JPS63131007A - Three-dimensional coordinates measuring system - Google Patents

Three-dimensional coordinates measuring system

Info

Publication number
JPS63131007A
JPS63131007A JP27532286A JP27532286A JPS63131007A JP S63131007 A JPS63131007 A JP S63131007A JP 27532286 A JP27532286 A JP 27532286A JP 27532286 A JP27532286 A JP 27532286A JP S63131007 A JPS63131007 A JP S63131007A
Authority
JP
Japan
Prior art keywords
coordinates
image
image plane
dimensional
dimensional coordinates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27532286A
Other languages
Japanese (ja)
Other versions
JPH0658210B2 (en
Inventor
Mitsunori Kawabe
満徳 川辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP61275322A priority Critical patent/JPH0658210B2/en
Publication of JPS63131007A publication Critical patent/JPS63131007A/en
Publication of JPH0658210B2 publication Critical patent/JPH0658210B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure three-dimensional coordinates not relying on the arrangement of a measuring system, by calibrating a conversion matrix for calculating the three-dimensional coordinates from the two-dimensional coordinates of the position of an object. CONSTITUTION:A conversion matrix capable of calculating the three-dimensional coordinates of an object to be inspected by converting the same from the image surface coordinates at the reflecting beam spot on the image of the object to be inspected is provided in a calculation formula. At first, the position of the specimen 10 of the object to be inspected on an inspection stand 16 is set and slit beam 6 is allowed to irradiate the specimen 10 to project an image 15 on the image surface of CRT 13. Then, the coordinates (x, y, z) at the point on a cut line wherein the slit beam 6 cuts the object to be inspected and the corresponding coordinates (u, v) at the point on the image surface are precisely and actually measured. This operation is performed for necessary times according to objective accuracy. Each element of the aforementioned conversion matrix is calculated from the data obtained from said operation to determine the constant in the calculation formula.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、スリット光を用いる、物体の三次元座標計測
方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a three-dimensional coordinate measuring method of an object using slit light.

(従来の技術) 従来、この種の三次元座標計測方式は、座標計算式18
簡単にするために測定系の配置(物体に照射されるスリ
ット光とカメラの位Ha係)に束縛条件を持たせでいた
(Prior art) Conventionally, this type of three-dimensional coordinate measurement method uses the coordinate calculation formula 18
For simplicity, constraints were placed on the arrangement of the measurement system (the slit light irradiated onto the object and the position of the camera).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の三次元座標計測方式は、測定系の配置あ
るいは座標系のとり方を変えると計算式も変って、汎用
性がなくなり、さらに、測定系の正確な位置設定と位置
測定が必要であり、これらの設定誤差や測定誤差が三次
元座標計測の誤差に大きく1饗するという欠点がある。
In the conventional three-dimensional coordinate measurement method described above, if the arrangement of the measurement system or the way the coordinate system is changed, the calculation formula changes, making it less versatile, and furthermore, accurate position setting and position measurement of the measurement system are required. However, there is a drawback that these setting errors and measurement errors are much larger than the errors in three-dimensional coordinate measurement.

(問題点を解決するための手段〕 本発明の三次元座標計測方式は、計測しようとする物体
の三次元座標を、スリット光で該物体を照射して撮像さ
れた該物体の画像上の反射光点の画像面座標より変換し
で得る変換マトリックスを有し、物体の位置座標の計測
前に、予め、物体位置の三次元座標およびこれに対応す
る画像面座標を実測して得られたデータがら前記変換マ
トリ・ンクスの各要素を算出することにより、計算式中
の定数の値を確定し、以後の計測においで、物体位置の
三次元座標を該計算式を用いて対応する画像面座標値か
ら算出する方式である。
(Means for Solving the Problems) The three-dimensional coordinate measuring method of the present invention determines the three-dimensional coordinates of an object to be measured by irradiating the object with slit light and reflecting it on an image of the object. It has a transformation matrix that can be converted from the image plane coordinates of a light spot, and data obtained by actually measuring the three-dimensional coordinates of the object position and the corresponding image plane coordinates before measuring the object position coordinates. By calculating each element of the conversion matrix index, the values of the constants in the calculation formula are determined, and in subsequent measurements, the three-dimensional coordinates of the object position are calculated using the calculation formula to calculate the corresponding image plane coordinates. This method is calculated from the value.

