JPS63146332A - Charged beam focusing device - Google Patents

Charged beam focusing device

Info

Publication number
JPS63146332A
JPS63146332A JP29268686A JP29268686A JPS63146332A JP S63146332 A JPS63146332 A JP S63146332A JP 29268686 A JP29268686 A JP 29268686A JP 29268686 A JP29268686 A JP 29268686A JP S63146332 A JPS63146332 A JP S63146332A
Authority
JP
Japan
Prior art keywords
astigmatism
scanning
circuit
charged beam
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29268686A
Other languages
Japanese (ja)
Inventor
Tadao Suganuma
忠雄 菅沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BIIMU TEC KK
Original Assignee
BIIMU TEC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BIIMU TEC KK filed Critical BIIMU TEC KK
Priority to JP29268686A priority Critical patent/JPS63146332A/en
Publication of JPS63146332A publication Critical patent/JPS63146332A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform the measurement of astigmatism and its compensation automatically and focusing simultaneously, by installing a device varying a focal position of charged beams, a device for surface scanning, a device to be integrated over a scanning surface and a device storing the integrated value in memory, altogether. CONSTITUTION:A central control circuit 10 transmits a signal to an objective lens power source 20, and sets an output current out of this power source 20 to the specified initial value. In consequence, an electron beam 1 forms a focus in the rear of a target 4, changing the focal position. Next, the circuit 10 transmits an angle of a scanning direction 0 deg. to a rotary circuit 19, while it transmits a start signal to a scan circuit 18. In consequence, the circuit 18 starts surface scanning, transmitting each of scanning waveforms X and Y to the circuit 19, while this circuit 19 transmits these waveforms X and Y, whose scanning directions are rotated, to scanning coils 26X and 26Y in accordance with the angle signal, and the electron beam is subjected to the surface scanning in the 0 deg. direction in the target 4. The signal electron 5 produced out of the target 4 is detected (6), and the detected signal is differentiated (11). This differentiated value is integrated during a period of the surface scanning, and the integrated value is stored in a memory circuit 13l.

Description

【発明の詳細な説明】 イ、産業上の利用分野 本発明は走査電子顕微鏡、電子描画装置、イオンマイク
ロプロ−ブ装置筈における非点収差の測定と補正、およ
び焦点合わせを行う荷電と一ノ、装置に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to the measurement and correction of astigmatism in scanning electron microscopes, electron lithography devices, and ion microprobe devices, as well as to the charging and focusing techniques. , regarding the device.

11、従来技術 走査電子顕微鏡、電子描画装置、イオンマイクロプロー
ブ装置等においては、荷電ビームを集束レンズにより細
く集束して標的に照射するが、一般に集束レンズは非点
収差を有し、その場合ビームは楕円形になり充分に細く
かつ円形に絞ることができなくなる。第1図は非点収差
がある場合にビームが光軸Zに沿って集束される状態を
示した図であり、光軸Zに沿った位置を軸上位置と呼ぶ
11. Prior Art In scanning electron microscopes, electron lithography devices, ion microprobe devices, etc., a charged beam is narrowly focused by a focusing lens and irradiated onto a target, but the focusing lens generally has astigmatism, in which case the beam becomes oval and cannot be squeezed into a sufficiently thin and circular shape. FIG. 1 is a diagram showing a state in which a beam is focused along the optical axis Z when there is astigmatism, and the position along the optical axis Z is called the on-axis position.

ldは最小錯乱円であり、この位置は非点収差が補iE
されたときの正焦点の位置に相当する。この位置の前後
に焦線1cと焦線1eとが形成され、ICと1eとの間
隔が非点収差の大きさである。
ld is the circle of least confusion, and this position is compensated by astigmatism iE
corresponds to the position of the positive focus when A focal line 1c and a focal line 1e are formed before and after this position, and the distance between the IC and 1e is the magnitude of astigmatism.

XとYは直交座標軸であり、X軸に対する焦線ICの方
向が、非点収差の方向である。
X and Y are orthogonal coordinate axes, and the direction of the focal line IC with respect to the X axis is the direction of astigmatism.

この非点収差を補正するために集束レンズに゛非点補正
装置を取り付けて非点収差を補正する方法が広く行われ
ているが、従来は非点補正装置の調節は専ら人間が行っ
ていた。即ち、非点収差が存在する場合には荷電ビーム
の正焦点の前後にお番する走査像(いわゆるアンダーフ
ォーカス像、オーバーフォーカス像)において像の滴れ
が90″回転するので、この流れを注意深く観察し、涼
れが無くなるように非点補正装置を精密に調節する。
In order to correct this astigmatism, a method of correcting astigmatism by attaching an astigmatism correction device to the focusing lens is widely used, but in the past, adjustment of the astigmatism correction device was performed exclusively by humans. . In other words, when astigmatism exists, the image droplet rotates by 90'' in the scanned image before and after the positive focus of the charged beam (so-called underfocus image, overfocus image), so this flow must be carefully controlled. Observe and precisely adjust the astigmatism correction device so that the coolness disappears.

しかし像の涼れは微妙なものなので、その存在の有無、
方向と量、等の判断は非常に困難で、操作者には多大の
熟練と労力が要求され、従って一般の利用者にとっては
大きな支障を来たしていた。
However, the coolness of the statue is subtle, so whether it exists or not,
It is very difficult to judge the direction, amount, etc., and requires a great deal of skill and effort from the operator, which is a big problem for general users.

上記の問題を解決する為、本発明者は先に、非点収差の
測定と補正を自動化ならしめる次のような発明をした(
特願昭57−128136号公報)。
In order to solve the above problem, the present inventor previously made the following invention to automate the measurement and correction of astigmatism (
(Japanese Patent Application No. 57-128136).

第2図は上記の発明の原理を示す図である。1は荷電ビ
ーム、例えば電子ビーム、の断面であって、光軸は紙面
に直交しており、ビームは図示しない集束レンズにより
集束され紙面を照射している。電子ビーム1は非点収差
を有しているため楕円になっておりその1方向の直径を
DIとする。
FIG. 2 is a diagram showing the principle of the above invention. Reference numeral 1 shows a cross section of a charged beam, such as an electron beam, whose optical axis is perpendicular to the plane of the paper, and the beam is focused by a focusing lens (not shown) and irradiates the plane of the paper. Since the electron beam 1 has astigmatism, it has an elliptical shape, and its diameter in one direction is DI.

