JPS63148548A - Manufacture of negative electrode for sealed alkaline storage battery - Google Patents

Manufacture of negative electrode for sealed alkaline storage battery

Info

Publication number
JPS63148548A
JPS63148548A JP61293939A JP29393986A JPS63148548A JP S63148548 A JPS63148548 A JP S63148548A JP 61293939 A JP61293939 A JP 61293939A JP 29393986 A JP29393986 A JP 29393986A JP S63148548 A JPS63148548 A JP S63148548A
Authority
JP
Japan
Prior art keywords
negative electrode
storage battery
black
alkaline storage
cadmium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61293939A
Other languages
Japanese (ja)
Other versions
JPH079808B2 (en
Inventor
Isao Matsumoto
功 松本
Hiroshi Kawano
川野 博志
Munehisa Ikoma
宗久 生駒
Yasuko Ito
康子 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61293939A priority Critical patent/JPH079808B2/en
Publication of JPS63148548A publication Critical patent/JPS63148548A/en
Publication of JPH079808B2 publication Critical patent/JPH079808B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • H01M10/526Removing gases inside the secondary cell, e.g. by absorption by gas recombination on the electrode surface or by structuring the electrode surface to improve gas recombination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To prevent a drop in charge efficiency and discharge efficiency by sticking platinum group metal black on the surface of a negative electrode together with a small amount of binder. CONSTITUTION:When a negative electrode is immersed in a solution in which very small amount of oxygen-reducing catalyst powder 4 is dispersed and binder resin 5 is contained, a mixture of the catalyst powder 4 and the binder resin 5 is sticked on the surface 6 of active material powder 6 which forms a porous body. The fine particles of platinum black or palladium black are used as the oxygen reducing catalyst powder. The adhesion of platinum group metal to the inside of an electrode which has no relation with reaction is prevented to remarkably reduce its amount. Since the platinum group metal black is dispersed in the binder 5, the direct contact to the negative active material 6 is retarded. Thereby, a drop in hydrogen overvoltage of the negative electrode is prevented.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、密閉形アルカリ蓄電池における負極の改良に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to improvements in negative electrodes in sealed alkaline storage batteries.

従来の技術 現在工業的には、アルカリ蓄電池を代表する電池系はニ
ッケル正極とカドミウム負極で構成されるニッケル・カ
ドミウム蓄電池である。この電池の中で大半を占め、ポ
ータプル機器用電源等に広く使用され始めた円筒密閉形
ニッケル・カドミウム蓄電池には、最近、前記の用途面
からさらに高容量、短時間充電(急速充電)が切望され
ている。
BACKGROUND OF THE INVENTION In industrial terms, the typical alkaline storage battery system is the nickel-cadmium storage battery, which is composed of a nickel positive electrode and a cadmium negative electrode. Sealed cylindrical nickel-cadmium storage batteries, which account for the majority of these batteries and have begun to be widely used as power supplies for portable devices, have recently been in demand for higher capacity and shorter charging times (rapid charging) due to the above-mentioned uses. has been done.

前者の要望に対しては電極の非焼結化などで対応し、後
者の要望に対しては過充電時に正極から発生する酸素ガ
スの吸収性能を改善した負極で対応してきた。
The former demand has been met by making the electrode non-sintered, and the latter demand has been met by a negative electrode that has improved ability to absorb oxygen gas generated from the positive electrode during overcharging.

一般的なペースト式カドミウム負極における酸素ガス吸
収性能は、これを適用した密閉電池で充電電流的%cm
A 以下、つまり完全充電には33時間以上を要すとい
われている。この特性改善のための技術上の重要点は、
正極から移動する酸素ガスと金属カドミウムの接触を助
ける構成方法およびその反応速度の向上である。このた
め以下の手段が提案されてきた。
The oxygen gas absorption performance of a typical paste-type cadmium negative electrode is % cm at charging current in a sealed battery using this.
A: It is said that it takes more than 33 hours to fully charge. The important technical points for improving this characteristic are:
The present invention is a method of construction that facilitates contact between oxygen gas moving from the positive electrode and metal cadmium, and improvement of the reaction rate. For this reason, the following measures have been proposed.