〔作用〕[Effect]

本発明の原理を図面を参照して説明する。 The principle of the present invention will be explained with reference to the drawings.

第1図はスリット光で照射された物体の位置座標系と、
物体を撮像するカメラ位置、および物体の画像面座標系
との関係を示す説明図である。
Figure 1 shows the position coordinate system of an object irradiated with slit light,
FIG. 2 is an explanatory diagram showing the relationship between a camera position that images an object and an image plane coordinate system of the object.

物体位置の座標系をx−y−z座標系とし、カメラ(不
図示)の画像面座標系@U−V座標系としで、スリット
光で照射された測定対象物(不図示)がスリット光面1
と交わる線上の点ρ(X。
The coordinate system of the object position is the x-y-z coordinate system, and the image plane coordinate system of the camera (not shown) is @U-V coordinate system, and the measurement target (not shown) irradiated with the slit light is Side 1
The point ρ(X.

y、z)は、カメラレンズの光軸2に垂直な画像面4上
の点p (u、v)に結像されるものとする。このとき
、画像面4上の点pは測定すべき点Pとカメラのレンズ
の光心3とを結んだ直線が画像面4と交わる点で、!:
?、pのU、V座標がら点Pのx、y、z座標値を変換
式を用いて計算することができる。
y, z) are imaged at a point p (u, v) on the image plane 4 perpendicular to the optical axis 2 of the camera lens. At this time, point p on the image plane 4 is the point where the straight line connecting the point P to be measured and the optical center 3 of the camera lens intersects with the image plane 4. :
? , p can be used to calculate the x, y, and z coordinate values of point P from the U and V coordinates of point P using a conversion formula.

この変換式は、マトリクスによる同次形式を用いて、 で示される。ここで、Sは同次座標、ml、〜m43は
変換マトリックスの各要素である0式(1)はスリット
光による三次元計測の一般的表現式となっており、この
変換式を使えば、x−y−z座標系とU−V座標系はい
ずれも直交座標系である必要がなく、ざらに、各座標軸
の単位ベクトルも任意にとることが可能である。すなわ
ち、三次元座標計測を行なうにあたって都合のよい座標
系を任意に設定することができるという利点が生じる。
This conversion formula is expressed as follows using a homogeneous matrix form. Here, S is the homogeneous coordinate, ml, ~m43 are each element of the transformation matrix.0 Formula (1) is a general expression for three-dimensional measurement using slit light, and using this transformation formula, Both the x-y-z coordinate system and the UV coordinate system do not need to be orthogonal coordinate systems, and the unit vectors of each coordinate axis can also be arbitrarily set. That is, there is an advantage that a convenient coordinate system can be arbitrarily set for three-dimensional coordinate measurement.

次に、式(1)における変換マトリックスの較正方式に
ついて説明する。
Next, a method of calibrating the transformation matrix in equation (1) will be explained.

式(1)は同次形式であるから変換マトリックスの0で
ない要素の1つを1とおくことができ、通常、最終要素
masは0になることはないのでm43を1として未定
要素はmll〜matの11個となる。
Since equation (1) is in a homogeneous form, one of the non-zero elements of the transformation matrix can be set to 1. Usually, the final element mas will not be 0, so m43 is set to 1 and the undetermined elements are mll~ There are 11 mats.

式(1) ’i!展開してSを消去し、変換マトリック
スの各要素mo〜ma2に関して整理すると、を得る。
Equation (1) 'i! By expanding and eliminating S, and rearranging each element mo to ma2 of the transformation matrix, we obtain.