集束レンズが例えば電磁レンズの場合、その励磁電流を
変える事により焦点距離を変え、Dlが最小値になった
時の励磁電流を■1とする。次に方向1から一定の角度
、例えば45″回転した方向mに関して同様に、電子ビ
ーム1のm方向の直径の最小値を与える集束レンズの励
磁電流を1.とし、更に45″回転したn方向に関する
励磁電流を17とする。このようにして得られた電流1
1゜1、.1.から、非点収差の方向λと大きさNは次
式により求めることが出来る。
If the focusing lens is, for example, an electromagnetic lens, the focal length is changed by changing its excitation current, and the excitation current when Dl becomes the minimum value is set to 1. Next, regarding the direction m rotated by a certain angle from direction 1, for example, 45'', similarly, set the excitation current of the focusing lens that gives the minimum diameter of the electron beam 1 in the m direction to 1, and further rotate the n direction by 45''. The excitation current for is set to 17. The current 1 obtained in this way
1゜1,. 1. From this, the direction λ and magnitude N of astigmatism can be determined by the following equations.

N=KI   ((III  −1、) 2 +  (
1m−1! )2)l/2.、   (2)ここにに+
41集束レンズに固有の定数である。
N=KI ((III −1,) 2 + (
1m-1! )2) l/2. , (2) + here
41 is a constant specific to the focusing lens.

また非点補正装置が例えばへ極電磁型の場合、補正電流
1.、I、は次式で求められる。
In addition, if the astigmatism correction device is, for example, a hepolar electromagnetic type, the correction current is 1. , I, is determined by the following equation.

Ix=に2([(In−1m+)  (L−1+)]c
os2φ1、==に2 ([(L−L)   (L  
It)]cos2φ[(ill−1111) +(11
111+)]s+n2φ)、、(4)ここでに2は集束
レンズと非点補正装置とで決まる定数である。また非点
補正後の正焦点位置に対応するレンズ電iQ I oは
次式で与えられる。
Ix=2([(In-1m+) (L-1+)]c
os2φ1, ==2 ([(L-L) (L
It)]cos2φ[(ill-1111) +(11
111+)]s+n2φ), (4) where 2 is a constant determined by the focusing lens and the astigmatism correction device. Further, the lens electric current iQ I o corresponding to the positive focal point position after astigmatism correction is given by the following equation.

io = (1+ +In)/2  、、、、(5)従
って互いに異なる少なくとも3つの方向について、それ
ぞれ最小のと一ノ、径を与えるレンズ電液を求めれば、
非点収差を(1)、(2)式により測定でき、(3)、
(4)式により補正できる。
io = (1+ +In)/2, (5) Therefore, if we find the lens electrolyte that gives the minimum diameter in at least three different directions, we get:
Astigmatism can be measured using equations (1) and (2), and (3),
It can be corrected using equation (4).

また同時に焦点合わぜを(5)式により行うことが出来
るので、非点補正装置に焦点合わせのための動作を別途
に行う必要はない。
Furthermore, since focusing can be performed at the same time using equation (5), there is no need to perform a separate focusing operation on the astigmatism correction device.

上記レンズ電流を求めるには、第2図の2のごときrc
つずぐな端面を持つ標的を用いて、I、m。
To obtain the above lens current, use the rc circuit as shown in 2 in Figure 2.
Using a target with continuous end faces, I, m.

nの3つの方向にと一ノ・を直線走査し、レンズ電流を
変化させ、最小ビーム径を与えるレンズ電液を測定すれ
ば良い。また最小ビーム径の判定は、例えば標的より発
生ずる二次電子等の信号波形を微分し、微分値が最大に
なることにより行えば良い。なおここで走査方向は3方
向以上であればいくらでも良く、また互いの角度差も4
5″以外でも良く、いずれの場合も方程式の解は存在し
て(1)乃至(5)式を若干変更すれば良い。
The lens electrolyte that provides the minimum beam diameter can be measured by linearly scanning the lens in three n directions, changing the lens current. Further, the minimum beam diameter may be determined by, for example, differentiating the signal waveform of secondary electrons generated from the target and obtaining the maximum differential value. Note that any number of scanning directions may be used as long as there are three or more directions, and the mutual angle difference is also 4.
It may be other than 5'', and in either case, a solution to the equation exists, and it is sufficient to slightly change equations (1) to (5).

しかしこの手法は、第2図の2のごとき端面を持つ特殊
な標的に対しては適用することが出来るが、走査電子顕
微鏡等の一般試料のごとき任意の形状を持った標的に対
して適用しても非点収差を的確に測定または補正できず
、焦点合わせも正しく行えず、またその原因は不明であ
った。
However, although this method can be applied to special targets with end faces such as 2 in Figure 2, it cannot be applied to targets with arbitrary shapes such as general samples such as those used in scanning electron microscopes. However, astigmatism could not be accurately measured or corrected, and focusing could not be performed correctly, and the cause was unknown.

ハ0発明の目的 本発明は、」二連の1濱な従来の非点補正装置の持つ欠
点を解消し、走査電子顕微鏡等の試料のごとき任意の形
状を持った一般の標的に於いて、非点収差の測定と補正
を自動的に行い、同時に焦点合わせも行う荷電ビーム集
束装置を提供することを目的としている。
OBJECT OF THE INVENTION The present invention solves the drawbacks of the conventional two-way one-piece astigmatism correction device, and can be used for general targets with arbitrary shapes such as specimens in scanning electron microscopes, etc. The object of the present invention is to provide a charged beam focusing device that automatically measures and corrects astigmatism and also performs focusing at the same time.