(1)  負極の多孔度を高めて、酸素ガスとカドミラ
ムの接触する有効面積を増加させる。
(1) Increase the porosity of the negative electrode to increase the effective area where oxygen gas and cadmium come into contact.

(2)負極全体にフッ素樹脂で撥水性をもたせ、酸素ガ
ス、カドミウムおよび電解液とで形成される三相界面を
適切な状態にし、反応有効部を増大させる。
(2) The entire negative electrode is made water repellent with fluororesin, the three-phase interface formed by oxygen gas, cadmium, and electrolyte is brought into an appropriate state, and the effective reaction area is increased.

(3)カーボン等の導電剤を負極の表面もしくは内部に
配し、電極全体の電気抵抗を低下させて、酸素ガスに接
触しやすい負極表面付近に金属のカドミウムが形成され
やすくする。
(3) A conductive agent such as carbon is disposed on or inside the negative electrode to lower the electrical resistance of the entire electrode, making it easier for metal cadmium to be formed near the negative electrode surface where it easily comes into contact with oxygen gas.

(4)負極に酸素イオン化触媒をメッキ酸素ガスのイオ
ン化を促進させる。
(4) Plating an oxygen ionization catalyst on the negative electrode to promote ionization of oxygen gas.

発明が解決しようとする問題点 上記(1)の方法では酸素ガス吸収能は向上するが、多
孔度の増加は高容量密度化に不利である。(2)。
Problems to be Solved by the Invention Although the method (1) above improves the oxygen gas absorption ability, the increase in porosity is disadvantageous for achieving high capacity density. (2).

(3) 、 (4)の方法もそれぞれ役割シは異なるが
、酸素ガス吸収能の向上には有効な手段ではある。しか
し、(2)?(3)においては負極表面を比較的多量の
物質で被覆するため、とくに高率での放電特性を低下さ
せる危険性を有している。これに対して(4)の方法は
、少量で有効なのでこのような危険性は少ないが、一般
に有効な還元触媒である白金族金属は極めて高価である
うえ、メッキ法のようにこの金属をそのまま負極と接触
させて用いたのでは、負極の水素発生過電圧が低下して
充電効率を減少させることが懸念される。
Although methods (3) and (4) each have different roles, they are effective means for improving oxygen gas absorption ability. But (2)? In (3), since the surface of the negative electrode is coated with a relatively large amount of material, there is a risk of degrading the discharge characteristics, especially at high rates. On the other hand, method (4) is effective in small amounts, so there is little risk of this, but platinum group metals, which are generally effective reduction catalysts, are extremely expensive, and the metals cannot be used as they are, as in the plating method. If it is used in contact with the negative electrode, there is a concern that the hydrogen generation overvoltage of the negative electrode will decrease and the charging efficiency will decrease.

本発明は、これら4方法のうち最も酸素ガス吸収性能に
有効な(4)の方法に着目し、微量の白金族金属を用い
て、酸素ガス吸収性能に優れ、充電効率および放電率に
支障のない負極を提供することを目的とする。
The present invention focuses on method (4), which is the most effective method for oxygen gas absorption performance among these four methods, and uses a trace amount of platinum group metal to achieve excellent oxygen gas absorption performance and to avoid impeding charging efficiency and discharge rate. Aims to provide no negative electrode.

問題点を解決するための手段 この問題点を解決するため本発明は、高価な白金族金属
をブラック状で極めて少量、酸素ガス吸収性能に最も有
効な負極表面に少量の結着剤とともに付着させるもので
ある。
Means for Solving the Problem In order to solve this problem, the present invention deposits an extremely small amount of expensive platinum group metal in black form on the surface of the negative electrode, which is most effective for oxygen gas absorption performance, along with a small amount of a binder. It is something.

