAppl.Micrbiol.Biotechnol., 7 , 173,
(1979)), the bacterial cells were extracted with solvent, and the constituent fatty acids were arachidonic acid, linolenic acid,
Glycolipids (melting point 50-55°C) such as linoleic acid whose constituent sugars are caractose and glycol were obtained.
5g of this glycolipid was added to 3g of n-hexane under a nitrogen atmosphere.
Dissolve in 0.1M phosphate buffer (PH7.0), Candida cylindracea (Candida
cylindracea) (manufactured by Meito Sangyo Co., Ltd.)
Product name "Lipase OF") 0.7g and diatomaceous earth
1.0 g was added and the reaction was carried out in the same manner as in Example 3 at 50°C. The acid value after 7.5 hours of reaction is AV = 125,
It was confirmed that hydrolysis proceeded almost completely by the method described in Example 3. Furthermore, analysis of sugars and fatty acids in the reaction product was conducted according to Example 1. Example 5 Glycolipids (melting point 50-60°C) were isolated from rapeseed seeds using column chromatography according to the method in the literature (edited by the Japanese Biochemical Society, Biochemistry Experiment Course 3, Chemistry of Lipids, p.572 (1974)). I let go. The constituent fatty acids were linoleic acid, oleic acid, stearic acid, palmitic acid, etc., the constituent sugars were mainly galactose, and the main constituents were mono- and digalactosyl diglycerides. Using this glycolipid, a reaction was carried out in the same manner as in Example 4, and the fatty acid decomposition rate after about 5 hours was 96%. The reaction product was treated in the same manner as in Example 1 to obtain mono- and dicalactosyl glycerin from the aqueous layer and the same fatty acid mixture as above from the oil layer. (f) Effects of the Invention The present invention easily decomposes fatty acids of glyceroglycolipids extracted from natural living organisms under mild conditions using a heat-stable fat hydrolase to convert them into sugar glycerol or acyl sugar glycerol. This is a reforming method that has an extremely small thermal history compared to conventional chemical decomposition or synthesis methods, and therefore almost completely suppresses side reactions such as polymerization, isomerization, cyclization, and decomposition during the reaction. Therefore, the sugar glycerol or acyl sugar glycerol produced is of excellent quality and is highly safe for use in cosmetics, pharmaceuticals, etc. It is suitable for use as an emulsifier or surfactant in fields where it is required. Furthermore, the method of the present invention does not require auxiliary raw materials such as organic solvents and emulsifiers compared to reactions using conventional enzyme methods, and the reaction can proceed easily and almost completely in a short period of time. , the economic benefits are great. Furthermore, the method of the present invention makes it possible to separate physiologically active polyunsaturated fatty acids without deterioration.

Claims (1)

【特許請求の範囲】 1 下記の式()〜()で表わされるグリセ
ロ糖脂質の1種または2種以上に耐熱性油脂加水
分解酵素を作用させることを特徴とする糖グリセ
ロールまたはアシル糖グリセロールおよび脂肪酸
の製造法。 【式】【式】 【式】 【式】 (式中、R1およびR2はともに炭素数7〜23の飽
和または不飽和脂肪酸残基であり、Gは単糖類ま
たはその二量体の残基である。) 2 R1およびR2のうちすくなくとも1つはエイ
コサペンタエン酸、γ−リノレン酸またはアラキ
ドン酸のいずれかの残基を含むものである特許請
求の範囲第1項記載の製造法。 3 グリセロ糖脂質が微生物、藻類、魚類、高等
動植物などの天然物由来の脂質中に含まれている
ものである特許請求の範囲第1項記載の製造法。 4 耐熱性油脂加水分解酵素が50℃以上でも活性
のある耐熱性リパーゼである特許請求の範囲第1
項記載の製造法。 5 耐熱性リパーゼが固定化物である特許請求の
範囲第4項記載の製造法。
[Scope of Claims] 1. Sugar glycerol or acyl sugar glycerol and acyl sugar glycerol, characterized in that a heat-stable fat hydrolase is made to act on one or more glyceroglycolipids represented by the following formulas () to (). Method for producing fatty acids. [Formula] [Formula] [Formula] [Formula] (wherein R 1 and R 2 are both saturated or unsaturated fatty acid residues having 7 to 23 carbon atoms, and G is the residue of a monosaccharide or its dimer. 2. The production method according to claim 1, wherein at least one of R 1 and R 2 contains a residue of eicosapentaenoic acid, γ-linolenic acid, or arachidonic acid. 3. The production method according to claim 1, wherein the glyceroglycolipid is contained in lipids derived from natural products such as microorganisms, algae, fish, higher animals and plants. 4. Claim 1, wherein the heat-stable fat hydrolase is a heat-stable lipase that is active even at temperatures above 50°C.
Manufacturing method described in section. 5. The production method according to claim 4, wherein the thermostable lipase is an immobilized product.
JP60162098A 1985-07-24 1985-07-24 Production of saccharide glycerol and fatty acid Granted JPS6222597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60162098A JPS6222597A (en) 1985-07-24 1985-07-24 Production of saccharide glycerol and fatty acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60162098A JPS6222597A (en) 1985-07-24 1985-07-24 Production of saccharide glycerol and fatty acid

Publications (2)

Publication Number Publication Date
JPS6222597A JPS6222597A (en) 1987-01-30
JPH0528114B2 true JPH0528114B2 (en) 1993-04-23

Family

ID=15748022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60162098A Granted JPS6222597A (en) 1985-07-24 1985-07-24 Production of saccharide glycerol and fatty acid

Country Status (1)

Country Link
JP (1) JPS6222597A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6467237A (en) * 1987-09-09 1989-03-13 Nisshin Oil Mills Ltd Novel surface active composition and emulsified composition combined therewith
JPH0938478A (en) * 1996-08-05 1997-02-10 Nisshin Oil Mills Ltd:The Emulsified composition obtained by blending with novel surface active composition
DE19634020A1 (en) * 1996-08-23 1998-02-26 Beiersdorf Ag Production of glycoglycerolipids, their use as surfactants and cosmetic or dermatological preparations containing such glycoglycerolipids
JP2016144399A (en) * 2013-05-31 2016-08-12 味の素株式会社 Method for production of sugar glycerol

Also Published As

Publication number Publication date
JPS6222597A (en) 1987-01-30

Similar Documents

Publication Publication Date Title
CA1210409A (en) Rearrangement process
US4956286A (en) Process for the preparation of esters
US6605452B1 (en) Fatty acid polyol ester-coated lipase complex immobilized on insoluble matrix
JP3720194B2 (en) Method for producing partial glycerides
EP0307154B1 (en) Preparation of diglycerides
KR100774281B1 (en) Surfactant-lipase complex immobilized on insoluble matrix
EP1582594B1 (en) Enzymatic process for the accelerated synthesis of triglycerides containing polyunsaturated fatty acid
JPH02504342A (en) Immobilized, regionon-specific lipase, its production and use
US6022718A (en) Method of producing capsaicin analogues
US5316927A (en) Production of monoglycerides by enzymatic transesterification
WO1990004033A1 (en) Production of monoglycerides by enzymatic transesterification
JP3072022B2 (en) Diglyceride production method
JPH0528114B2 (en)
JP3847445B2 (en) Diglyceride production method
JP3509124B2 (en) Method for transesterification of fats and oils using immobilized lipase
JPH0582197B2 (en)
JP2707642B2 (en) Method for producing lysophospholipid
JP2676470B2 (en) Immobilized lipase, method for producing the same, and method for transesterifying oils and fats using the lipase
JP2570774B2 (en) Oil and fat reforming method
JPH0710233B2 (en) Immobilized enzyme and method for producing the same
JPS6251593B2 (en)
JPH0588117B2 (en)
JPH01137987A (en) Production of highly unsaturated fatty acid glyceride
JPH04258291A (en) Immobilized enzyme and its production
JPH10234392A (en) Production of diglycerides