二0発明の構成 本発明は荷電ビームの焦点位置を光軸に沿って標的面の
前後に漸次変化させ、荷電ビームを標的1ユで3つ以」
−の異なる方向に面走査し、荷電ビーム照射により標的
から発生ずる信号の強度の前記走査に伴う変化分に基づ
いた信号を走査面に亙って!A算し、積算した値を焦点
の軸上位置に対応させて走査方向毎に記憶し、記憶した
2つの焦線を含む軸上位置に対応する値を用いて走査方
向毎に軸−り位置の固有値を算出し、上記の固有値を用
いて非点収差の測定、補正および焦点合わせを行う荷電
ビーム集束装置に係わる。
20 Structure of the Invention The present invention gradually changes the focal position of the charged beam to the front and back of the target surface along the optical axis, and focuses the charged beam at three or more points per target.
- scan the surface in different directions, and generate a signal based on the change in the intensity of the signal generated from the target by the charged beam irradiation over the scanning surface! A, the integrated value is stored for each scanning direction in correspondence with the axial position of the focal point, and the axial position is calculated for each scanning direction using the value corresponding to the axial position that includes the two memorized focal lines. The invention relates to a charged beam focusing device that calculates an eigenvalue of , and uses the eigenvalue to measure, correct, and focus astigmatism.

ホ、実施例 本発明者は、従来技術の項で既述した従来技術が一般の
標的に適用出来ない原因につき究明した結果、それが次
の点にあることを見出した。以下、第3図により説明す
る。
E. Example The present inventor investigated the reason why the prior art described in the prior art section cannot be applied to general targets, and found that the reason lies in the following points. This will be explained below with reference to FIG.

図中、3 a e J t) y J Cは非点補正用
の標的として一般に用いられるラテックス球である。こ
れらの球は不規則な位置に分布しているので、ビームを
I、m、n方向に線走査した場合、3Cに於けるごとく
球の端面をビームが偶然に直角に横切る場合もあるが、
一般には3a、3bのごとく斜めに横切り、横切る角度
は様々である。ビームが端面を斜めに横切る場合には、
直角に横切る場合とはビーム径の最小値を与える焦点位
置は異なったものとなり、それらは横切る角度に従って
2つの焦線の間に分布する。この場合、標的より発生ず
る二次電子等の信号波形を微分し、微分値が最大になる
点を求めても、それらは走査方向に関してビーム径が最
小になる焦点位置を与えず、従ってそれらの点を(1)
乃至(5)式に代入しても非点収差の測定と補1Eおよ
び焦点合わせに関するiE Lい信号が得られない。
In the figure, 3 a e J t) y JC is a latex sphere generally used as a target for astigmatism correction. These spheres are distributed at irregular positions, so when the beam is line-scanned in the I, m, and n directions, the beam may accidentally cross the end face of the sphere at right angles, as in 3C.
In general, it crosses diagonally as shown in 3a and 3b, and the angle at which it crosses varies. If the beam crosses the end face diagonally,
The focal positions giving the minimum beam diameter will be different from those in the case of traversing at right angles, and they will be distributed between the two focal lines according to the traversing angle. In this case, even if you differentiate the signal waveform of secondary electrons etc. generated from the target and find the point where the differential value is maximum, it will not give the focal position where the beam diameter is minimum in the scanning direction, and therefore Point (1)
Even if substituted into equations (5), it is not possible to obtain a signal related to astigmatism measurement, correction 1E, and focusing.

このような−般の標的における問題点を解決するには、
まず第一にビームの走査を二次元の面走査とする必要が
有る。このことにより走査線」二に偶然に位置する標的
端面の角度の特異性が平均化され、また走査方向を回転
しても標的上の略同一箇所を方向のみを変えて走査する
ことになり、異なった箇所を走査することにより生ずる
誤差を防ぐことが出来る。第二に前述したごとくビーム
は標的をいろいろな角度で横切り、その角度によりビー
ム径が最小となる焦点位置は異なり、それらは2つの焦
線の間に分布するのであるから、+1tに微分値が最大
になる一点を検知するのでなく、2つの焦線を含んだ広
い範囲に亙る軸上位置についてと一ノ、径に関する信号
を検知し、その範囲に?;fる信号を用いて非点収差に
関する信号を算出する必要がある。
To solve the problems with such common targets,
First of all, it is necessary to make the beam scan a two-dimensional surface scan. As a result, the uniqueness of the angle of the target end face that happens to be located on the scanning line "2" is averaged out, and even if the scanning direction is rotated, approximately the same location on the target is scanned by changing only the direction. Errors caused by scanning different locations can be prevented. Second, as mentioned above, the beam crosses the target at various angles, and the focal position where the beam diameter is minimum differs depending on the angle, and these are distributed between the two focal lines, so there is a differential value at +1t. Rather than detecting a single point where the maximum value occurs, it detects signals related to the diameter over a wide range of axial positions including the two focal lines, and detects signals related to the diameter within that range. It is necessary to calculate a signal related to astigmatism using the signal f.

本発明は4〕述した究明と発見に基づいたものであり、
・−・船形状を有する標的に於いても非点収差を自動的
に測定または補iEすると同時に、焦点合わせも可能に
したものである。以下、第4図の実施例に従って説明す
る。
The present invention is based on the investigation and discovery described above,
... Automatically measures or compensates for astigmatism even in a ship-shaped target, and at the same time enables focusing. The following description will be made according to the embodiment shown in FIG.

第4図の1は図示しない電子銃から射出された電r−ビ
ームであり、非点収差を有しており、対物レンズ27に
より集束されて標的4を照射する。
Reference numeral 1 in FIG. 4 indicates an electric r-beam emitted from an electron gun (not shown), which has astigmatism, and is focused by an objective lens 27 to irradiate the target 4.

標的は一般の被検試料でもよく、非点補正用の特殊な標
的でも良い、また、26X、26Yは走査:1イルであ
り電子ビーム1を標的上で二次元的に面走査する。25
X* 25Yは非点補正コイルである。5は電子IK!
射により標的4から発生ずる二次電子、反射電子等の信
号電子であり、検出器6により検出される。
The target may be a general test sample or a special target for astigmatism correction. Also, 26X and 26Y are scanning: 1 ill, and the electron beam 1 is two-dimensionally scanned over the target. 25
X*25Y is an astigmatism correction coil. 5 is electronic IK!
These are signal electrons such as secondary electrons and reflected electrons generated from the target 4 by radiation, and are detected by the detector 6.