これより、1組の実測データ(x、y。From this, one set of measured data (x, y.

Z、U、V)によって3つの方程式が得られるため、1
1の未知要素m u −m a□を解くには最低4点に
対応する4組の実測データが必要である。一般にn組の
実測データによって解く場合には実測データの組番号を
添字として付して、 が解くべき変換式を示す。
Since three equations are obtained by Z, U, V), 1
In order to solve one unknown element m u -m a □, four sets of actual measurement data corresponding to at least four points are required. Generally, when solving using n sets of measured data, the set number of the measured data is added as a subscript to indicate the conversion formula to be solved.

式(3)の左辺のマトリクスをU、変換マトリックスの
要素のベクトルをM、右辺のベクトルヲXとおくと、式
(3)は、 tJM= X          ・・・・・・(4)
で表わされ、マトリックスUの擬似逆マトリックスをU
4とすると、Mの最小2乗解は、によって求めることが
できる。ここで、擬似逆71−リ・ンクスU4はiJT
をUの転置行列として、U″′= (U” Ll) −
’ LIT   ・・・・・・(6)で定義される。
Letting the matrix on the left side of equation (3) be U, the vector of elements of the transformation matrix as M, and the vector on the right side as X, then equation (3) is as follows: tJM=X (4)
The pseudo-inverse matrix of the matrix U is expressed as U
4, the least squares solution of M can be found by. Here, the pseudo reverse 71-links U4 is iJT
Let be the transposed matrix of U, U″′= (U” Ll) −
'LIT......Defined in (6).

上記の方式によって変換マトリクスの較正を行なえば、
実測データの精度が良くない場合でも実測データの数を
増すことによって高精度の較正が可能になるという利点
も生しる。
If the conversion matrix is calibrated using the above method, then
There is also the advantage that even if the accuracy of the actual measurement data is not good, it is possible to perform highly accurate calibration by increasing the number of actual measurement data.

(実施例) 次に、本発明の実施例について図面を参照して説明する
(Example) Next, an example of the present invention will be described with reference to the drawings.

第2図は本発明の三次元座標計測方式の一実施例を適用
した、自動車シャーシ取付ナツトの有無検査装置による
検査状況を示す外観図である。
FIG. 2 is an external view showing an inspection situation by an automobile chassis mounting nut presence/absence inspection apparatus to which an embodiment of the three-dimensional coordinate measuring method of the present invention is applied.

自動車のシャーシに取付けられたナツトは鋼板の穴の部
分にナツトプロジェクションに依って溶接されている。
A nut attached to an automobile chassis is welded to a hole in a steel plate using nut projection.

このナツトの有無をナツト側(裏側)及び大側(表側)
のどちらから見る場合に対しても認識できることが要求
されている。通常の2値画像処理ではナツト部分の輪郭
を正確に抽出することができないため有無の判定が難し
いが、ナツト取付は部分の高さを計測すれば容易に判定
ができる。
Check the presence or absence of this nut on the nut side (back side) and the large side (front side).
It is required that the image can be recognized from either direction. With normal binary image processing, it is difficult to determine the presence or absence of a nut because the contour of the nut cannot be extracted accurately, but the installation of a nut can be easily determined by measuring the height of the part.

本装置は、光源として赤外半導体レーザ装置5を用いて
、そのビームをシリンドリカルレンズによって広げたス
リット光6を使い、このスリット光6がカメラ7の光軸
に対して30°の角度を持つようにカメラ7とレーザ装
置5(波長780nm)をロボット8に固定し、カメラ
光軸が検査対象のプレート9に対して垂直になるように
構成されでいる。カメラ7には焦点距!50mmのレン
ズとl Ommの接写リングが装着され、ざらに外乱光
の影響を避けるため、赤色フィルター(R−69)が取
付けられ、このフィルターによって通常の蛍光灯による
室内照明の場合には照明光のl1lJ’i#tはぼ完全
に取除くことができる。プレート9は深さ100mmの
黒色検査台(不図示)の上に言かれて穴の裏側からの反
射光を受けないようにされている。カメラ7の出力は不
図示の画像処理装置により処理されて、画像面上に映し
出される。
This device uses an infrared semiconductor laser device 5 as a light source, and uses a slit light 6 whose beam is expanded by a cylindrical lens, so that this slit light 6 has an angle of 30° with respect to the optical axis of a camera 7. A camera 7 and a laser device 5 (wavelength: 780 nm) are fixed to a robot 8, and the optical axis of the camera is perpendicular to the plate 9 to be inspected. Focal length for camera 7! A 50mm lens and a 10mm close-up ring are attached, and a red filter (R-69) is attached to avoid the effects of ambient light. l1lJ'i#t can be almost completely removed. The plate 9 is placed on a black inspection table (not shown) with a depth of 100 mm so as not to receive reflected light from the back side of the hole. The output of the camera 7 is processed by an image processing device (not shown) and displayed on an image plane.

検査にあたっては、ロボット8によりレーザ装置5およ
びカメラ7を移動させてプレート9の全面を検査できる
During the inspection, the entire surface of the plate 9 can be inspected by moving the laser device 5 and camera 7 using the robot 8.

第3図は本発明の三次元座標計測方式の一実施例を適用
した実験装Mを示す外観図である。
FIG. 3 is an external view showing an experimental setup M to which an embodiment of the three-dimensional coordinate measurement method of the present invention is applied.

検査台16上に、調節台17が検査台座標軸(x。An adjustment table 17 is placed on the examination table 16 along the examination table coordinate axis (x).

y、z−軸)の方向に合わせて設置されており、調節台
17の上に検査対象の試料10が載せられていて、試料
10の位置はねじ182.182により前後左右に調節
できる。レーザ装置5から放射されたレーザ光はスリッ
ト光6の状態とされて回転ミラー11て反射された後、
試料10上に投射される。
A sample 10 to be inspected is placed on an adjustment table 17, and the position of the sample 10 can be adjusted forward, backward, left and right using screws 182 and 182. After the laser beam emitted from the laser device 5 is converted into a slit beam 6 and reflected by the rotating mirror 11,
is projected onto the sample 10.

カメラ7は、スリット光6で照射された試料10ヲ撮像
し、その画像15が画像処理装置12およびコンソール
14によりCRTI3の画像面上に映し出される。CR
T13の画像面は二次元座標系(U−V座標系)を構成
しでいる。
The camera 7 images the sample 10 irradiated with the slit light 6, and the image 15 is projected onto the image plane of the CRTI 3 by the image processing device 12 and console 14. CR
The image plane T13 constitutes a two-dimensional coordinate system (UV coordinate system).

第4図は、以上の二つの装言例においで、対象物体の位
置座標を計測する手順を示すフローチャートである。
FIG. 4 is a flowchart showing the procedure for measuring the position coordinates of the target object in the above two examples.

まず、検査台16上の検査対象のプレート9または試料
10の位Mを設定したあと、スリット光6を照射して画
像面上に画像15ソ映し出す。このようにしで、検査対
象をスリット光6が切断する切断線上の点の座標(x、
y、z)と、対応する画像面上の点の座標(U、V)を
精密に実測する(ステップ20)、この操作を目的精度
に応じて必要回数行ない(ステップ21)、終れば、こ
れらの実測データを用いて前記式(5)により変換マト
リックスの要素ベクトルMV計算する(ステップ22)
First, after setting the position M of the plate 9 or sample 10 to be inspected on the inspection table 16, the slit light 6 is irradiated to project 15 images on the image plane. In this way, the coordinates (x,
y, z) and the coordinates (U, V) of the corresponding point on the image plane (step 20). Repeat this operation as many times as necessary depending on the desired accuracy (step 21). The element vector MV of the transformation matrix is calculated using the above equation (5) using the measured data (step 22).
.