作  用 本発明の製造法によれば、(1)のような高容量密度の
低下をきたすことなく、また使用材料が少量であるから
(2) 、 (3)の方法で懸念される高率放電特性を
低下させることもない酸素ガス吸収性能に優れる負極が
得られる。さらに(4)のメッキ法の欠点である反応に
無関係な電極内部への白金族金属の付着も防止できて使
用量が大幅に低減でき、しかも白金族金属のブラックは
結着剤中に混在しているため負極活物質と直接接触する
ことが抑制されて負極の水素発生過電圧を低下させるこ
ともない。
Effect: According to the production method of the present invention, there is no reduction in high capacity density as in (1), and since only a small amount of material is used, there is no problem with the high yield that is a concern with methods (2) and (3). A negative electrode with excellent oxygen gas absorption performance without degrading discharge characteristics can be obtained. Furthermore, it is possible to prevent the adhesion of platinum group metals to the inside of the electrode unrelated to the reaction, which is a disadvantage of the plating method (4), and the amount used can be significantly reduced.Moreover, the platinum group metal black is mixed in the binder. Therefore, direct contact with the negative electrode active material is suppressed and the hydrogen generation overvoltage of the negative electrode is not reduced.

実施例 市販のフッ素樹脂微粉末の懸濁液(樹脂公約ωwt% 
の水分散液)を100倍に希釈した液11に、市販のパ
ラジウムブラック微粒子62を混入し、充分攪拌する。
Example Suspension of commercially available fluororesin fine powder (resin convention ωwt%
Commercially available palladium black fine particles 62 are mixed into a solution 11 obtained by diluting an aqueous dispersion of 100 times, and the mixture is sufficiently stirred.

得られた液中に酸化カドミウム負極を主とする、一般の
ペースト式カドミウム負極(厚さ約o、6m)を約20
秒間浸漬する。なお、この際の雰囲気温度は水溶液の含
浸速度に支障のない温度で良く、10’C〜30’C程
度が好ましい。取り出した負極を100’Cで6分間乾
燥したのち、比重1.30KOH水溶液中で陰分極を行
なって一部充電状態にするいわゆる化成工程を施し、水
洗・乾燥する。ついでこの負極を加圧ローラー間に通し
て加圧し、厚さ0.5謡のカドミウム負極を得る。この
過程で付着するパラジクムブラック量は約0.2驚−で
あった。
Approximately 200 ml of a general paste-type cadmium negative electrode (thickness approximately 0, 6 m), mainly consisting of cadmium oxide negative electrode, was added to the obtained liquid.
Soak for seconds. The ambient temperature at this time may be any temperature that does not impede the impregnation rate of the aqueous solution, and is preferably about 10'C to 30'C. After drying the taken out negative electrode at 100'C for 6 minutes, it is subjected to a so-called chemical conversion step in which it is cathodically polarized in a KOH aqueous solution with a specific gravity of 1.30 to bring it into a partially charged state, and then washed with water and dried. Next, this negative electrode is passed between pressure rollers and pressurized to obtain a cadmium negative electrode with a thickness of 0.5 mm. The amount of palladium black deposited during this process was about 0.2 kg.

得られた負極の概略断面図と触媒の付着部の拡大図を第
1図に示す。1は触媒と結着剤の部分、2はカドミウム
活物質部、3は芯金を示し、10部分は第2図の拡大図
に示すようにパラジウムブラック微粒子4とフッ素樹脂
6の混合物が多孔体を形成する主に酸化カドミウムより
成る粉末60表面に付着している。パラジウムブラック
微粒子は直接酸化カドミウムと接触する機会が少ない。
FIG. 1 shows a schematic cross-sectional view of the obtained negative electrode and an enlarged view of the part to which the catalyst is attached. 1 is a catalyst and binder part, 2 is a cadmium active material part, 3 is a core metal, and 10 part is a porous body made of a mixture of palladium black fine particles 4 and fluororesin 6, as shown in the enlarged view of Fig. 2. It is attached to the surface of powder 60 mainly composed of cadmium oxide. Palladium black fine particles have little chance of coming into direct contact with cadmium oxide.

本実施例に記載した方法で得られた、厚さ約0.6II
IBのペースト式カドミウム負極を幅391EII。
Approximately 0.6II thick obtained by the method described in this example
IB paste type cadmium negative electrode with a width of 391EII.

長さ8011mに切断し、一般の厚さ0.7襲1幅39
鵡、長さ6oImの焼結式ニッケル正極と組み合せてK
R−AAサイズの円筒密閉形ニッケル・カドミウム蓄電
池を10セル試作した。これらの電池を、通常の使用条
件で最も過酷な0℃において、種々の充電率で充電を公
称容量(500mAhとする)の160%行ない、それ
ぞれの充電率における電池内圧の最大値を測定した。各
電池の平均値を第3図Aに示す。同図には、本発明のよ
うな触媒を使用しない一般のカドミウム負極を用いた電
池1゜セルの平均電池内圧を比較例としてBに示す。こ
の結果、安全弁が作動する圧力(約10に9/d)以下
となるには、従来の電池では充電率は0.3〜0.4a
mA  が限界であったが、本発明の負極を用いた電池
では2 cmA  近くまで高めることができ、短時間
充電に極めて良い効果を示した。
Cut to length 8011m, standard thickness 0.7cm 1 width 39mm
In combination with a sintered nickel positive electrode with a length of 6oIm,
A 10-cell prototype R-AA size cylindrical sealed nickel-cadmium storage battery was manufactured. These batteries were charged at 160% of the nominal capacity (500 mAh) at various charging rates at 0° C., which is the most severe under normal usage conditions, and the maximum value of the battery internal pressure at each charging rate was measured. The average value for each battery is shown in Figure 3A. In the same figure, as a comparative example, B shows the average battery internal pressure of a 1° cell of a battery using a general cadmium negative electrode that does not use a catalyst like the one of the present invention. As a result, in order for the pressure at which the safety valve operates (approximately 9/d) to drop below, the charging rate for conventional batteries is 0.3 to 0.4a.
mA was the limit, but in the battery using the negative electrode of the present invention, it was possible to increase the current to nearly 2 cmA, showing an extremely good effect on short-time charging.

また本実施例のカドミウム負極に付着させるパラジウム
ブラック微粒子の量を変えた場合の同電池の電池内圧変
化を第4図Aに示す。横軸はパラジウム使用量を示す。
Furthermore, FIG. 4A shows changes in the internal pressure of the same battery when the amount of palladium black fine particles attached to the cadmium negative electrode of this example was changed. The horizontal axis shows the amount of palladium used.

充電率は1 cmA、充電深度は150%でいずれも0
℃の条件で測定した。各点は電池2個の平均値で示した
。比較として、通常の無電解メッキ方法を用いてパラジ
ウムをメッキしたカドミウム負極を使用した場合の同様
な測定値をCで示した。この結果、本発明の負極の場合
は単位負極面積当シのパラジウム使用量的0.06暫−
でも電池内圧5.5 Kg/、−であったが、Cの場合
では0.6驚−で10設佃の内圧を示した。
The charging rate is 1 cmA, the charging depth is 150%, and both are 0.
The measurement was performed at ℃. Each point is shown as the average value of two batteries. For comparison, similar measurements using a cadmium negative electrode plated with palladium using a conventional electroless plating method are shown in C. As a result, in the case of the negative electrode of the present invention, the amount of palladium used per unit negative electrode area was approximately 0.06 -
However, the battery internal pressure was 5.5 Kg/-, but in the case of C, the internal pressure was 0.6 Kg/-, which was 10 kg/-.

従って本発明の場合は、高価格のパラジウム使用量が著
しく低減できることが明らかである。この理由は、メッ
キの場合は酸素ガス吸収に関与しない電極内部に多くの
パラジウムが使用されると考えられる。
Therefore, it is clear that in the case of the present invention, the amount of expensive palladium used can be significantly reduced. The reason for this is thought to be that in the case of plating, a large amount of palladium is used inside the electrode, which does not participate in oxygen gas absorption.

また本実施例のカドミウム負極を用いた電池では、触媒
やフッ素樹脂の使用量が極めて少ないので放電率に支障
をきたすことなく、かつフッ素樹脂と混在していること
からパラジウムが直接酸化カドミウムと接触することが
少なく、水素発生過電圧を下げて充電効率を低下させる
現象も認められなかった。
In addition, in the battery using the cadmium negative electrode of this example, the amount of catalyst and fluororesin used is extremely small, so the discharge rate is not affected, and since palladium is mixed with fluororesin, palladium comes into direct contact with cadmium oxide. There was no phenomenon observed that lowered hydrogen generation overvoltage and reduced charging efficiency.

なお、実施例ではカドミウム負極を一例に取り上げたが
、酸素ガス吸収現象を応用する亜鉛や水素吸蔵合金等を
負極に用いる密閉形アルカリ蓄電池にも適用できるもの
で、パラジウムの代りに白金を使用して前記負極と組み
合わせても同様の効果が得られる。
Although the example uses a cadmium negative electrode as an example, it can also be applied to sealed alkaline storage batteries that use zinc or hydrogen storage alloys for the negative electrode that utilizes the oxygen gas absorption phenomenon, and platinum is used instead of palladium. The same effect can be obtained by combining the negative electrode with the above negative electrode.

発明の効果 以上のように本発明によれば、微量の白金族金属ブラッ
クを結着剤とともに表面に付着した負極を用いた密閉形
アルカリ蓄電池は、急速充電特性に優れ、高価な白金族
金属の使用量も少なく、かつ充電効率、放電率等の特性
を低下させることがないという優れた効果を得られる。
Effects of the Invention As described above, according to the present invention, a sealed alkaline storage battery using a negative electrode having a trace amount of platinum group metal black adhered to the surface together with a binder has excellent rapid charging characteristics and can be manufactured using expensive platinum group metals. An excellent effect can be obtained in that the amount used is small and characteristics such as charging efficiency and discharge rate are not deteriorated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例におけるパラジウムブラック微
粒子とフッ素樹脂の混合物を付着させたペースト式カド
ミウム負極の断面概略図、第2図は同要部の拡大図、第
3図および第4図はKR−AAサイズの電池における過
充電時の電池内圧の比較を示す。 1・・・・・・カドミウム極に付着されたパラジウムブ
ラック微粒子とフッ素樹脂の層、2・・・・・・活物質
部、3・・・・・・芯材、4・・・・・・パラジウムブ
ラック微粒子、6・・・・・・フッ素樹脂、6・・・・
・・活物質粉末、7・・・・・・空間。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第3図 □   t)、s/   /、5  2充覧率(C九〇 第4図 o   o、5      2
Fig. 1 is a schematic cross-sectional view of a paste-type cadmium negative electrode to which a mixture of palladium black fine particles and fluororesin is attached in an example of the present invention, Fig. 2 is an enlarged view of the same main part, and Figs. 3 and 4 are A comparison of battery internal pressure during overcharging in KR-AA size batteries is shown. 1... Layer of palladium black fine particles and fluororesin attached to cadmium electrode, 2... Active material portion, 3... Core material, 4... Palladium black fine particles, 6...Fluororesin, 6...
...Active material powder, 7... Space. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3 □ t), s/ /, 5 2 Completeness rate (C90 Figure 4 o o, 5 2

Claims (3)

【特許請求の範囲】[Claims] (1)微量の酸素還元触媒粉末を分散させた結着性樹脂
を含む液中に負極を浸漬する工程を有することを特徴と
する密閉形アルカリ蓄電池用負極の製造法。
(1) A method for producing a negative electrode for a sealed alkaline storage battery, comprising the step of immersing the negative electrode in a liquid containing a binding resin in which a minute amount of oxygen reduction catalyst powder is dispersed.
(2)酸素還元触媒粉末が、白金ブラックまたはパラジ
ウムブラックの微粒子である特許請求の範囲第1項に記
載の密閉形アルカリ蓄電池用負極の製造法。
(2) The method for producing a negative electrode for a sealed alkaline storage battery according to claim 1, wherein the oxygen reduction catalyst powder is fine particles of platinum black or palladium black.
(3)結着性樹脂を含む液は、フッ素樹脂微粉末の懸濁
液である特許請求の範囲第1項記載の密閉形アルカリ蓄
電池用負極の製造法。
(3) The method for producing a negative electrode for a sealed alkaline storage battery according to claim 1, wherein the liquid containing the binding resin is a suspension of fine fluororesin powder.
JP61293939A 1986-12-10 1986-12-10 Manufacturing method of negative electrode for sealed alkaline storage battery Expired - Fee Related JPH079808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61293939A JPH079808B2 (en) 1986-12-10 1986-12-10 Manufacturing method of negative electrode for sealed alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61293939A JPH079808B2 (en) 1986-12-10 1986-12-10 Manufacturing method of negative electrode for sealed alkaline storage battery

Publications (2)

Publication Number Publication Date
JPS63148548A true JPS63148548A (en) 1988-06-21
JPH079808B2 JPH079808B2 (en) 1995-02-01

Family

ID=17801126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61293939A Expired - Fee Related JPH079808B2 (en) 1986-12-10 1986-12-10 Manufacturing method of negative electrode for sealed alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH079808B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5741067A (en) * 1980-07-03 1982-03-06 Post Office Data transmitting method and device
JPS5796463A (en) * 1980-12-05 1982-06-15 Matsushita Electric Ind Co Ltd Manufacture of cadmium electrode for sealed alkaline storage battery
JPS60100382A (en) * 1983-11-07 1985-06-04 Matsushita Electric Ind Co Ltd Closed nickel-hydrogen storage battery
JPS60109183A (en) * 1983-11-17 1985-06-14 Matsushita Electric Ind Co Ltd Sealed type nickel-hydrogen storage battery
JPS618848A (en) * 1984-06-22 1986-01-16 Matsushita Electric Ind Co Ltd Nickel-hydrogen storage battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5741067A (en) * 1980-07-03 1982-03-06 Post Office Data transmitting method and device
JPS5796463A (en) * 1980-12-05 1982-06-15 Matsushita Electric Ind Co Ltd Manufacture of cadmium electrode for sealed alkaline storage battery
JPS60100382A (en) * 1983-11-07 1985-06-04 Matsushita Electric Ind Co Ltd Closed nickel-hydrogen storage battery
JPS60109183A (en) * 1983-11-17 1985-06-14 Matsushita Electric Ind Co Ltd Sealed type nickel-hydrogen storage battery
JPS618848A (en) * 1984-06-22 1986-01-16 Matsushita Electric Ind Co Ltd Nickel-hydrogen storage battery

Also Published As

Publication number Publication date
JPH079808B2 (en) 1995-02-01

Similar Documents

Publication Publication Date Title
EP0817291A2 (en) Non-sintered nickel electrode for alkaline storage battery, alkaline storage battery including the same, and method for production of non-sintered nickel electrode for alkaline storage battery
JP3386634B2 (en) Alkaline storage battery
JPS63148548A (en) Manufacture of negative electrode for sealed alkaline storage battery
JPH0568828B2 (en)
JP2001093520A (en) Hydrogen storage alloy electrode and preparation thereof
JP2591988B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JPH10154508A (en) Alkaline storage battery, its nickel electrode, and its manufacture
JP4617632B2 (en) Method for producing alkaline storage battery
JPH0338702B2 (en)
JP2796674B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2577964B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JPS63148547A (en) Sealed alkaline storage battery
JP2600307B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2564172B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2564176B2 (en) Cadmium negative electrode plate for sealed alkaline secondary battery and sealed alkaline secondary battery using the negative electrode plate
JPH0677450B2 (en) Sealed nickel-hydrogen battery
JP2595664B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP3746086B2 (en) Method for manufacturing nickel-metal hydride battery
JP3482478B2 (en) Nickel-metal hydride storage battery
JPH0234433B2 (en)
JPH10275619A (en) Paste type cadmium electrode
JPH0119619B2 (en)
JPH01267958A (en) Cadmium negative electrode for alkaline storage battery and its manufacture
JPH0737581A (en) Alkaline storage battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees