JPH01145626A - Multicolor display device and production thereof - Google Patents

Multicolor display device and production thereof

Info

Publication number
JPH01145626A
JPH01145626A JP62305469A JP30546987A JPH01145626A JP H01145626 A JPH01145626 A JP H01145626A JP 62305469 A JP62305469 A JP 62305469A JP 30546987 A JP30546987 A JP 30546987A JP H01145626 A JPH01145626 A JP H01145626A
Authority
JP
Japan
Prior art keywords
light
color filter
display device
color filters
multicolor display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62305469A
Other languages
Japanese (ja)
Inventor
Takakazu Fukuchi
高和 福地
Koji Iwasa
浩二 岩佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP62305469A priority Critical patent/JPH01145626A/en
Publication of JPH01145626A publication Critical patent/JPH01145626A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Optical Filters (AREA)

Abstract

PURPOSE:To form light shielding films by exposing a light shieldable photosensitive resin from the rear face thereof by using the color filters of a multicolor display device contg. an additive for absorbing a specific wavelength in the color filters of the color filter substrate of the multicolor display device as a mask. CONSTITUTION:The electrodeposited color filters 5 formed by mixing and dispersing fine powder of an acrylic resin as a specific wavelength absorbent at 8.0wt.% into electrodeposition coating compds. of red and green and subjecting the compds. to electrodeposition are set at 1.5mu film thickness for red, green and blue. The carbon- contg. light shieldable photosensitive resin is then coated on the substrate of the electrodeposited color filters 5-2.5mu film thickness. An ultra-high pressure mercury lamp is used for exposing which is executed from the rear face of the glass substrate 2 at 350mJ/cm<2> quantity of light. The film thickness of the light shieldable resin after developing and post baking is 2.0mu and the development is required to be executed for 2-3min by using ultrasonic waves. The light shieldable resin on the electrodeposited color filters 5 is neatly developed and the uniform light shielding films 6 are formed in the spacings between the electrodeposited color filters 5. The light shielding films having good accuracy are thereby easily obtd. in the spacings between the electrodeposited color filters.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は、カラーテレビ、パーソナルコンピュータの表
示装置、ビデオ表示装置、計測機器の表示パネル等に利
用され、小型か大型まであらゆる用途に応用可能な高画
質表示装置とその製造方法に関するものである。
[Detailed Description of the Invention] (Field of Industrial Application) The present invention is used for color televisions, display devices for personal computers, video display devices, display panels for measuring instruments, etc., and can be applied to all kinds of applications, whether small or large. The present invention relates to a high-quality display device and its manufacturing method.

〔発明の概要〕[Summary of the invention]

本発明は、多色表示装置のカラーフィルター基板のカラ
ーフィルター中に特定波長を吸収する添加材を含有せし
めた多色表示装置とそのカラーフィルターをマスクとし
て用いて感光性の遮光性樹脂を背面から露光することに
より遮光膜を形成する多色表示装置の製造方法を提供す
るものである。
The present invention provides a multicolor display device in which the color filter of the color filter substrate of the multicolor display device contains an additive material that absorbs a specific wavelength, and a photosensitive light-shielding resin is applied from the back side using the color filter as a mask. The present invention provides a method for manufacturing a multicolor display device in which a light shielding film is formed by exposure.

〔従来の技術〕[Conventional technology]

近年、液晶、EL、プラズマ、LED等薄型表示装置の
進展は著しく、CRTに匹敵する高精細な画質が得られ
るようになった。特に、カラー化技術も進み染色法、印
刷法、電着法等によるカラーフィルターが極めて精度よ
く鮮やかな色調を有するまでに至っているが、更にN質
の向上のための手段として、透明電極間−力ラーフィル
ター間隙に遮光膜を設ける方式が考案されている。これ
は透明電極間隙の電圧が印加されない部分、すなわち表
示に寄与しない部分の光の漏れを防ぎ、見掛は上コント
ラストを高めるためである。特に、カラー表示の場合は
、コントラストの向上は表示色の彩度の向上と同等にな
るためにこの遮光膜は画質向上のための需要な手段にな
る。さらに、スイッチング素子を用いたアクティブ型表
示装置の場合には、この遮光膜により不要の光を除去で
きるためスイッチング素子の光リーク不良を低減できる
効果を有することになる。
In recent years, thin display devices such as liquid crystal, EL, plasma, and LED have made remarkable progress, and high-definition image quality comparable to CRT can now be obtained. In particular, color technology has progressed to the point where color filters made by dyeing, printing, electrodeposition, etc. have very accurate and vivid color tones. A method has been devised in which a light-shielding film is provided in the gap between the filters. This is to prevent the leakage of light from the portion of the gap between the transparent electrodes to which no voltage is applied, that is, the portion that does not contribute to display, and to improve the apparent contrast. In particular, in the case of color display, the improvement in contrast is equivalent to the improvement in the saturation of displayed colors, so this light-shielding film becomes an indispensable means for improving image quality. Furthermore, in the case of an active display device using switching elements, unnecessary light can be removed by this light-shielding film, which has the effect of reducing light leakage defects of the switching elements.

従来、この遮光膜を形成する方法として次の3つが考案
されている。
Conventionally, the following three methods have been devised as methods for forming this light-shielding film.

第1の方法は印刷法によるものであり、透明電極間隙に
黒色インキを印刷することにより遮光膜を形成する方法
である。
The first method is a printing method, in which a light-shielding film is formed by printing black ink in the gap between transparent electrodes.

第2の方法染色法によるものであり、カラーフィルター
の形成に利用されている方法を応用したものである。透
明電極を有する基板上にゼラチン等被染色性の感光性樹
脂を塗布し、透明電極のパターンに対応したフォトマス
クを用い露光する。
The second method is a dyeing method, which is an application of the method used for forming color filters. A dyeable photosensitive resin such as gelatin is applied onto a substrate having a transparent electrode, and exposed using a photomask corresponding to the pattern of the transparent electrode.

現像後透明電極上のゼラチンを除去し、最後に黒色の染
料を用いてゼラチンを染色し遮光膜を得るものである。
After development, the gelatin on the transparent electrode is removed, and finally the gelatin is dyed with a black dye to obtain a light-shielding film.

第3の方法は、第3図に示すメタルマスク方式によるも
のである。まず初めに、パターニングされた透明1)p
i上に選択的に金属メツキを被覆し、その上に光感光性
の遮光性樹脂を塗布した後、ガラス基板の背面から露光
する0次いで、現像し金属メツキ上の遮光性樹脂を除去
した後、透明導電膜上の金属メツキをエツチングにより
除去することによって遮光膜を得る方法である。
The third method is based on the metal mask method shown in FIG. First of all, patterned transparent 1) p
After selectively coating the metal plating and applying a photosensitive light-shielding resin on it, the glass substrate is exposed to light from the back side.Next, after developing and removing the light-shielding resin on the metal plating. , is a method of obtaining a light shielding film by removing metal plating on a transparent conductive film by etching.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来技術の第1の印刷法は粗いパターンの場合には極め
て筒便な法として優れているが、遮光膜の幅が100ミ
クロン以下になると均一な遮光膜形成が難しく、また印
刷精度が悪いという問題を存している。
The first printing method of the prior art is excellent as an extremely convenient method for rough patterns, but when the width of the light-shielding film is less than 100 microns, it is difficult to form a uniform light-shielding film and printing accuracy is poor. There is a problem.

第2の染色法は、遮光膜の均一性が良(、また露光法を
用いるため位置精度も高い、しかし、露光時にアライメ
ントの必要があり、しかも透明電極とのアライメントに
なるため作業性が悪く、コストアップの大きな要因にな
っている。
The second dyeing method has good uniformity of the light-shielding film (and also has high positional accuracy because it uses an exposure method. However, it requires alignment during exposure, and it also has poor workability because it requires alignment with the transparent electrode. , which is a major factor in increasing costs.

第3のメタルマスク法は、第3図に示すようにパターニ
ングされた透明電極上の金属メツキが露光時のマスクと
して利用されるためにアライメント威しで掻めて位置精
度が高い遮光膜が形成できるメリットがある。しかし、
透明電極上への金属メツキをした上、後にエツチングに
より除去するという実質的余計な工程が付加されるため
、その分コストアップ要因になるばかりでなく、金属エ
ツチングという極めて化学的に苛酷な雰囲気中に基板を
浸すため、せっかく形成した遮光膜が剥離してしまう危
険性や透明電極表面の汚染等品質上の問題を有している
In the third metal mask method, as shown in Figure 3, the metal plating on the patterned transparent electrode is used as a mask during exposure, so a light-shielding film with high positional accuracy can be formed by applying alignment. There is an advantage that it can be done. but,
The substantial extra step of plating metal on the transparent electrode and removing it by etching afterwards not only increases costs, but also requires metal etching in an extremely harsh chemical atmosphere. Since the substrate is immersed in water, there are quality problems such as the risk that the light-shielding film that has been formed will peel off and the surface of the transparent electrode may be contaminated.

このように従来の技術は、それぞれ問題点や弱点を有し
ており、本発明はこれらの問題を解決するために考案さ
れたものである。
As described above, each of the conventional techniques has its own problems and weaknesses, and the present invention has been devised to solve these problems.

〔問題点を解決するための手段〕[Means for solving problems]

本発明における遮光膜製造工程を第2図に示した。第2
図■は、パターニングされた透明電極が形成されたガラ
ス基板、前記透明電極上に電着法により赤色、緑色、青
色のカラーフィルターを順次形成させる(■)、この場
合、通常の電着塗料浴中に予め特定波長吸収材を均一分
散させておき、電着すると一定の条件のもとて電着カラ
ーフィルター中に特定波長吸収材が共析する・ 前記特定波長吸収材(以後吸収材と呼ぶ)を添加する必
要性は、以後の工程■で示した背面露光する際に?Lf
fカラーフィルターをマスクにするために、通常の電着
カラーフィルターを透過する波長か電着カラーフィルタ
ー上に塗布された感光性の遮光性樹脂と反応し、現像時
に電着カラーフィルター表面上に残り、カラーフィルタ
ーの色調を著しく悪化させるという問題が生じることに
ある。
FIG. 2 shows the manufacturing process of the light shielding film in the present invention. Second
Figure ■ shows a glass substrate on which a patterned transparent electrode is formed, and red, green, and blue color filters are sequentially formed on the transparent electrode by electrodeposition (■). In this case, a normal electrodeposition paint bath is used. A specific wavelength absorbing material is uniformly dispersed in the color filter in advance, and when it is electrodeposited, the specific wavelength absorbing material is eutectoid in the electrodeposited color filter under certain conditions. ) is it necessary to add it during the back exposure shown in the subsequent step ■? Lf
f To use a color filter as a mask, the wavelength that passes through a normal electrodeposition color filter reacts with the photosensitive light-shielding resin coated on the electrodeposition color filter, and remains on the surface of the electrodeposition color filter during development. However, the problem arises that the color tone of the color filter is significantly deteriorated.

従って、本発明の重要な点の一つは、遮光膜材料として
使用する感光性樹脂の光反応する波長領域の光を通過さ
せる電着カラーフィルター中に、前記吸収材を予め含有
させておく工程を設けることにある。電着カラーフィル
ターに使用する色素により波長特性も変化するが、感光
性゛樹脂が光反応する波長領域の波長を完全に遮断する
ことはできない、各色素により変わる波長特性に応じて
、前記吸収材の添加量を変えられるという点も重要な内
容である0色素によっては、全く吸収材を必要としない
こともありうることは言うまでもないことである。
Therefore, one of the important points of the present invention is the step of pre-containing the absorbing material in an electrodeposited color filter that passes light in the wavelength range in which the photosensitive resin used as the light-shielding film material reacts with light. The purpose is to establish The wavelength characteristics change depending on the dye used in the electrodeposited color filter, but it is not possible to completely block wavelengths in the wavelength range where the photosensitive resin photoreacts. It goes without saying that depending on the dye, an absorbing material may not be required at all.An important feature is that the amount of addition of the dye can be changed.

前述した露光時に電着カラーフィルターをi3過し、前
記感光性樹脂と反応する光のうち問題になる波長領域は
、通常の感光性樹脂が反応する410nm以下である。
The problematic wavelength region of the light that passes through the electrodeposited color filter and reacts with the photosensitive resin during the exposure described above is 410 nm or less, at which normal photosensitive resins react.