以上の操作により較正が終り、必要な一般変換式が得ら
れたので、以後、自由に検査対象をスリット光6で照射
し、その照射線上の任意の点の画像面上の座標(U、V
)を測定すると(ステップ23)、これらのデータがら
その都度、対応する検査対象上の点の位置座標(x、y
、z)を確定された変換式を用いで計測することが可能
となる(ステップ24)。必要回数の座標計算を行ない
(ステップ25)、終ればプログラムを終了する。
The above operations have completed the calibration and obtained the necessary general conversion formula. From now on, the inspection object can be irradiated with the slit light 6, and the coordinates (U, V) of any point on the irradiation line on the image plane
) (step 23), the position coordinates (x, y
, z) using the determined conversion formula (step 24). Coordinate calculations are performed the necessary number of times (step 25), and when completed, the program is terminated.

なお、上述した実施例では、いずれも二次元撮像素子を
有するカメラを用いでいるが、−次元撮像素子を有する
カメラを用いるときは計算操作はざらに簡単となる。こ
の場合は、画像は一次元であるから、第1図において画
像素子がU軸上に並んでいると考えてよい、この場合は
■座標の値が常にOであるから式(1)の変換式は、に
書き換えられる。ここでも変換マトリックスの最終要素
m42は1とおいてよいので、二次元の場合と同様に解
くべき方程式は、 となる。変換マトリックスの各要素mll〜ma+は擬
似逆行列を使って簡単に求めることができる。
Note that in all of the above-described embodiments, a camera having a two-dimensional image sensor is used, but when a camera having a -dimensional image sensor is used, the calculation operation becomes much simpler. In this case, since the image is one-dimensional, it can be assumed that the image elements are lined up on the U axis in Figure 1. In this case, ■ Since the coordinate value is always O, the transformation of equation (1) The expression can be rewritten as Here too, the final element m42 of the transformation matrix can be set to 1, so the equation to be solved as in the two-dimensional case is as follows. Each element mll to ma+ of the transformation matrix can be easily obtained using a pseudo-inverse matrix.

この場合は未定要素m+、〜m a +の数が7つであ
るので最低3点の実測データにより較正が可能である。
In this case, since the number of undetermined elements m+, ~m a + is seven, calibration can be performed using actual measurement data from at least three points.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、計測対象とされる物体位
置の三次元座標を、その画像画面上の対応する物体位置
の二次元座標から計算するための変換マトリックスを有
し、その変換マトリ・ンクスの各要素の値を、計測開始
前に物体位置を必要回数実測して得られたデータにより
較正することにより、映像面上座標から物体の位置座標
を得るための一般計算式が得られるので、測定系の配雪
によらない三次元座標の計測が可能となり、ざらに測定
系の位置決めや位置測定が不必要となり、これらに起因
する計測誤差の要因が完全になくなるため、高精度の計
測が可能となる効果がある。
As explained above, the present invention has a transformation matrix for calculating the three-dimensional coordinates of the object position to be measured from the two-dimensional coordinates of the corresponding object position on the image screen. By calibrating the values of each element of the index using data obtained by actually measuring the object position a necessary number of times before starting measurement, a general formula for obtaining the object position coordinates from the coordinates on the image plane can be obtained. , it becomes possible to measure three-dimensional coordinates without depending on the snow distribution of the measurement system, and there is no need for rough positioning or position measurement of the measurement system, and the causes of measurement errors caused by these are completely eliminated, allowing for high-precision measurement. This has the effect of making it possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はスリット光で照射された物体の位置座標系と、
物体を撮像するカメラ位置、および物体の画像面座標系
との関係を示す説明図、第2図は本発明の三次元座標計
測方式の一実施例を適用した自動車シャーシ取付ナツト
の有無検査製雪による検査状況を示す外観図、第3図は
同様の一実施例を適用した実験装Mを示す外観図、第4
図は第2図および第3図の装置の動作を示すフローチャ
ートである。 1 ・・・ スリット光面、2 ・・・ レンズ光軸、
3 ・・・ レンズ光心、  4 ・・・ 画像面、5
 ・・・ レーザ製雪、  6 ・・・ スリット光、
7 ・・・ カメラ、    8 ・・・ ロボット、
9 ・・・ プレート、  10  ・・・ 試料、1
1  ・・・ 回転ミラー、 +2 −・・  画像処
理装置、13  ・−CRT、   14・・・ コン
ソール、15  ・・・ 画像、     16  ・
・・ 検査台、17・・・ 調節台、   +81.1
82・・・ ねじ、x、y、z、u、v  ”−座標。
Figure 1 shows the position coordinate system of an object irradiated with slit light,
An explanatory diagram showing the camera position for imaging an object and its relationship with the image plane coordinate system of the object. FIG. Fig. 3 is an external view showing the test equipment M to which a similar embodiment is applied;
The figure is a flowchart showing the operation of the apparatus of FIGS. 2 and 3. 1... Slit optical surface, 2... Lens optical axis,
3... Lens optical center, 4... Image plane, 5
... Laser snow making, 6 ... Slit light,
7... Camera, 8... Robot,
9... Plate, 10... Sample, 1
1... Rotating mirror, +2 -... Image processing device, 13 - CRT, 14... Console, 15... Image, 16 -
... Examination table, 17... Adjustment table, +81.1
82...Screw, x, y, z, u, v''-coordinates.

Claims (1)

【特許請求の範囲】 スリット光で物体を照射し、照射された該物体の像を画
像面上に撮像し、該物体の画像上のスリット光による反
射光点の画像面座標から該物体の位置座標を計算式を用
いて算出する三次元座標計測方式であって、 計算式中に、物体の三次元座標を物体の画像上の反射光
点の画像面座標から変換して算出できる変換マトリック
スを有し、 物体の位置座標の計測開始前に、物体位置の三次元座標
およびこれに対応する画像面座標を実測して得られたデ
ータから前記変換マトリックスの各要素を予め算出して
、計算式中の定数の値を確定し、以後の計測において、
物体位置の三次元座標を、該計算式を用いて対応する画
像面座標値から算出する三次元座標計測方式。
[Claims] An object is irradiated with slit light, an image of the irradiated object is captured on an image plane, and the position of the object is determined from the image plane coordinates of a light point reflected by the slit light on the image of the object. It is a three-dimensional coordinate measurement method that calculates coordinates using a calculation formula, and the calculation formula includes a transformation matrix that can be calculated by converting the three-dimensional coordinates of the object from the image plane coordinates of the reflected light point on the image of the object. and, before starting the measurement of the position coordinates of the object, each element of the transformation matrix is calculated in advance from data obtained by actually measuring the three-dimensional coordinates of the object position and the corresponding image plane coordinates, and a calculation formula is calculated. Determine the value of the constant inside, and in subsequent measurements,
A three-dimensional coordinate measurement method that calculates the three-dimensional coordinates of an object position from the corresponding image plane coordinate values using the calculation formula.
JP61275322A 1986-11-20 1986-11-20 Three-dimensional coordinate measurement method Expired - Fee Related JPH0658210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61275322A JPH0658210B2 (en) 1986-11-20 1986-11-20 Three-dimensional coordinate measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61275322A JPH0658210B2 (en) 1986-11-20 1986-11-20 Three-dimensional coordinate measurement method

Publications (2)

Publication Number Publication Date
JPS63131007A true JPS63131007A (en) 1988-06-03
JPH0658210B2 JPH0658210B2 (en) 1994-08-03

Family

ID=17553834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61275322A Expired - Fee Related JPH0658210B2 (en) 1986-11-20 1986-11-20 Three-dimensional coordinate measurement method

Country Status (1)

Country Link
JP (1) JPH0658210B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07239219A (en) * 1990-04-30 1995-09-12 Korea Mach Res Inst Method and device for measuring profile shape of tire edge without contact
JP2008224370A (en) * 2007-03-12 2008-09-25 Mitsubishi Electric Corp Calibration method for three-dimensional shape measuring instrument, and three-dimensional shape measuring method
JP2009276150A (en) * 2008-05-13 2009-11-26 Ihi Corp Laser radar and method for adjusting direction of installation of the laser radar
CN111476752A (en) * 2019-09-30 2020-07-31 国网天津市电力公司电力科学研究院 Overhead line sag rapid measurement method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6093424A (en) * 1983-10-28 1985-05-25 Kawasaki Heavy Ind Ltd Method and device for forming material body having the same shape as objective material body from objective thing
JPS60205311A (en) * 1984-03-30 1985-10-16 Mitsubishi Electric Corp Three-dimensional coordinate measuring method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6093424A (en) * 1983-10-28 1985-05-25 Kawasaki Heavy Ind Ltd Method and device for forming material body having the same shape as objective material body from objective thing
JPS60205311A (en) * 1984-03-30 1985-10-16 Mitsubishi Electric Corp Three-dimensional coordinate measuring method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07239219A (en) * 1990-04-30 1995-09-12 Korea Mach Res Inst Method and device for measuring profile shape of tire edge without contact
JP2008224370A (en) * 2007-03-12 2008-09-25 Mitsubishi Electric Corp Calibration method for three-dimensional shape measuring instrument, and three-dimensional shape measuring method
JP2009276150A (en) * 2008-05-13 2009-11-26 Ihi Corp Laser radar and method for adjusting direction of installation of the laser radar
CN111476752A (en) * 2019-09-30 2020-07-31 国网天津市电力公司电力科学研究院 Overhead line sag rapid measurement method

Also Published As

Publication number Publication date
JPH0658210B2 (en) 1994-08-03

Similar Documents

Publication Publication Date Title
JP4647867B2 (en) Apparatus and method used to evaluate a target larger than the sensor measurement aperture
JPH10311711A (en) Optical profile sensor
Sensiper et al. Modulation transfer function testing of detector arrays using narrow-band laser speckle
CN111141767A (en) X-ray CT apparatus for measurement and CT reconstruction method using the same
JP3435019B2 (en) Lens characteristic measuring device and lens characteristic measuring method
JPH07146113A (en) Laser displacement meter
JP2623367B2 (en) Calibration method of three-dimensional shape measuring device
JPS63131007A (en) Three-dimensional coordinates measuring system
KR20110065365A (en) Method and apparatus for measuring aspherical body
JP2964137B2 (en) X-ray fluorescence analyzer that can detect the center of a sample
JPH0545135A (en) Method and device for visually measuring precise contour
JP2014190800A (en) Three-dimensional measuring method and three-dimensional measuring system
Zhou et al. Data-driven laser plane optimization for high-precision numerical calibration of line structured light sensors
Icasio-Hernández et al. Calibration of endoscopic systems coupled to a camera and a structured light source
JPS6125003A (en) Configuration measuring method
JPS61162706A (en) Method for measuring solid body
CN117516415B (en) Zernike fitting knife-edge shadow map wavefront reconstruction surface shape detection method, device and system
CN116086328B (en) Laser interference length indicator line sighting system and line spacing measuring method
US20220381678A1 (en) Non-spatial measurement calibration methods and associated systems and devices
CN114370866B (en) Star sensor principal point and principal distance measuring system and method
Hua et al. Automatic Foucault test method based on transverse cutting at two different axial positions near the foci
KR920006740B1 (en) Noncontact type tire contour shape measurement method
Sun et al. A Complete Calibration Method for a Line Structured Light Vision System.
KR920006741B1 (en) Noncontact type tire contour shape measurement system
JP3192461B2 (en) Optical measuring device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees