JPS63148201A - Production of reflection type color filter - Google Patents

Production of reflection type color filter

Info

Publication number
JPS63148201A
JPS63148201A JP61296101A JP29610186A JPS63148201A JP S63148201 A JPS63148201 A JP S63148201A JP 61296101 A JP61296101 A JP 61296101A JP 29610186 A JP29610186 A JP 29610186A JP S63148201 A JPS63148201 A JP S63148201A
Authority
JP
Japan
Prior art keywords
films
thin film
film
production
color filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61296101A
Other languages
Japanese (ja)
Inventor
Koichi Tatsuoka
浩一 立岡
Satoru Kawai
悟 川井
Yasuhiro Nasu
安宏 那須
Tomotaka Matsumoto
友孝 松本
Kenichi Oki
沖 賢一
Yoshikazu Toyama
嘉一 遠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61296101A priority Critical patent/JPS63148201A/en
Publication of JPS63148201A publication Critical patent/JPS63148201A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography

Abstract

PURPOSE:To simplify a process for production by impressing the voltages corresponding to desired film thicknesses to thin metallic films which are electrically separated and provided to correspond to the respective colors of three primary colors to anodize the films simultaneously and laminating thin transparent films and metallic reflection films having different film thicknesses in one stage. CONSTITUTION:The thin metallic films 2-1-2-3 corresponding to the dots of the respective colors of the three primary colors are separately formed on a glass substrate 1, then the substrate 1 is immersed in an electrolyte 6 such as ammonium tartrate and the respectively different voltages are impressed to the respective films 2-1-2-3 to execute the anodic oxidation. The surfaces of the films 2-1-2-3 are chemically converted to form the thin transparent films 3-1-3-3. The thicknesses of the films 3-1-3-3 are controlled in accordance with the impressed voltages VR, VG, VB. The films 2-1-2-3 remaining as a sub-surface act as the metallic reflection films to reflect light transmitted through the films 3-1-3-3. The films 3-1-3-3 having respectively the desired film thicknesses are thereby simultaneously formed in one stage and the process for production is extremely simplified.

Description

【発明の詳細な説明】 〔概 要〕 本発明は、干渉効果を利用した反射型カラーフィルタを
、陽極酸化時の印加電圧により化成速度が異なることを
利用して、3原色の各色対応に電気的に分離して設けた
金属薄膜に、所望膜厚に対応する電圧を印加して同時に
陽極酸化を行い、一工程で膜厚の異なる透明薄膜と金属
反射膜とが積層された反射型カラーフィルタを作製する
[Detailed Description of the Invention] [Summary] The present invention utilizes the fact that the formation rate differs depending on the applied voltage during anodic oxidation to produce a reflective color filter that utilizes interference effects. A reflective color filter in which a transparent thin film and a metal reflective film with different thicknesses are laminated in one process by applying a voltage corresponding to the desired film thickness to the metal thin films that have been separately provided and simultaneously anodizing them. Create.

〔産業上の利用分野〕[Industrial application field]

本発明は、透明薄膜と金属反射膜とからなり、透明薄膜
における干渉効果を利゛用した反射型カラーフィルタの
製造方法に関する。
The present invention relates to a method for manufacturing a reflective color filter, which is composed of a transparent thin film and a metal reflective film, and utilizes interference effects in the transparent thin film.

〔従来の技術〕[Conventional technology]

反射型液晶表示装置に用いられるカラーフィルタは、着
色剤として顔料や染料を用い、ガラ“大基板の画素対応
領域を着色して作製される。
Color filters used in reflective liquid crystal display devices are manufactured by using pigments or dyes as colorants to color the pixel-corresponding regions of a large glass substrate.

カラーフィルタの作製時には、上記着色工程中で、塵埃
等が付着し易く、この塵埃によって、反射型液晶表示装
置の電極やパスライン等にクラックを生じたり、或いは
セル厚のバラツキを生じたりする場合があり、表示欠陥
発生の一因となる。
When manufacturing color filters, dust is likely to adhere during the coloring process, and this dust may cause cracks in the electrodes, pass lines, etc. of the reflective liquid crystal display device, or may cause variations in cell thickness. This is one of the causes of display defects.

またかかる構成のフィルタは長時間にわたる光照射によ
り、色あいの劣化を生じ、表示品質が低下するという欠
点がある。
Further, a filter having such a structure has the disadvantage that the color tone deteriorates due to long-term light irradiation, resulting in a decrease in display quality.

そこで本発明者らは、かかる欠点を解消した反射型カラ
ーフィルタを、特願昭61〜222569号により提案
した。
Accordingly, the present inventors proposed a reflective color filter that overcomes these drawbacks in Japanese Patent Application No. 61-222569.

その反射型カラーフィルタとその製造方法を第2図(a
)〜felにより説明する。
The reflective color filter and its manufacturing method are shown in Figure 2 (a
) to fel.

同図(alに示すように、まずガラス基板1上に共通電
極を兼ねる金属薄膜2を成膜する。
As shown in the same figure (al), first, a metal thin film 2 which also serves as a common electrode is formed on a glass substrate 1.

次に同図(blに見られるように、金属薄膜2上の単位
画素領域を開口部とするレジスト膜5−1を形成し、こ
れをマスクとして上記金属薄膜2に陽極酸化法を施し、
金属薄膜2の一部を化成して透明薄膜3−1を形成する
。なお、カラー表示装置の1画素は、R,G、Bの3原
色のそれぞれに対し1ドツトずつから構成されるので、
上記陽極酸化工程において化成する面積は、3ドツト分
の面積とする。
Next, as shown in the same figure (bl), a resist film 5-1 having an opening in the unit pixel area on the metal thin film 2 is formed, and using this as a mask, the metal thin film 2 is subjected to anodic oxidation.
A transparent thin film 3-1 is formed by chemically converting a part of the metal thin film 2. Note that one pixel of a color display device is composed of one dot for each of the three primary colors R, G, and B.
The area to be chemically formed in the anodic oxidation step is the area of three dots.

次いで同図(C)に示すように、上記3ドツト分に相当
する透明薄膜3−1のうち、2ドツト分を開口部とする
レジスト膜5−2を形成し、これをマスクとして再び陽
極酸化法を施して、先に形成した透明薄膜3−1の表面
を露出している部分の膜厚を増大させ、図示の如く透明
薄膜3−2を形成する。
Next, as shown in the same figure (C), a resist film 5-2 having two dots as openings in the transparent thin film 3-1 corresponding to the three dots is formed, and using this as a mask, anodic oxidation is carried out again. The thickness of the exposed surface of the previously formed transparent thin film 3-1 is increased by applying a method to form a transparent thin film 3-2 as shown in the figure.

次いで同図(d)に示すように、透明薄膜3−2のうち
1ドツト分を開口部とするレジスト膜5−3を形成し、
これをマスクとして再度陽極酸化法を施して、最も大な
る膜厚を有する透明薄膜3−3を形成する。
Next, as shown in FIG. 3(d), a resist film 5-3 having an opening corresponding to one dot in the transparent thin film 3-2 is formed,
Using this as a mask, anodic oxidation is performed again to form a transparent thin film 3-3 having the largest thickness.

上記金属薄膜2と透明薄膜3−1.3−2.3−3から
の反射光強度は、互いに干渉しである波長域で大きくな
る。従って透明薄膜3−1.3−2.3−3の膜厚を変
えることにより、光の反射波長域を変えることができ、
即ち反射型カラーフィルタとして用いることができる。
The intensity of reflected light from the metal thin film 2 and the transparent thin film 3-1.3-2.3-3 interferes with each other and becomes large in a certain wavelength range. Therefore, by changing the thickness of the transparent thin film 3-1.3-2.3-3, the reflected wavelength range of light can be changed.
That is, it can be used as a reflective color filter.

以上により同図(elに見られるように、3原色を構成
する各色対応に異なる膜厚を有するカラーフィルタが作
製される。
Through the above steps, as shown in FIG.

かかる構成の反射型カラーフィルタは、有機色素を用い
ていないので、褪色することなく長時間の使用が可能で
あり、またカラーフィルタ作製時にゴミの付着がなく、
従って、電極やパスラインにクラックを生じたり、セル
厚が変化したりすることがなく、従って表示欠陥が発生
する虞もない。
Since a reflective color filter with such a configuration does not use organic dyes, it can be used for a long time without fading, and there is no dust attached during the production of the color filter.
Therefore, cracks do not occur in the electrodes or pass lines, and the cell thickness does not change, so there is no possibility of display defects occurring.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上記従来の反射型カラーフィルタは、3原色の
各色対応に陽極酸化を3回行い、各色ごとにフィルタの
膜厚を制御することが必要であるため、製造工程が煩雑
となる難点がある。
However, the conventional reflective color filter described above has the disadvantage that the manufacturing process is complicated because it is necessary to perform anodization three times for each of the three primary colors and to control the film thickness of the filter for each color. .

そこで本発明においては、上記反射型カラーフィルタを
容易に作製し得る、改良された製造方法を提供すること
を目的とする。
Therefore, an object of the present invention is to provide an improved manufacturing method that allows the reflective color filter described above to be easily manufactured.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は本発明において、ガラス基板上に3原色の各
色対応のドツト領域ごとに金属薄膜を電気的に分離して
形成し、この各ドツト領域にそれぞれ異なる電圧を印加
して同時に陽極酸化を行うことによって達成される。
The above object is achieved in the present invention by electrically separating and forming a thin metal film on a glass substrate for each dot region corresponding to each of the three primary colors, and applying different voltages to each dot region to perform anodic oxidation simultaneously. This is achieved by

〔作 用〕[For production]

金属薄膜に陽極酸化法を施した時の化成膜の成長速度は
、陽極酸化時に印加する電圧によって異なる。そこで3
原色の各色対応の金属薄膜に印加する電圧を、それぞれ
の干渉光が所望の波長となる膜厚に対応する電圧に選ん
で陽極酸化することにより、同一工程において、各色対
応の金属3膜表面層が化成されて得られる透明薄膜を、
それぞれ所望の厚さに形成できる。
The growth rate of a chemically formed film when a metal thin film is subjected to anodic oxidation differs depending on the voltage applied during anodic oxidation. So 3
By anodizing the voltage applied to the metal thin film corresponding to each primary color by selecting the voltage corresponding to the film thickness at which each interference light has the desired wavelength, three metal film surface layers corresponding to each color can be formed in the same process. The transparent thin film obtained by chemical conversion of
Each can be formed to a desired thickness.

〔実 施 例〕〔Example〕

以下本発明の一実施例を第1図(al〜(dlにより説
明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 (al to dl).

先ず同図(al、 (blに示す如く、ガラス基板1上
に3原色の各色のドツト対応に金属薄膜2−L 2−2
゜2−3を分離して形成する。これは、ガラス基板1上
全而に、例えばチタン(Ti)、タンタル(Ta)のよ
うな金属を、スパッタリング法等により凡そ2000人
の厚さに被着させた後、所要部分をレジスト膜でマスク
して、不要部を除去する等の方法で実施できる。
First, as shown in FIGS.
Separate and form ゜2-3. This is done by depositing a metal such as titanium (Ti) or tantalum (Ta) on the entire surface of the glass substrate 1 to a thickness of about 2,000 wafers by sputtering or the like, and then covering the required portions with a resist film. This can be done by masking and removing unnecessary parts.

次いで同図(C)に見られる如く、ガラス基板1を酒石
酸アンモニウム((NtI#) zcJ40a)のよう
な電解液6中にひたし、各金属薄膜2−1.2−2.2
−3に対してそれぞれ異なる電圧を印加して、陽極酸化
を行う。この時、各金属薄膜2−1.2−2.2−3を
赤色R9緑色G、青色Bに対するドツト領域とした場合
、各金属薄膜上の化成膜の厚さと印加する電圧VR、V
r、、Vmとの関係については後述する。
Next, as shown in the same figure (C), the glass substrate 1 is immersed in an electrolytic solution 6 such as ammonium tartrate ((NtI#) zcJ40a), and each metal thin film 2-1.2-2.2
Anodic oxidation is performed by applying different voltages to -3. At this time, when each metal thin film 2-1.2-2.2-3 is used as a dot region for red R9 green G and blue B, the thickness of the chemically formed film on each metal thin film and the applied voltage VR, V
The relationship between r and Vm will be described later.

このように陽極酸化を行うと、同図(d)に見られるよ
うに、金属薄膜2−1.2−2.2−3表面が化成され
て、透明薄膜3−1.3−2.3−3が形成される。各
透明薄膜3−1.3−2.3−3 (7)厚さは、印加
電圧V、l。
When the anodic oxidation is performed in this way, the surface of the metal thin film 2-1.2-2.2-3 is chemically formed and the transparent thin film 3-1.3-2.3 is -3 is formed. Each transparent thin film 3-1.3-2.3-3 (7) The thickness is the applied voltage V, l.

V、、V、に対応して制御される。It is controlled according to V,,V,.

このように形成された透明薄膜3−1.3−2.3−3
の下地として残留する金属薄膜2−1.2−2.2−3
は、透明薄膜3−1.3−2.3−3を透過した光を反
射する金属反射膜として働く。ここで反射された光と、
透明薄膜3−1.3−2.3−3表面で反射された光と
の干渉により、透明薄膜3−1.3−2.3−3からの
反射光の波長は、その膜厚に依存する。
Transparent thin film 3-1.3-2.3-3 formed in this way
Metal thin film remaining as a base 2-1.2-2.2-3
acts as a metal reflective film that reflects the light that has passed through the transparent thin film 3-1.3-2.3-3. The light reflected here and
Due to interference with the light reflected from the surface of the transparent thin film 3-1.3-2.3-3, the wavelength of the reflected light from the transparent thin film 3-1.3-2.3-3 depends on its film thickness. do.

即ち、透明薄膜の厚さ、屈折率をd、nとし、反射光の
波長をλとすると、 n−d=λ/4         −〜−−−−−■の
関係が成立する。従って、金属薄膜2−1.2−2゜2
−3としてTiを用いると、透明薄膜3−1.3−2゜
3−3は酸化チタン(T i O□)となる。これの屈
折率は可視領域でn#2.3である。
That is, if the thickness and refractive index of the transparent thin film are d and n, and the wavelength of the reflected light is λ, then the following relationship holds: nd=λ/4. Therefore, metal thin film 2-1.2-2゜2
When Ti is used as -3, the transparent thin film 3-1.3-2°3-3 becomes titanium oxide (T i O□). Its refractive index in the visible region is n#2.3.

また3原色R,G、Bの波長は、それぞれ凡そ7.80
0人、 5.200人、 3800人であるので、各色
に対する透明薄膜3−1.3−2.3−3の膜厚dR,
dG、d。
Also, the wavelengths of the three primary colors R, G, and B are approximately 7.80
0 person, 5.200 person, and 3800 person, the film thickness dR of the transparent thin film 3-1.3-2.3-3 for each color,
dG, d.

は、上記0式を変形して d=λ/ 4 n          −・−−一−−
−−■となるので、 となる。
is, by modifying the above equation 0, d=λ/4 n −・−−1−−
−−■, so it becomes .

上述の陽極酸化工程における化成速度は、反応闇値電圧
を越えるとほぼ印加電圧に直線的に比例する。そこで、
各色対応の金属薄膜2−1.2−2.2−3表面がそれ
ぞれ上記厚さに化成されるように、印加電圧V、、V、
、V、を、例えば60V、 30V。
The rate of chemical formation in the above-mentioned anodic oxidation step is approximately linearly proportional to the applied voltage once the reaction dark voltage is exceeded. Therefore,
Apply voltages V, , V, so that the surfaces of the metal thin films 2-1.2-2.2-3 corresponding to each color are formed to the above-mentioned thickness.
, V, for example 60V, 30V.

20Vに選び、凡そ10分間の化成を行えばよい。It is sufficient to select 20V and perform chemical conversion for about 10 minutes.

以上により本実施例では3原色各色対応のドツト領域に
、それぞれ所望の膜厚を有する透明薄膜3−1.3−2
.3−3を、一工程で同時に形成することができ、製造
工程が極めて簡単化される。
As described above, in this embodiment, transparent thin films 3-1 and 3-2 having desired film thicknesses are formed in the dot areas corresponding to each of the three primary colors.
.. 3-3 can be formed simultaneously in one step, and the manufacturing process is extremely simplified.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、有機色素を用いないので色あいの劣化
がなく、またフィルタ作製時のゴミの付着もなく、従っ
て表示欠陥のない良好な表示品質を有する表示パネルが
簡単な製造工程で作製され、製造歩留が向上し、価格も
安価となる。
According to the present invention, since no organic dye is used, there is no deterioration in color tone, and there is no adhesion of dust during filter production, and therefore, a display panel with good display quality without display defects can be produced with a simple manufacturing process. , the manufacturing yield is improved and the price is reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明一実施例説明図、 第2図は従来の製造方法説明図である。 図において、1はガラス基板、2.2−1.2−2゜2
−3は金属薄膜、3 、3−1.3−2.3−3は透明
薄膜を示す。 2′−2 不ネ明−ぢ0・J謹甥図 ’+77”ラズ基本( 従禾丙髪涜方莞参H図
FIG. 1 is an explanatory diagram of one embodiment of the present invention, and FIG. 2 is an explanatory diagram of a conventional manufacturing method. In the figure, 1 is a glass substrate, 2.2-1.2-2゜2
-3 indicates a metal thin film, and 3 and 3-1.3-2.3-3 indicate a transparent thin film. 2'-2 Unnemei-ji0・J Bennephew Map'+77" Raz basic

Claims (1)

【特許請求の範囲】 ガラス基板(11)上に透明な化成膜を形成し得る金属
薄膜を形成した後、該金属薄膜を陽極酸化法により化成
して、3原色の各色対応に異なる膜厚を有する透明薄膜
を形成するに際し、 前記金属薄膜(2−1、2−2、2−3)を3原色の各
色に対応するドット領域ごとに分離して形成し、各金属
薄膜にそれぞれ異なる化成電圧を印加して同時に陽極酸
化を行い、各金属薄膜、表面に透明薄膜(3−1、3−
2、3−3)をそれぞれ所望の膜厚に形成することを特
徴とする反射型カラーフィルタの製造方法。
[Claims] After forming a metal thin film capable of forming a transparent chemical film on a glass substrate (11), the metal thin film is chemically formed by an anodic oxidation method to form a film with a different thickness for each of the three primary colors. When forming a transparent thin film having A voltage is applied and anodic oxidation is performed at the same time to form a transparent thin film (3-1, 3-
A method for manufacturing a reflective color filter, comprising forming each of 2 and 3-3) to a desired thickness.
JP61296101A 1986-12-11 1986-12-11 Production of reflection type color filter Pending JPS63148201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61296101A JPS63148201A (en) 1986-12-11 1986-12-11 Production of reflection type color filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61296101A JPS63148201A (en) 1986-12-11 1986-12-11 Production of reflection type color filter

Publications (1)

Publication Number Publication Date
JPS63148201A true JPS63148201A (en) 1988-06-21

Family

ID=17829144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61296101A Pending JPS63148201A (en) 1986-12-11 1986-12-11 Production of reflection type color filter

Country Status (1)

Country Link
JP (1) JPS63148201A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01271706A (en) * 1988-04-25 1989-10-30 Matsushita Electric Works Ltd Optical filter and photoelectric sensor using same
EP0478621A1 (en) * 1989-06-17 1992-04-08 GLICK, William F. Color display system using thin film color control
JP2001137001A (en) * 1999-11-11 2001-05-22 Rikio:Kk Footwear, its manufacturing method, and midsole and insole to be used for the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01271706A (en) * 1988-04-25 1989-10-30 Matsushita Electric Works Ltd Optical filter and photoelectric sensor using same
EP0478621A1 (en) * 1989-06-17 1992-04-08 GLICK, William F. Color display system using thin film color control
EP0478621A4 (en) * 1989-06-17 1993-02-03 William F. Glick Color display system using thin film color control
JP2001137001A (en) * 1999-11-11 2001-05-22 Rikio:Kk Footwear, its manufacturing method, and midsole and insole to be used for the same

Similar Documents

Publication Publication Date Title
TW581915B (en) Color filter and optical display device
JPH0772473A (en) Color liquid crystal display device
JPH06202101A (en) Manufacture of color filter of liquid- crystal display element
EP0112695B1 (en) Method for making a multicoloured member
US10006140B2 (en) Method for dye-free coloring of one-time anodic aluminum oxide surface
JPS63148201A (en) Production of reflection type color filter
JP2002368011A (en) Insulated gate transistor and liquid crystal display
JPS63146002A (en) Manufacture of reflection type color filter
JPH01145626A (en) Multicolor display device and production thereof
JPS6377018A (en) Reflection type color liquid crystal panel
JPS63210802A (en) Transmission type color filter and production thereof
JPS60247202A (en) Color filter
KR100388228B1 (en) Method for fabricating liquid crystal display
JPS6377004A (en) Reflection type color filter
JPS6314121A (en) Liquid crystal color display device
JP2001108984A (en) Reflection liquid crystal picture display device and method for manufacturing semiconductor device for picture display device
JPH02308105A (en) Color filter and its production
JPH01300226A (en) Matrix array substrate and its manufacture
JPH0486601A (en) Color filter
JPS6314120A (en) Liquid crystal color display device
JPS60221728A (en) Liquid crystal display device
JPH04295802A (en) Production of color filter
KR100272555B1 (en) A production method of color filter for liquid crystal display
JPH07128518A (en) Color filter
JPS63147104A (en) Production of multicolor display device