この装置に於いて非点収差の測定と補正および焦点合わ
せは以下の手順で行われる。先ず中央制御回路10は対
物レンズ電源20に信号を送り、電源20からの出力電
流を予め定められた初期値に設定する。その結果電子ビ
ーム1は標的4の後方(図では下方)に焦点を結び、焦
線の位置を越えたアンダーフォーカスの状態になる。
In this device, astigmatism measurement, correction, and focusing are performed in the following steps. First, the central control circuit 10 sends a signal to the objective lens power supply 20 to set the output current from the power supply 20 to a predetermined initial value. As a result, the electron beam 1 is focused behind the target 4 (downward in the figure) and becomes underfocused beyond the focal line position.

次に中央制御回路10は回転回路19に走査方向O°の
角度信号を送ると供に走査回路18にスタート信号を送
る。その結果走査回路18は面走査を開始して走査波形
x、Yを回転回路19に送り、回路19は角度信号に従
って走査方向を回転させた走査波形X、Yを走査コイル
26X、26Yに送り、電子ビームは標的4上において
0°の方向に面走査される。
Next, the central control circuit 10 sends an angle signal of O° in the scanning direction to the rotation circuit 19, and also sends a start signal to the scanning circuit 18. As a result, the scanning circuit 18 starts surface scanning and sends the scanning waveforms x and Y to the rotation circuit 19, and the circuit 19 sends the scanning waveforms X and Y whose scanning direction has been rotated according to the angle signal to the scanning coils 26X and 26Y. The electron beam is surface-scanned on the target 4 in the 0° direction.

標的4より発生した信号電子5は検出器6により検出さ
れ、検出信号は微分回路11により微分される。この微
分値は1回の面走査の期間中、積算回路12によりjA
算され、積算された値(以下、積算微分値と呼ぶ。)は
記憶回路131に記憶される。
Signal electrons 5 generated from the target 4 are detected by a detector 6, and the detection signal is differentiated by a differentiation circuit 11. This differential value is calculated by the integrating circuit 12 during one surface scan
The calculated and integrated value (hereinafter referred to as an integrated differential value) is stored in the storage circuit 131.

次に中央制御回路10は対物レンズ電源20に信号を送
って、電源20からの出力電流を初期値′に一定の増加
分を加えた値1こ設定し、更に走査回路18に2 [i
jl [1のスタート信号を送る。その結果電子と−)
、は焦点距離が1回目より僅かに短くなった状態で面走
査され、その時の!A37.微分値が記憶回路131に
記憶される。以下同梯の動作がビームが前方(図では」
二方)に焦線の位置を越えたオーバーフィーカスの状態
になるまで繰り返されて、走査方向0°の時の一連の1
AT1微分値が、記憶回路13+に記憶される。更に中
央制御回路lOは上述の動作を走査方向45°と90°
に対して行う。これらの動作の結果、走査方向O°、4
5°、90°の時の積算微分値が、2つの焦線を含む範
囲の軸上位置に対応して、記憶回路131p  13 
m p  13 nに各々記憶される。なお通常は軸上
位置の代わりに対物レンズ電流値を記憶するが、軸上位
置は狭い範囲内ではレンズ電流値と単純な比例関係にあ
り、実質的には軸上位置を記憶していることになる。ま
た対物レンズ電流の変化は通常、一定の増加分をもって
行われるので、各々の電流値を記憶しなくとも、開始値
と増加分と増加回数を記憶すれば良い。
Next, the central control circuit 10 sends a signal to the objective lens power supply 20 to set the output current from the power supply 20 to a value of 1, which is the initial value ' plus a certain increment, and further sends a signal to the scanning circuit 18 to set the output current from the power supply 20 to a value of 2 [i
jl [Send 1 start signal. As a result, electrons and -)
, is surface scanned with the focal length slightly shorter than the first time, and at that time! A37. The differential value is stored in the storage circuit 131. Below, the action of the same ladder is as follows: the beam is forward (in the figure)
2 directions) is repeated until an overfocus state that exceeds the focal line position is reached, and a series of 1
The AT1 differential value is stored in the storage circuit 13+. Furthermore, the central control circuit lO performs the above operation in the scanning direction of 45° and 90°.
Performed against. As a result of these operations, the scanning direction O°, 4
The integrated differential values at 5° and 90° are stored in the memory circuit 131p 13 in correspondence with the on-axis position in the range including the two focal lines.
m p 13 n respectively. Normally, the objective lens current value is stored instead of the axial position, but the axial position has a simple proportional relationship with the lens current value within a narrow range, so the axial position is actually stored. become. Further, since the objective lens current is normally changed by a constant increment, it is sufficient to memorize the starting value, the increment, and the number of increments without storing each current value.

この様にして得られた軸上位置に対する積算微分値の関
数曲線を第五図の301(走査方向0゜の場合)、30
m(同45°)、30n(同90゜)に示す。
The function curves of the integrated differential value with respect to the on-axis position obtained in this way are 301 (in the case of scanning direction 0°) and 30 in Figure 5.
m (45°) and 30n (90°).

このデータから非点収差に関する正確な情報を引き出す
には、既述したとうり、この範囲に亙る関数値全体を用
いる必要がある。その実施方法には幾つかの方法が可能
であるが、第一の例は関数曲線の重心を用いる方法であ
り、第4図の関数解析回路14は、記憶回路131.1
3m、13nに記憶された関数曲線の軸上位置方向に関
する幾何学的重心を算出する。第5図のa2tt 32
mt;32nはこのようにして求めた重心の位置であり
、それぞれの重心位置の左右で、それぞれの曲線の下側
の面積は等しい。第4図の非点演算回路15は、これら
の重心位置をllt  t−、Illとして(1)、(
2)式に代入して非点収差を表す信号を算出し、(3)
、(4)式に代入して非点収差を補11:、する信号を
算出し、また焦点□合わぜの信号を(5)式により算出
する。但しこれらの式における定数Kl、に2は重心を
用いた方法に特有の値を用いる必要があり、それらは予
め別の実験で求めて働く。
To derive accurate information about astigmatism from this data, as mentioned above, it is necessary to use the entire range of function values. Although several methods are possible for implementing this, the first example is a method using the center of gravity of the function curve, and the function analysis circuit 14 in FIG.
3m and 13n, the geometric center of gravity with respect to the axial position direction of the function curves stored in 3m and 13n is calculated. a2tt 32 in Figure 5
mt; 32n is the position of the center of gravity obtained in this way, and the area under each curve is equal on the left and right of each center of gravity position. The astigmatism calculation circuit 15 in FIG. 4 calculates (1), (
2) Calculate the signal representing astigmatism by substituting into the equation, (3)
, a signal for compensating for astigmatism is calculated by substituting into equation (4), and a signal for focusing □ is calculated using equation (5). However, for the constants Kl and 2 in these equations, it is necessary to use values specific to the method using the center of gravity, and these must be determined in advance in a separate experiment.

算出された信号は中央f111a1回路10に送られ、
制御回路lOから非点収差を表す信号が表示装置16に
送られて非点収差を表示し、また収差を補11−.する
信号が非点補正電源17X、17Yに送られ、補正電源
17X、17Yは信号を電流に変換して非点補正=lイ
ル25X、25Yに送り電子ビームlの非点収差を補正
する。さらに中央制御回路10からは焦点合わせの信号
が対物レンズ電源20に送られ、電源20からは焦点合
わせ電流が対物レンズ27に送られて焦点合わせを行う
The calculated signal is sent to the central f111a1 circuit 10,
A signal representing astigmatism is sent from the control circuit 10 to the display device 16 to display the astigmatism, and also to compensate for the aberration 11-. The signals are sent to the astigmatism correction power supplies 17X and 17Y, and the correction power supplies 17X and 17Y convert the signals into currents and send them to the astigmatism correction illuminations 25X and 25Y to correct the astigmatism of the electron beam l. Further, a focusing signal is sent from the central control circuit 10 to an objective lens power source 20, and a focusing current is sent from the power source 20 to the objective lens 27 to perform focusing.

US 6図は、非点補正後に再びl7tTI微分値の関
数曲線を求めたものであるが、3つの曲線の左右方向の
位置は等しく、非点収差は完全に補正されたことを示し
ている。また同図の40は(5)式により算出された正
焦点の位置であるが、これは3つの曲線の最大位置と一
致しており、焦点合わせが正しく行われていることを示
している。
In Figure US 6, the function curves of the l7tTI differential value were obtained again after the astigmatism correction, and the positions of the three curves in the left and right directions are the same, indicating that the astigmatism has been completely corrected. Further, 40 in the figure is the position of the positive focal point calculated by equation (5), which coincides with the maximum position of the three curves, indicating that focusing is performed correctly.

次に関数解析の第二の例を第7図により説明する。図の
301.30m、30nは第5図と同じく積算微分値の
関数曲線である。この方法では先ず前述した手法を用い
て重心の位Pt321,32nを求め、(5)式を使っ
て正焦点位置4oを求めておく。次に正焦点位置によっ
て分割された関数曲線301の右側の面f/l L 、
と左側の面積L 1との比り、/L、を求め、同様にし
て関数曲線30 m p 30 nにつきMr/M+ 
、Nr/N+  (図示は省略する)を求める。これら
の数値の符号は右側の而61 L 、が左側の面積より
大きい時は正、小さい時は負にとる。
Next, a second example of functional analysis will be explained with reference to FIG. 301.30m and 30n in the figure are function curves of integrated differential values, as in FIG. In this method, first, the positions of the center of gravity Pt321, 32n are determined using the method described above, and the positive focal point position 4o is determined using equation (5). Next, the right surface f/l L of the function curve 301 divided by the positive focus position,
Find the ratio of /L to the area L 1 on the left side, and similarly calculate Mr/M+ for the function curve 30 m p 30 n.
, Nr/N+ (not shown). The sign of these numerical values is positive when the area on the right side is larger than the area on the left side, and negative when it is smaller.

このようにして求めたり、/I、+ 、Mr/M+ −
N、/N、の値をI+、I−、I、として(1)乃至(
5)式に代入して非点収差を表す信号、非点収差を補正
する信号、焦点合わせの信号をそれぞれ算出する。但し
上式における定数Kl、に2はこの実施例に特有な値に
なるので予め別の実験で求めておく、信号を算出した後
の動作は、既述した実施例と同一である。
In this way, /I, +, Mr/M+ −
Assuming the values of N, /N, to be I+, I-, I, (1) to (
5) Substitute into the equation to calculate a signal representing astigmatism, a signal for correcting astigmatism, and a signal for focusing. However, since the constants Kl and 2 in the above equation are values specific to this embodiment, they are determined in advance in a separate experiment.The operation after calculating the signal is the same as in the previously described embodiments.

さらに他の実施例は、先ず前述した実施例と同じく正焦
点位置を求め、次にその正焦点位置における3つの関数
曲線の勾配を求める。この勾配をそれぞれ1..1.、
Inとして(1)乃至(5)式へ代入し、その後の動作
は既詠した実施例とトi−である。この場合も定数KI
、に2は別の値になることは言うまでもない。
In yet another embodiment, first the positive focal point position is determined in the same manner as in the previously described embodiment, and then the slopes of the three function curves at the positive focal point position are determined. Each of these gradients is 1. .. 1. ,
In is substituted into equations (1) to (5), and the subsequent operations are the same as in the previously described embodiment. In this case too, the constant KI
, it goes without saying that 2 is a different value.

このように関数解析には様々な手法が有り得るが、いず
れも採取したデータの2つの焦線を含む範囲の軸上位置
に対する値を用いて各々の走査方向についての固有の値
1+、I、、Inを求め、これらの固有値から非点収差
および焦点の測定または補正を行うものである。
In this way, there are various methods for functional analysis, but all of them use the values for the axial positions in the range that includes the two focal lines of the collected data to calculate the unique values 1+, I, , , for each scanning direction. In is determined, and astigmatism and focus are measured or corrected from these eigenvalues.

上記の実施例では電子ビームを用いた場合を説明してい
るが、他の荷電ビーム例えばイオンビームなとを用いて
も良く、またビーム径を判定する信号としては二次電子
の他に反射電子、二次イオン、X線、標的の吸収電流、
標的の内部起電力等の信号を用いることも可能であり、
更にはビームの集束、走査、非点補正の手段として、電
磁方式の代わりに静電方式のものを用いても良い。
Although the above embodiment describes the case where an electron beam is used, other charged beams such as an ion beam may also be used, and the signal for determining the beam diameter may be not only secondary electrons but also reflected electrons. , secondary ions, X-rays, target absorption current,
It is also possible to use signals such as the internal electromotive force of the target,
Furthermore, as means for focusing, scanning, and astigmatism correction of the beam, an electrostatic method may be used instead of an electromagnetic method.

また積算する信号は微分値には限らず、例えば信号の波
高値を積算したり信号の交流成分を整流するなと、標的
から発生する信号強度の走査に伴う変化分に基づいた信
号であれば良い、更にまた上記実施例では荷電ビームの
焦点位置の変化を集束レンズにより行っているが、集束
レンズとは別に所謂ダイナミックフォーカスコイルを設
けて、これにより焦点位置を変化させても良い、また、
非点収差の測定のみを行いたい場合には演算結果を表示
VI置に表示するだけで良く、逆に補正のみを行いたい
場合には演算結果を補正電源を介して補正コイルに供給
するだ番すで良く、焦点合わせのみを行いたい場合には
、演算結果を対物レンズ電源を介して対物レンズに供給
するだけで良い。またビームの走査方向も3方向以上、
例えば4方向を用いても良い。
Also, the signals to be integrated are not limited to differential values; for example, signals based on changes in signal intensity generated from the target due to scanning, such as integrating the peak value of the signal or rectifying the alternating current component of the signal, can be used. Furthermore, in the above embodiment, the focus position of the charged beam is changed by a focusing lens, but a so-called dynamic focus coil may be provided separately from the focusing lens, and the focus position may be changed by this.
If you only want to measure astigmatism, you only need to display the calculation results on the display VI. Conversely, if you only want to correct astigmatism, you can supply the calculation results to the correction coil via the correction power supply. If only focusing is desired, it is sufficient to simply supply the calculation result to the objective lens via the objective lens power supply. Also, the scanning direction of the beam is 3 or more,
For example, four directions may be used.

さらには上述した発明を基本として、その部分的組み賛
え又は部分的変更により更に発明の効果を高めることが
可能である。上記実施例では動作の開始後ただちに非点
収差の測定と補正に入っているが、それに先立ち「1動
焦点合わせの11 am整を行っておくと良い。即ち、
動作の開始後まず任意の1つの走査方向、例えば0°の
方向について既述したと同様の手順により積算微分値の
関数曲線のデータを採取する。こ、の場合に焦点位置を
変化させる範囲を広くとり、その範囲内に標的面が存在
することが保証されるようにしておく。次に得られた関
数曲線の重心の位置を求め、続いて行われる非点収差の
測定と補iEの動作に於いては、上記により求めた重心
位置を中心としてその前後に焦点位置を変化させる。こ
の中心位置は正焦点の位置とは必ずしも一致しないが、
その近傍にあることは確実なので、これを中心として焦
点位置を変化させれば最も小さい変化範囲で2つの焦線
を含むことが可能であり、したがって動作時間の短縮と
信頼性の向上を計ることができる。
Furthermore, based on the invention described above, it is possible to further enhance the effect of the invention by partially incorporating or changing the invention. In the above embodiment, the astigmatism is measured and corrected immediately after the start of the operation, but before that, it is recommended to perform the 11 am adjustment of the 1-move focusing.
After the start of the operation, first, data of the function curve of the integrated differential value is collected in an arbitrary scanning direction, for example, in the 0° direction, using the same procedure as described above. In this case, the range in which the focal position is changed is widened to ensure that the target plane exists within that range. Next, the position of the center of gravity of the obtained function curve is determined, and in the subsequent astigmatism measurement and compensation iE operations, the focal point position is changed around the center of gravity position determined above. . Although this center position does not necessarily match the position of the positive focus,
Since it is certain that the focal point is in the vicinity, if the focal position is changed around this point, it is possible to include the two focal lines within the smallest change range, thus shortening the operation time and improving reliability. I can do it.

また今までの実施例では非点の補正を1回行う例を説明
したが、本発明が非点収差の測定も同時に行える特徴を
積極的に利用して、補正を複数回行うことにより補正の
精度を高めることも可能である。即ち1回目の非点収差
の測定と補正のときに、測定された非点収差の大きさを
予め設定した値と比較し、測定値が設定値より大きい場
合には更に2回「1の測定と補正を行うようにし、以下
同様にして測定値が設定値より小さくなるまで繰り返せ
ば、残留する非点収差を確実に極めて小さな値にするこ
とができ、非点補正の動作は更に完全になる。
In addition, in the embodiments so far, examples have been described in which astigmatism is corrected once, but the present invention actively utilizes the feature that it can also measure astigmatism at the same time, and performs correction multiple times. It is also possible to increase the accuracy. That is, when astigmatism is measured and corrected for the first time, the magnitude of the measured astigmatism is compared with a preset value, and if the measured value is larger than the set value, two more measurements are performed. If you repeat the same procedure until the measured value becomes smaller than the set value, you can reliably reduce the remaining astigmatism to an extremely small value, and the astigmatism correction will become even more perfect. .

また、上記のごとく非点補正を複数回行う場合には、残
留する非点収差は回を追う毎に小さくなってゆくので、
2つの焦線の間隔も狭くなってゆく、従って関数曲線を
得る為に荷電ビームの焦点位置を変化させる範囲も回を
追う毎に漸次小さくすることが可能であり、このように
すれば動作時間の短縮を計ることができ、実用的価値は
増大する。
Also, when performing astigmatism correction multiple times as described above, the residual astigmatism becomes smaller each time, so
The distance between the two focal lines also becomes narrower, so the range in which the focal position of the charged beam is changed to obtain the function curve can also be gradually reduced each time.In this way, the operating time can be reduced. The practical value increases.

また史には、上述した非点収差の測定をある一定JIJ
I間にわたって一定の時間間隔で行い、その測定結果を
記憶し、記憶した測定値の経時的変化から非点収差の増
加傾向を知ることができる。非点収差の緩やかな増加は
通常、ビーム集束装置の内部の汚れに起因することが多
(、急激な増加は電気系統の故障等の可能性がある。従
って非点収差の経時的変化により汚れ、故障なと装置の
状態に関する情報を得ることができ、それにより装置の
洗浄、修理等の保守作業を行うべき時期も判断すること
が可能であり、実用上有位である。なお」―記の非点収
差の測定と記憶は、一定の時間間隔で自動的に行われる
ようにしておく事が便利であるのは言うまでもない。
Furthermore, in history, the above-mentioned astigmatism measurement was carried out at a certain JIJ.
The measurement results are memorized at regular time intervals over the period I, and the increasing tendency of astigmatism can be determined from the changes in the memorized measured values over time. A gradual increase in astigmatism is usually caused by contamination inside the beam focusing device (although a sudden increase may be due to a malfunction in the electrical system, etc.). , it is possible to obtain information about the status of equipment when it is malfunctioning, and from this it is also possible to judge when to perform maintenance work such as cleaning and repair of the equipment, which is of great practical value. It goes without saying that it is convenient to automatically measure and store the astigmatism at regular time intervals.

へ1発明の効果 以」二説明したように、本発明は荷電ビームの焦点位置
を光軸に沿って標的面の前後に漸次変化させ、荷電ビー
ムを標的上で3つ以上の異なる方向に面走査し、荷電ビ
ーム照射により標的から発生ずる信号強度の前記走査に
伴う変化分に基づいた信号を走査面に互ってf7I$?
:L、f7tTIシた値を焦点の軸上位置に対応させて
走査方向毎に記憶し、記憶した2つの焦線を含む軸上位
置に対応する値を用いて走査方向毎に軸上位置の固有値
を算出し、上記の固有値を用いて非点収差の測定および
非点収差の補正および焦点合わせの少な(ともいずれか
一つに必要な信号を算出するので、非点収差の方向と大
きさおよび正焦点の位置を定量的に正確に測定でき、ま
た非点収差の補正および焦点合わせを自動的に行うこと
ができる。また、上述した手順を基本として、その部分
的組み替え又は部分的変更により更に発明の効果を高め
ることも可能である。その結果、操作者は熟練と忍耐と
を要求されることなく容易に荷電ビーム装置を取り扱う
ことができ、実用上の効果は極めて大きい。
1. Effects of the Invention 2. As explained above, the present invention gradually changes the focal position of the charged beam along the optical axis before and after the target surface, so that the charged beam can be directed in three or more different directions on the target. A signal based on a change in the signal intensity generated from the target due to the scanning by the charged beam irradiation is transmitted across the scanning plane at f7I$?
:L, f7tTI values are stored for each scanning direction in correspondence with the axial position of the focal point, and the axial position is determined for each scanning direction using the values corresponding to the axial position including the two stored focal lines. Calculate the eigenvalues, and use the above eigenvalues to measure astigmatism, correct astigmatism, and focus (to calculate the signal necessary for either one, the direction and magnitude of astigmatism It is possible to quantitatively and accurately measure the position of the positive focal point, and it is also possible to automatically correct astigmatism and focus.Furthermore, based on the above-mentioned procedure, by partially recombining or changing it, Furthermore, it is possible to enhance the effects of the invention.As a result, the operator can easily handle the charged beam device without requiring skill or patience, and the practical effects are extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は非点収差を説明するための図、第2図は従来技
術を説明するための図、第3図は従来技術の欠点の原因
を説明するための図、第4図は本発明の一実施例を説明
するための構成図、第5図および第6図は上記実施例の
動作を説明するための関数曲線の図、第7図は本発明の
他の実施例の動作を説明するための関数曲線の図である
。 なお、図面に示された符号に於いて、 1;電子ビーム、ld;最小錯乱円、lc、lc;焦線
、2;真っずぐな端面を持つ標的、3a。 H3be 3 c ;ラデックス球、4;標的、5;信
号電子、6;検出器、10:中央制御回路、11;微分
回路、12:積算回路、13 I、13m、  1;3
n;記憶回路、14;関数解析回路、15;非点演算回
路、16;表示装置、17X、17Y;非点補iE電源
、18;走査回路、19;回転回路、20;対物レンズ
電源、25X、25Y;非点補iE J 4 k、26
X、26Y;走査コ4np、27;対物レンズ、301
.30m、30n ;関数曲線、321.32m、32
n ;関数曲線の重心の位置、40;正焦点の位置  
である。 第什図 豫S図 第61図 算q1図 j2J!  32M
Fig. 1 is a diagram for explaining astigmatism, Fig. 2 is a diagram for explaining the conventional technology, Fig. 3 is a diagram for explaining the cause of the drawbacks of the conventional technology, and Fig. 4 is a diagram for explaining the present invention. 5 and 6 are function curve diagrams for explaining the operation of the above embodiment. FIG. 7 is a diagram for explaining the operation of another embodiment of the present invention. It is a diagram of a function curve for. In addition, in the symbols shown in the drawings, 1: electron beam, ld: circle of least confusion, lc, lc: focal line, 2: target with a straight end surface, 3a. H3be 3 c; Radex sphere, 4; Target, 5; Signal electron, 6; Detector, 10: Central control circuit, 11; Differential circuit, 12: Integration circuit, 13 I, 13m, 1; 3
n: Memory circuit, 14; Function analysis circuit, 15; Astigmatism calculation circuit, 16; Display device, 17X, 17Y; Astigmatism compensation iE power supply, 18; Scanning circuit, 19; Rotation circuit, 20; Objective lens power supply, 25X , 25Y; Astigmatism iE J 4 k, 26
X, 26Y; scanning 4np, 27; objective lens, 301
.. 30m, 30n; Function curve, 321.32m, 32
n: position of the center of gravity of the function curve, 40: position of the positive focus
It is. Figure 1 S Figure 61 Calculation q1 Figure j2J! 32M

Claims (1)

【特許請求の範囲】 1 荷電ビームの焦点位置を光軸に沿って標的面の前後
に漸次変化させる手段と、荷電ビームを標的上で3つ以
上の異なる方向に面走査する手段と、荷電ビーム照射に
より標的から発生する信号強度の前記走査に伴う変化分
に基づいた信号を走査面に亙って積算する手段と、積算
した値を焦点の軸上位置に対応させて走査方向毎に記憶
する手段と、記憶した2つの焦線を含む軸上位置に対応
する値を用いて走査方向毎に軸上位置の固有値を算出す
る手段と、上記の固有値を用いて非点収差の測定および
非点収差の補正および焦点合わせの少なくともいずれか
一つに必要な信号を算出する手段とを設けたことを特徴
とする荷電ビーム集束装置。 2 荷電ビームの焦点合わせの粗調節を行って焦点の概
略位置を求め、次にその概略位置を中心として荷電ビー
ムの焦点位置を変化させることを特徴とする特許請求の
範囲第1項記載の荷電ビーム集束装置。 3 非点収差の測定と補正を行った時に、測定された非
点収差の大きさを予め設定した値と比較し、測定値が設
定値より大きい場合には、再び非点収差の補正を行うよ
うにしたことを特徴とする特許請求の範囲第1項乃至第
2項記載の荷電ビーム集束装置。 4 非点収差の補正を複数回行い、荷電ビームの焦点位
置の変化範囲を、後の回においては前の回より小さくす
ることを特徴とする特許請求の範囲第1項乃至第3項記
載の荷電ビーム集束装置。 5 非点収差の測定結果を一定期間にわたって記憶し、
記憶した測定値の経時的変化から装置の状態を検知する
ことを特徴とする特許請求の範囲第1項乃至第4項記載
の荷電ビーム集束装置。
[Scope of Claims] 1. Means for gradually changing the focal position of the charged beam to the front and back of the target surface along the optical axis, means for scanning the surface of the target with the charged beam in three or more different directions, and a charged beam. means for integrating a signal based on a change in signal intensity generated from the target due to the scanning over the scanning plane; and storing the integrated value for each scanning direction in correspondence with the axial position of the focal point. means for calculating an eigenvalue of an axial position for each scanning direction using the stored value corresponding to an axial position including the two focal lines; A charged beam focusing device comprising means for calculating a signal necessary for at least one of aberration correction and focusing. 2. The charging method according to claim 1, characterized in that the approximate position of the focal point is determined by coarsely adjusting the focusing of the charged beam, and then the focal position of the charged beam is changed around the approximate position. Beam focusing device. 3 When astigmatism is measured and corrected, the magnitude of the measured astigmatism is compared with a preset value, and if the measured value is larger than the set value, the astigmatism is corrected again. A charged beam focusing device according to any one of claims 1 to 2, characterized in that it is configured as follows. 4. Astigmatism correction is performed multiple times, and the range of change in the focal position of the charged beam is made smaller in subsequent corrections than in the previous correction. Charged beam focusing device. 5. Memorize the measurement results of astigmatism for a certain period of time,
5. A charged beam focusing device according to claim 1, wherein the state of the device is detected from changes in stored measured values over time.
JP29268686A 1986-12-09 1986-12-09 Charged beam focusing device Pending JPS63146332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29268686A JPS63146332A (en) 1986-12-09 1986-12-09 Charged beam focusing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29268686A JPS63146332A (en) 1986-12-09 1986-12-09 Charged beam focusing device

Publications (1)

Publication Number Publication Date
JPS63146332A true JPS63146332A (en) 1988-06-18

Family

ID=17784987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29268686A Pending JPS63146332A (en) 1986-12-09 1986-12-09 Charged beam focusing device

Country Status (1)

Country Link
JP (1) JPS63146332A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01231251A (en) * 1988-03-09 1989-09-14 Hitachi Ltd Focusing device of electron microscope
JP2017174751A (en) * 2016-03-25 2017-09-28 日本電子株式会社 Electron microscope and aberration correction method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01231251A (en) * 1988-03-09 1989-09-14 Hitachi Ltd Focusing device of electron microscope
JP2017174751A (en) * 2016-03-25 2017-09-28 日本電子株式会社 Electron microscope and aberration correction method

Similar Documents

Publication Publication Date Title
US7241996B2 (en) Charged particle beam apparatus
US4766311A (en) Method and apparatus for precision SEM measurements
US7655907B2 (en) Charged particle beam apparatus and pattern measuring method
US6384408B1 (en) Calibration of a scanning electron microscope
US11133148B2 (en) Scanning electron microscope
KR20060048460A (en) A method and system for focusing a charged particle beam
KR20210018017A (en) Scanning electron microscope and pattern measurement method
JP6914977B2 (en) Scanning transmission electron microscope and aberration correction method
KR101455944B1 (en) Scanning electron microscope
US11510643B2 (en) Calibration method and apparatus for measurement X-ray CT apparatus, measurement method and apparatus using the same, and measurement X-ray CT apparatus
JPS63146332A (en) Charged beam focusing device
US5231287A (en) Method and apparatus for obtaining two-dimensional energy image, using charged-particle beam
US4554452A (en) Method and apparatus for handling charged particle beam
JP2005005151A (en) Charged particle beam device
JP2006003235A (en) Electron beam system and datum sample therefor
WO2015125395A1 (en) X-ray inspection system, control method, control program, and control device
JP2001349997A (en) Electron beam irradiation device and method
JPS63131007A (en) Three-dimensional coordinates measuring system
JPS63187627A (en) Automatic focusing method for charged particle beam aligner
CA1203905A (en) Scanning electron microscope calibration apparatus and method for making precise quantitative measurements on a scanned object
KR940009231B1 (en) Compensation method & device for non-contact section profile shape measuring device of tire
JPH0217050B2 (en)
JPH0353440A (en) Electron beam apparatus
JP2000208395A (en) Method and system for inspecting substrate
JPS63231205A (en) Measuring method for contour shape