従うて、前記吸収材として必要な特性は、410n+s
以下で光の吸収特性を有する物質であることにある。ま
た、第2図■で示したように、本発明は透明ガラス基板
の背面から露光する方式を採用しているので、ガラスの
吸収領域である300nm以下の波長領域は全く問題に
ならない。
Therefore, the characteristics necessary for the absorbent material are 410n+s
Below, it is a substance that has light absorption properties. Furthermore, as shown in FIG. 2, since the present invention employs a method of exposing from the back side of a transparent glass substrate, there is no problem at all in the wavelength region of 300 nm or less, which is the absorption region of glass.

よって、前記吸収材として必要な特性は300nm〜4
10nmに吸収領域をもつものでも良いことになる。
Therefore, the characteristics necessary for the absorber are 300 nm to 4
A material having an absorption region of 10 nm may also be used.

さらに、410nm以下の波長を有する光を吸収する吸
収材の添加によって、電着カラーフィルター色調には全
く影響を及ぼさないことは、第4図で示すように電着カ
ラーフィルターの最も短波長側で光を透過させる青色の
フィルターのピークが45onm付近にあることから明
らかであることを付は加えておく。
Furthermore, the addition of an absorbing material that absorbs light with a wavelength of 410 nm or less does not affect the color tone of the electrodeposited color filter at all, as shown in Figure 4, on the shortest wavelength side of the electrodeposited color filter. It should be added that this is clear from the fact that the peak of the blue filter that transmits light is around 45 onm.

電着の方法は、高分子電着方法と呼ばれポリエステル樹
脂とメラミン樹脂をカルボキシル基によりイオンカラー
フィルターさせた水溶液中に顔料を混合分散させた電着
浴を用いるものである。浴中に、バターニングされたガ
ラス基板を浸漬し陽極に印加し、対極にステンレス板を
用いて陰極として電着を行う、電着は、通常定電圧法で
行い、浴温は20℃〜30℃の範囲の定温でコントロー
ルされる。
The electrodeposition method is called a polymer electrodeposition method, and uses an electrodeposition bath in which pigments are mixed and dispersed in an aqueous solution of polyester resin and melamine resin that have been subjected to ion color filtering using carboxyl groups. A buttered glass substrate is immersed in the bath and a voltage is applied to the anode, and a stainless steel plate is used as the counter electrode to perform electrodeposition as a cathode. Electrodeposition is usually performed by constant voltage method, and the bath temperature is 20°C to 30°C. It is controlled at a constant temperature in the range of °C.

次に、前記カラーフィルターが形成された基板表面に感
光性の遮光性樹脂を塗布する(第2図O)。
Next, a photosensitive light-shielding resin is applied to the surface of the substrate on which the color filter is formed (FIG. 2O).

一般に、この感光性の遮光性樹脂は、感光性樹脂中に複
数の色素を混合分散させて得るが、カーボン顔料を感光
性樹脂に分散させたものも使用可能である。塗布方法は
、前記感光性の遮光性樹脂が均一に塗布できる方法なら
いずれも選択できるが、通常、印刷法かスピンナー塗布
法が採用される。
Generally, this photosensitive light-shielding resin is obtained by mixing and dispersing a plurality of pigments in a photosensitive resin, but it is also possible to use one in which a carbon pigment is dispersed in a photosensitive resin. Any coating method can be selected as long as the photosensitive light-shielding resin can be uniformly coated, but usually a printing method or a spinner coating method is employed.

この感光性の遮光性樹脂が均一塗布された基板の背面か
ら露光を行う(第2図■)、この背面露光法は、前記電
着カラーフィルターがマスクとなるので、カラーフィル
ター間隙部に塗布された感光性樹脂のみが感光され、現
像により容易にカラーフィルター上の感光性樹脂が除去
され、所望の遮光膜が得られる。この遮光膜の厚さの調
整は容易であり、塗布時点で膜厚を設定しておけば良い
Exposure is carried out from the back side of the substrate on which this photosensitive light-shielding resin is evenly applied (Fig. 2 ■). In this back exposure method, the electrodeposited color filter serves as a mask, so that the photosensitive light-shielding resin is applied to the gap between the color filters. Only the photosensitive resin on the color filter is exposed to light, and the photosensitive resin on the color filter is easily removed by development to obtain a desired light-shielding film. Adjustment of the thickness of this light-shielding film is easy, and the film thickness may be set at the time of coating.

当然ながら膜厚が大きい程遮光性が良く、光り−ク不良
につながるアクティブ素子基板を対向とする場合には、
膜厚設定を大きくすることで十分効果は得られる0通常
カラーフィルターのIIが1.0ミクロンから2.0ミ
クロンであり、遮光膜厚さもこの範囲で遮光率95%以
上は得られる。
Naturally, the thicker the film, the better the light-shielding properties, and when facing the active element substrate that can lead to glare defects,
A sufficient effect can be obtained by increasing the film thickness setting.The II of a normal color filter is 1.0 to 2.0 microns, and a light shielding rate of 95% or more can be obtained within this range.

〔実施例1〕 特定波長吸収材としてアクリル系樹脂微粉末を8.0重
量%赤色、緑色のfi着塗料中に混合分散させて電着を
行った。電着カラーフィルターは、赤・緑・青とも1.
5ミクロンの膜厚に設定した0次いで、カーボン含有の
感光性の遮光性樹脂(富士ハントテクノロジー製CM−
K)をスピンナーにより前記電着カラーフィルター基板
上に2゜5ミクロンの膜厚になるよう塗布した。露光は
、オシオ製超高圧水銀ランプを用い、光量350mJ/
cdでガラス基板背面より行った。現像及びボストベー
ク後の前記遮光性樹脂膜厚は2.0ミクロンであった・
現像は超音波を用いて2〜3分必要であったが・電着カ
ラーフィルター上の遮光性樹脂はきれいに現像され、電
着カラーフィルター間隙部に均一な遮光膜が形成された
。この電着カラーフィルター基板を第1図のように多色
表示装置に組み立てたところ、遮光膜部の遮光率は99
.5%であった。
[Example 1] Electrodeposition was performed by mixing and dispersing 8.0% by weight of acrylic resin fine powder as a specific wavelength absorbing material in red and green fi coatings. Electrodeposition color filters are 1. red, green, and blue.
Next, carbon-containing photosensitive light-shielding resin (CM-CM manufactured by Fuji Hunt Technology) was applied to a film thickness of 5 microns.
K) was applied onto the electrodeposited color filter substrate using a spinner to a thickness of 2.5 microns. Exposure was carried out using an Osio ultra-high pressure mercury lamp with a light intensity of 350 mJ/
CD was used from the back of the glass substrate. The thickness of the light-shielding resin film after development and post-baking was 2.0 microns.
Although the development required 2 to 3 minutes using ultrasonic waves, the light-shielding resin on the electrodeposition color filter was developed neatly, and a uniform light-shielding film was formed in the gaps between the electrodeposition color filters. When this electrodeposited color filter substrate was assembled into a multicolor display device as shown in Figure 1, the light shielding rate of the light shielding film was 99.
.. It was 5%.

〔実施例2〕 特定波長吸収材として酸化鉄(Fezes)を10%含
存させたエポキシ樹脂の微粉末を5.0%赤、緑、青の
各電着浴中に添加し、混合分散させ電着を行った。それ
ぞれの電着条件は、60V・30秒、50V・30秒、
45V・30秒で電着フィルター厚さは2.0ミクロン
であった。この電着カラーフィルター基板上に、赤、緑
、青の色素を含有させた感光性樹脂(東京応化製OMR
)をスピンナーにより3.0ミクロンの厚さになるよう
塗布した。露光条件は実施例1のランプを用いて、12
0mJ /−とし、背面露光、現像、ポストベークを経
て得られた遮光膜は、2.5ミクロンの厚みを有し、電
着カラーフィルター間隙に極めてシャープなパターンと
して得られた。このようにして得られた遮光膜を有した
電着、カラーフィルター基板を第1図のような多色表示
装置に組み立てたところ、遮光膜部の遮光率は99%で
あった。
[Example 2] Fine powder of epoxy resin containing 10% iron oxide (Fezes) as a specific wavelength absorbing material was added to 5.0% red, green, and blue electrodeposition baths, and mixed and dispersed. Electrodeposition was performed. The electrodeposition conditions were 60V for 30 seconds, 50V for 30 seconds,
The electrodeposited filter thickness was 2.0 microns at 45 V for 30 seconds. On this electrodeposited color filter substrate, a photosensitive resin containing red, green, and blue dyes (OMR manufactured by Tokyo Ohka Co., Ltd.
) was applied using a spinner to a thickness of 3.0 microns. The exposure conditions were as follows: using the lamp of Example 1,
The light-shielding film obtained through back exposure, development, and post-baking at 0 mJ/- had a thickness of 2.5 microns, and was obtained as an extremely sharp pattern in the gap between the electrodeposited color filters. When the electrodeposited color filter substrate having the light-shielding film thus obtained was assembled into a multicolor display device as shown in FIG. 1, the light-shielding rate of the light-shielding film portion was 99%.

以上のように、本発明の技術的ポイントは電着カラーフ
ィルター形成時に特定波長吸収材を7r!、着カラーフ
ィルター中に含有せしめることにより、効果的な遮光膜
を形成すること及び、この遮光膜を存した電着フィルタ
ーを用いた良好な画質の多色表示装置を得ることにある
。従って、前記特定波長吸収材の種類や感光性の遮光性
樹脂等の種類は、前記実施例に上げたものに特定される
ものではない。
As mentioned above, the technical point of the present invention is that a specific wavelength absorbing material is used in the formation of an electrodeposited color filter! The object of the present invention is to form an effective light-shielding film by incorporating it into a colored color filter, and to obtain a multicolor display device with good image quality using an electrodeposited filter containing this light-shielding film. Therefore, the type of the specific wavelength absorbing material and the type of photosensitive light-shielding resin are not limited to those listed in the embodiments.

〔発明の効果〕〔Effect of the invention〕

上記のように本発明の方法によれば、電着カラーフィル
ター間隙に極めて容易にかつ精度良い遮光膜が得られ、
その確実な方法と簡素な製造工程から製造コストは従来
法に比べ大幅に低減できる。
As described above, according to the method of the present invention, a light-shielding film can be obtained extremely easily and accurately in the gaps between electrodeposited color filters,
Due to its reliable method and simple manufacturing process, manufacturing costs can be significantly reduced compared to conventional methods.

また・カラーフィルター基板の大きさ、形状やパターン
の精細度には左右されず、どのようなものにも適用可能
である。さらに、この遮光膜を有した電着カラーフィル
ター基板を用いて組み立てた多色表示装置の色調は従来
と変わらずにコントラストが向上し、画質としてはより
鮮明なものに改善がなされた。また、アクティブ基板を
対向にした場合に、光リーク不良が完全に防止できた。
Furthermore, it is not affected by the size, shape, or pattern definition of the color filter substrate, and can be applied to any type of substrate. Furthermore, the color tone of a multicolor display device assembled using an electrodeposited color filter substrate having this light-shielding film has improved contrast, and the image quality has been improved to be clearer than before. Furthermore, when the active substrates were placed opposite each other, optical leak defects were completely prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の多色表示装置の模式図、第2図■〜■
は本発明による遮光膜製造方法の模式1程図、第3図■
〜■は従来の遮光膜ml造方法の模式1程図、第4図は
電着カラーフィルターの波長特性の一例を示す特性図で
ある。 l・・・偏光板 2・・・ガラス基板 3・・・透明電極 4 ・ ・ ・ ン夜  晶 5・・・電着カラーフィルター 6・・・遮光膜 7・・・金属メツキ 以上 出願人 セイコー電子工業株式会社 本発明の冷色ヘホ装置の投へ口 第1図 木光明によろ逍、先膜製造方法の模式り径口(b)  
巴二!ゴ=−f!ピ=艷二イー   を偽ヌ・・〜mt
tm 先 <f>   r!−多==ヲそシ==2そシ==ヲそシ
==ゴ=ト=コ         金僕工・ソ千ン7゛
従来の遮光順製造方法項戎工程図
Figure 1 is a schematic diagram of the multicolor display device of the present invention, Figure 2 - ■
Figure 3 is a schematic diagram of the method for producing a light-shielding film according to the present invention.
~■ is a schematic diagram of a conventional light-shielding film manufacturing method, and FIG. 4 is a characteristic diagram showing an example of wavelength characteristics of an electrodeposited color filter. l...Polarizing plate 2...Glass substrate 3...Transparent electrode 4...Night crystal 5...Electrodeposited color filter 6...Light shielding film 7...Metal plating and above Applicant: Seiko Electronics Kogyo Co., Ltd. Fig. 1 Diagram of the opening of the cold-color heating device of the present invention.
Tomoe! Go=-f! P = 艷 に い is a fake...~mt
tm ahead <f> r! −Multi==Wososhi==2Soshi==Wososhi==Go=To=Kinboku Kogyo Sosen 7゛Conventional light-shielding manufacturing method section Process diagram

Claims (4)

【特許請求の範囲】[Claims] (1)多色表示装置の表示用パネルの透光性基板上の画
素電極あるいは対向電極の少なくとも一方に、カラーフ
ィルターが設けられた多色表示装置において、少なくと
も1種類以上の該カラーフィルター中に特定波長吸収材
を少なくとも1種類以上含有し、該カラーフィルター間
隙部に遮光膜を有したことを特徴とする多色表示装置。
(1) In a multicolor display device in which a color filter is provided on at least one of a pixel electrode or a counter electrode on a transparent substrate of a display panel of the multicolor display device, at least one type of color filter is provided in the color filter. A multicolor display device comprising at least one kind of specific wavelength absorbing material and having a light shielding film in the gap between the color filters.
(2)該カラーフィルターが電着塗装により形成された
ことを特徴とする特許請求の範囲第1項記載の多色表示
装置。
(2) The multicolor display device according to claim 1, wherein the color filter is formed by electrodeposition coating.
(3)該特定波長吸収材が、吸収波長領域として400
nm以下の波長に吸収ピークを有する物質であることを
特徴とする特許請求の範囲第1項記載の多色表示装置。
(3) The specific wavelength absorbing material has an absorption wavelength range of 400
The multicolor display device according to claim 1, characterized in that the material is a substance having an absorption peak at a wavelength of nm or less.
(4)多色表示装置の表示用パネルの透光性基板上の画
素電極あるいは対向電極の少なくとも一方に、カラーフ
ィルターが設けられ、該カラーフィルター中に特定波長
吸収材を少なくとも1種類以上含有し、該カラーフィル
ター間隙部に遮光膜を有した多色表示装置の製造方法で
あって、該遮光膜が、 [1]カラーフィルターを形成させる工程 [2]感光性の遮光性樹脂を塗布する工程 [3]カラーフィルター基板の背面より露光する工程[
4]現像工程 の製造工程により形成されることを特徴とする多色表示
装置の製造方法。
(4) A color filter is provided on at least one of the pixel electrode or the counter electrode on the transparent substrate of the display panel of the multicolor display device, and the color filter contains at least one type of specific wavelength absorbing material. , a method for manufacturing a multicolor display device having a light-shielding film in the gap between the color filters, the light-shielding film comprising: [1] Forming a color filter; [2] Applying a photosensitive light-shielding resin. [3] Step of exposing from the back side of the color filter substrate [
4] A method for manufacturing a multicolor display device, characterized in that it is formed by a manufacturing process of a developing step.
JP62305469A 1987-12-01 1987-12-01 Multicolor display device and production thereof Pending JPH01145626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62305469A JPH01145626A (en) 1987-12-01 1987-12-01 Multicolor display device and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62305469A JPH01145626A (en) 1987-12-01 1987-12-01 Multicolor display device and production thereof

Publications (1)

Publication Number Publication Date
JPH01145626A true JPH01145626A (en) 1989-06-07

Family

ID=17945525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62305469A Pending JPH01145626A (en) 1987-12-01 1987-12-01 Multicolor display device and production thereof

Country Status (1)

Country Link
JP (1) JPH01145626A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0342602A (en) * 1989-07-10 1991-02-22 Seiko Instr Inc Production of multicolor display device
WO1993007518A1 (en) * 1991-10-02 1993-04-15 Nippon Paint Co., Ltd. Process for manufacturing multicolor display
JPH06324318A (en) * 1993-05-13 1994-11-25 Matsushita Electric Ind Co Ltd Liquid crystal display device
EP0647871A1 (en) * 1993-09-17 1995-04-12 Shinto Paint Company, Limited Method for manufacturing a substrate having window-shaped coating films and frame-shaped coating film on the surface thereof
US5725976A (en) * 1996-01-30 1998-03-10 Sumitomo Chemical Company, Limited Method for manufacture of a color filter
US5750157A (en) * 1991-05-31 1998-05-12 Gs Technologies, Inc. Apparatus for the manufacture of pharmaceutical cellulose capsules
US5916714A (en) * 1996-07-23 1999-06-29 Fuji Photo Film Co., Ltd. Preparation of a pixel sheet provided with black matrix
US6068953A (en) * 1997-11-17 2000-05-30 Ricoh Company, Ltd. Color filter for liquid crystal display device
KR100383716B1 (en) * 1994-04-06 2003-11-13 가부시끼가이샤 히다치 세이사꾸쇼 Manufacturing Method of Color Liquid Crystal Display

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS629301A (en) * 1985-07-05 1987-01-17 Kyodo Printing Co Ltd Production of color filter
JPS62269101A (en) * 1986-05-16 1987-11-21 Toppan Printing Co Ltd Production of color filter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS629301A (en) * 1985-07-05 1987-01-17 Kyodo Printing Co Ltd Production of color filter
JPS62269101A (en) * 1986-05-16 1987-11-21 Toppan Printing Co Ltd Production of color filter

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0342602A (en) * 1989-07-10 1991-02-22 Seiko Instr Inc Production of multicolor display device
US5750157A (en) * 1991-05-31 1998-05-12 Gs Technologies, Inc. Apparatus for the manufacture of pharmaceutical cellulose capsules
US5756036A (en) * 1991-05-31 1998-05-26 Gs Technologies, Inc. Method for the manufacture of pharmaceutical cellulose capsules
WO1993007518A1 (en) * 1991-10-02 1993-04-15 Nippon Paint Co., Ltd. Process for manufacturing multicolor display
JPH06324318A (en) * 1993-05-13 1994-11-25 Matsushita Electric Ind Co Ltd Liquid crystal display device
EP0647871A1 (en) * 1993-09-17 1995-04-12 Shinto Paint Company, Limited Method for manufacturing a substrate having window-shaped coating films and frame-shaped coating film on the surface thereof
US5561011A (en) * 1993-09-17 1996-10-01 Shinto Paint Co., Ltd. Method for manufacturing a substrate having window-shaped coating films and frame-shaped coating film on the surface thereof
KR100383716B1 (en) * 1994-04-06 2003-11-13 가부시끼가이샤 히다치 세이사꾸쇼 Manufacturing Method of Color Liquid Crystal Display
US5725976A (en) * 1996-01-30 1998-03-10 Sumitomo Chemical Company, Limited Method for manufacture of a color filter
US5916714A (en) * 1996-07-23 1999-06-29 Fuji Photo Film Co., Ltd. Preparation of a pixel sheet provided with black matrix
US6068953A (en) * 1997-11-17 2000-05-30 Ricoh Company, Ltd. Color filter for liquid crystal display device

Similar Documents

Publication Publication Date Title
JPH021A (en) Color filter
JPH01145626A (en) Multicolor display device and production thereof
JPH07181316A (en) Manufacture of color filter
GB2111285A (en) A method of forming a colour filter layer for a liquid crystal display device
JP2593670B2 (en) Method of manufacturing color display device
JP2003161825A (en) Color filter
US5725976A (en) Method for manufacture of a color filter
JP3261011B2 (en) Manufacturing method of color filter
JPH0827598B2 (en) Display device manufacturing method
JPH02297502A (en) Manufacture of liquid crystal color filter
JPH0216A (en) Electrooptical device
JP2534852B2 (en) Method for manufacturing multicolor display device
JPS62153904A (en) Production of color filter for liquid crystal display body
JPS63147104A (en) Production of multicolor display device
JPH01187531A (en) Liquid crystal display device
JPS6366501A (en) Production of color filter for liquid crystal display body
JPH06235811A (en) Production of color filter
JPH05323368A (en) Production of liquid crystal display device
KR960016636B1 (en) Color filter making method for liquid crystal display elements
JPS63247789A (en) Display device and manufacture thereof
JPH01241522A (en) Manufacture of multicolor liquid crystal display device
JPH0812289B2 (en) Method for manufacturing multicolor display device
JPH01170902A (en) Manufacture of color filter
JPH0281025A (en) Multicolor liquid crystal display device and its production
JPH07318720A (en) Liquid crystal display device