JPS63144579A - Field-effect element - Google Patents

Field-effect element

Info

Publication number
JPS63144579A
JPS63144579A JP61293124A JP29312486A JPS63144579A JP S63144579 A JPS63144579 A JP S63144579A JP 61293124 A JP61293124 A JP 61293124A JP 29312486 A JP29312486 A JP 29312486A JP S63144579 A JPS63144579 A JP S63144579A
Authority
JP
Japan
Prior art keywords
valley
electric field
gasb
electrode
quantum level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61293124A
Other languages
Japanese (ja)
Other versions
JP2703892B2 (en
Inventor
Toru Kimura
亨 木村
Kenichi Nishi
研一 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61293124A priority Critical patent/JP2703892B2/en
Publication of JPS63144579A publication Critical patent/JPS63144579A/en
Application granted granted Critical
Publication of JP2703892B2 publication Critical patent/JP2703892B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/15Structures with periodic or quasi periodic potential variation, e.g. multiple quantum wells, superlattices
    • H01L29/151Compositional structures
    • H01L29/152Compositional structures with quantum effects only in vertical direction, i.e. layered structures with quantum effects solely resulting from vertical potential variation
    • H01L29/155Comprising only semiconductor materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To change an electric field, in which negative differential conduction appears by applying an electric field from the outside, by giving structure existing between a quantum level of the lowest order formed in a second valley and the bottom of the second valley to a quantum level of the lowest order shaped in a first valley. CONSTITUTION:An AlSb clad layer 102, an active layer 105 formed by alternately laminating five layers of undoped GaSb 103 and Te-doped n<-> type AlSb 104, and an undoped AlSb clad layer 106 are grown onto a zinc-doped p-type gallium antimonide (GaSb) substrate 101 through a molecular-beam epitaxy method, and a gate electrode 112 is prepared. An ohmic contact 107 to the active layer 105 is prepared through a self-alignment method, and a source electrode 111 and a drain electrode 113 are attached. An impurity is doped selectively to an AlSb barrier layer having electron affinity smaller than GaSb regarding the active layer 105. Accordingly, a two-dimentional electron gas is shaped into a GaSb well, resistance between a source and a drain parallel with a thin-film is kept at a low value, and resistance in the direction vertical to the thin-film is kept at a high value, thus applying sufficiently intense electric field in the film thickness direction to a GaSb well layer.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電界効果により電子が流れる半導体の伝導特性
を変化させる新規な電界効果素子に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a novel field effect element that changes the conduction characteristics of a semiconductor through which electrons flow due to a field effect.

(従来の技術) n型ひ化ガリウムや燐化インジウムに高電界を印加する
と臨界電界(Eih)以上でガン効果が現れ、負性微分
伝導率(NDC)を示す事が知られている。この様子を
第4図に示す。横軸に電界E、縦軸に該半導体中を流れ
る電流密度Jをとった。このようなNDCを有する半導
体では高周波の発振が生ずることが知られている。ガン
効果により負性微分伝導率の起こる機構は、電界を印加
されたことにより半導体中の電子が加速され低エネルギ
ー高移動度の谷間から高エネルギー低移動度の谷間へ遷
移することによる。第5図にこの様子を示す。縦軸は伝
導帯の電子のエネルギーε、横軸は電子の波数ベクトル
にである。図中黒丸は電子分布を模式的に示している。
(Prior Art) It is known that when a high electric field is applied to n-type gallium arsenide or indium phosphide, the Gunn effect appears above the critical electric field (Eih), and the material exhibits negative differential conductivity (NDC). This situation is shown in FIG. The horizontal axis represents the electric field E, and the vertical axis represents the current density J flowing through the semiconductor. It is known that high frequency oscillation occurs in a semiconductor having such an NDC. The mechanism by which negative differential conductivity occurs due to the Gunn effect is that electrons in the semiconductor are accelerated by the application of an electric field and transition from a low-energy, high-mobility valley to a high-energy, low-mobility valley. Figure 5 shows this situation. The vertical axis is the electron energy ε in the conduction band, and the horizontal axis is the electron wave vector. The black circles in the figure schematically show the electron distribution.

半導体に印加した電界Eの強度により電子分布が変化す
る様子が負性微分伝導の起こるしきい電界EthとEと
の大小関係に基づいて、(a)E< Etb、 (b)
E= Eth、 (c)E> Ethの3つの場合につ
いて示されている。このような電子の谷間間遷移の実現
には、次のことが要求される。
The manner in which the electron distribution changes depending on the intensity of the electric field E applied to the semiconductor is determined based on the magnitude relationship between the threshold electric field Eth and E, where negative differential conduction occurs: (a) E< Etb, (b)
Three cases are shown: E=Eth, (c) E>Eth. To realize such a valley-to-valley transition of electrons, the following is required.

1)電界が印加されていないとき、電子の大部分は低い
エネルギーを持つ谷間に分布すること。例えば2つの谷
間間のエネルギー差に比べ格子温度が十分に低いこと。
1) When no electric field is applied, most of the electrons are distributed in valleys with low energy. For example, the lattice temperature is sufficiently low compared to the energy difference between two valleys.

2)電子の有効質量は低い谷間で小さく、高い谷間で大
きいこと。
2) The effective mass of an electron is small in low valleys and large in high valleys.

3)谷間間遷移が起こる前にアバランシェ効果が起こら
ないように、2つの谷間間のエルネギ−差ΔεBが半導
体の禁制帯幅Egより小さいこと。
3) The energy difference ΔεB between the two valleys is smaller than the forbidden band width Eg of the semiconductor so that an avalanche effect does not occur before the valley transition occurs.

大部分の半導体では条件2)は満足されている。従って
3)の条件を満たす半導体を選び、1)の条件を満足す
る様に温度を設定することにより負性微分伝導を実現で
きる。1)、3)の条件に大きく関わってくるのが上記
2つの谷間間のエネルギー差Δε8である。Δε8が小
さければ電子は低電界で高エネルギーの谷間に遷移し、
ΔεBが大きければ高エネルギーの谷間への遷移には高
電界が必要である。ここでΔεBの値はそれぞれの物質
固有の量であり、従ってNDCが起こるしきい電界EL
hも物質固有の量であった。外部からΔεBを変化させ
る方法としては例としてニー・アール・ハストン(A、
R,1uston)等によりフィジカル・レビュー・レ
ター誌(Physical Review Lette
rs) 14巻639頁に報告されている様に半導体に
大きな圧力をかけたり温度を室温から大きく変化させる
といった方法に限られていた。従ってEtbを、電圧を
印加して変化させるなどの電気的手段で外部から変化さ
せる方法は従来存在しなかった。
Condition 2) is satisfied in most semiconductors. Therefore, negative differential conduction can be realized by selecting a semiconductor that satisfies the condition 3) and setting the temperature so as to satisfy the condition 1). The energy difference Δε8 between the two valleys is greatly related to the conditions 1) and 3). If Δε8 is small, electrons transition to a high-energy valley in a low electric field,
If ΔεB is large, a high electric field is required for the transition to the high energy valley. Here, the value of ΔεB is a quantity specific to each substance, and therefore the threshold electric field EL at which NDC occurs
h was also a substance-specific quantity. As an example of how to change ΔεB externally, N.R. Haston (A.
Physical Review Letter (Physical Review Letter) by R, 1uston) etc.
rs) Vol. 14, p. 639, methods were limited to applying large pressure to the semiconductor or greatly changing the temperature from room temperature. Therefore, there has been no conventional method for externally changing Etb by electrical means such as applying a voltage to change it.

(発明が解決しようとする問題点) 本発明の目的は外部からの電界印加により電子チャネル
となる半導体に負性微分伝導の現れる電界1athを変
化させ得る構造を提供し、電子チャネル層が負性微分伝
導を示す状態゛と示さない状態との2つの状態の間を電
界効果を用いて変化させる事ができる゛新規な電界効果
素子を提供することにある。
(Problems to be Solved by the Invention) An object of the present invention is to provide a structure in which the electric field 1ath in which negative differential conduction appears in a semiconductor serving as an electron channel can be changed by applying an electric field from the outside. The object of the present invention is to provide a novel field effect element that can change between two states, a state exhibiting differential conduction and a state not exhibiting differential conduction, using a field effect.

(問題点を解決するための手段) 本発明は半絶縁性またはP型の基板上に、該基板よりも
電子親和力が大きく、電子の平均自由行程程度以下の膜
厚を持つ第一の半導体薄膜と、該第一の半導体薄膜より
電子親和力の小さい第二の半導体層の対よりなる二層構
造を、少なくとも一つ以上持ち、該積層構造の最上部に
積層方向に電界を印加するための第一の電極と、前記第
一の半導体薄膜の面内方向に電子を注入するための第二
の電極と電子を排出するための第三の電極をもつ電界効
果素子であって、前記第一の半導体薄膜は伝導帯にエネ
ルギーの低い順に第一の谷間、第二の谷間と少なくとも
2つ以上の谷間を持ち第二の谷間の有効質量は第一の谷
間の有効質量より大きく、第一の谷間に形成される最低
次の量子準位が、第二の谷間に形成される最低次の量子
準位と該第二の谷間の底との間に存在する構造を持つこ
とを特徴とする電界効果素子である。
(Means for Solving the Problems) The present invention provides a first semiconductor thin film on a semi-insulating or P-type substrate, which has a larger electron affinity than the substrate and has a thickness equal to or less than the mean free path of electrons. and a second semiconductor layer having a lower electron affinity than the first semiconductor thin film. A field effect element having one electrode, a second electrode for injecting electrons in an in-plane direction of the first semiconductor thin film, and a third electrode for ejecting electrons, the field effect element comprising: A semiconductor thin film has at least two valleys in the conduction band in order of decreasing energy, a first valley and a second valley, and the effective mass of the second valley is larger than the effective mass of the first valley. An electric field effect characterized in that the lowest quantum level formed in the second valley has a structure that exists between the lowest quantum level formed in the second valley and the bottom of the second valley. It is element.

(作用) 前記特許請求の範囲記載の第一電極をゲート、第二電極
をソース、第三電極をドレインと呼ぶことにする。第一
の半導体は電子の平均自由行程程度以下の薄膜であり、
基板及び第二の半導体と比べ電子親和力が大きいことか
ら第一の半導体内に量子井戸が形成され、伝導帯の各谷
間に対応して量子準位が現れる。第一の谷間に形成され
る最低次の量子準位を量子準位1、第二の谷間に形成さ
れる最低次の量子準位を量子順位2と呼ぶことにする。
(Function) The first electrode described in the claims will be referred to as a gate, the second electrode as a source, and the third electrode as a drain. The first semiconductor is a thin film with a mean free path of electrons or less,
Since the electron affinity is greater than that of the substrate and the second semiconductor, quantum wells are formed within the first semiconductor, and quantum levels appear corresponding to each valley of the conduction band. The lowest quantum level formed in the first valley will be referred to as quantum level 1, and the lowest quantum level formed in the second valley will be referred to as quantum rank 2.

ゲート電極にゲート電圧V、が印加されていない状態で
は量子準位1と量子準位2とのエネルギー差Δεは以下
のように決定される。
When the gate voltage V is not applied to the gate electrode, the energy difference Δε between quantum level 1 and quantum level 2 is determined as follows.

Δε=ΔεB+ΔεQ2−ΔεQl    ・・・(1
)ここでΔεは量子準位2と量子準位1の間のエネルギ
ー差、ΔεBは第一の半導体の第二の谷間の底と第一の
谷間の底の間のエネルギー差、ΔεQ1(i・1.2)
は第iの谷間の底からその谷間に生ずる最低次の量子準
位までのエネルギー差を表す。この様子を第2図(a)
に示す。第2図(a)左図は縦軸がエネルギー、横軸が
膜厚方向の実空間での距離を表し、第2図(a)右図は
縦軸にエネルギー、横軸に電子の膜厚方向の波数ベクト
ルを取った図を表している。またΔε9.(i・1,2
)の値は、最も単純には第一の半導体中の量子井戸が無
限に深いとする近似で と表される。ここでtは(ブランク定数)/(2π)で
あり、mlは1番目の谷間での電子の有効質量、Lは第
1の半導体の膜厚を表わす。ここでms>miであり(
21式よりΔεQl〉ΔεQ2、したがって式(1)よ
り、ΔさくΔεBとなる。各々の谷間では、電子は最低
次の量子準位Elより高いエネルギー状態にしか分布で
きないので、第1の半導体を薄膜とすることで、伝導帯
中の谷間間のエネルギー差を見かけ上小さくすることが
できる。このことは、薄膜の膜厚の設定の仕方で負性微
分伝導率の起きるしきい電界の値Ethを制御できるこ
とを意味する。ソース、ドレイン電極間に電界Esoを
印加し、電子遷移機構によりESDがあるしきい電界E
tbの値を越えたところで負性微分伝導を示すための条
件は、ΔεBがΔεに置き換わるので、前記従来技術の
項記載の1)〜3〉の条件より0<kT<Δε<Ex 
 (Eg:半導帯1の禁制帯幅)・・・(3) である。
Δε=ΔεB+ΔεQ2−ΔεQl...(1
) where Δε is the energy difference between quantum level 2 and quantum level 1, ΔεB is the energy difference between the bottom of the second valley and the bottom of the first valley of the first semiconductor, ΔεQ1(i・1.2)
represents the energy difference from the bottom of the i-th valley to the lowest quantum level occurring in that valley. This situation is shown in Figure 2 (a).
Shown below. In the left diagram of Figure 2(a), the vertical axis represents energy and the horizontal axis represents distance in real space in the film thickness direction.In the right diagram of Figure 2(a), the vertical axis represents energy and the horizontal axis represents electron film thickness. It shows a diagram of the wave number vector in the direction. Also Δε9. (i・1,2
) is most simply expressed as an approximation that assumes that the quantum well in the first semiconductor is infinitely deep. Here, t is (blank constant)/(2π), ml represents the effective mass of electrons in the first valley, and L represents the film thickness of the first semiconductor. Here ms>mi and (
From Equation 21, ΔεQl>ΔεQ2, and therefore from Equation (1), ΔεB. In each valley, electrons can only be distributed in an energy state higher than the lowest quantum level El, so by making the first semiconductor a thin film, the energy difference between the valleys in the conduction band can be made smaller. I can do it. This means that the threshold electric field value Eth at which negative differential conductivity occurs can be controlled by setting the thickness of the thin film. An electric field Eso is applied between the source and drain electrodes, and a threshold electric field E where ESD occurs due to the electron transition mechanism is applied.
Since ΔεB replaces Δε, the conditions for exhibiting negative differential conduction beyond the value of tb are 0<kT<Δε<Ex
(Eg: forbidden band width of semiconductor band 1) (3).

次にゲート電極にゲート電圧VQが印加された場合につ
いて述べる。VGの印加は、電子チャネルとなる第1の
半導体薄膜の膜厚方向に電界を印加する。電界の印加さ
れた量子井戸中では、第1の半導体中に形成される量子
準位は低エネルギー側に偏移することかバスタート(口
astard)等により、フィジカル・レビュー誌(P
hysical Review)828巻、3241頁
に記述されている。
Next, a case will be described in which the gate voltage VQ is applied to the gate electrode. To apply VG, an electric field is applied in the thickness direction of the first semiconductor thin film, which becomes an electron channel. In the quantum well to which an electric field is applied, the quantum level formed in the first semiconductor shifts to the lower energy side, or due to bastard, etc., as reported in Physical Review (P.
Physical Review), volume 828, page 3241.

この偏移量をδεとすると、δεは近似的に次式で示さ
れる。
Letting this deviation amount be δε, δε is approximately expressed by the following equation.

ここでmoは真空中の電子の静止質量、Fは印加電界強
度、しは膜厚、αは比例定数である。δεの単位をme
Vとし、FをkV/cm、 Lをnmの単位にとると、
αの値はおよそ4 X 10−6となる。441式から
δεは、電子の有効質量に比例することがよみとれる。
Here, mo is the rest mass of an electron in vacuum, F is the applied electric field strength, is the film thickness, and α is the proportionality constant. The unit of δε is me
If V is taken, F is kV/cm, and L is taken as nm, then
The value of α is approximately 4×10−6. From Equation 441, it can be seen that δε is proportional to the effective mass of the electron.

一般的に半導体でアバランシェ効果が生ずる電界強度は
、150kV/cm程度であるので、(4)式より、偏
移量の最大値は、 δεmhx < t x to−1(−、、、”)・L
4< m eV)  +++ (51となる。第1の谷
間についての電界によるエネルギー準位の最大偏移量を
66m1lX +第2の谷間について、δε!孟↓とお
くと、最大電界が印加された場合の量子準位1と量子準
位2とのエネルギー差ΔεFは以下の式で与えられる。
Generally, the electric field strength at which an avalanche effect occurs in a semiconductor is about 150 kV/cm, so from equation (4), the maximum value of the deviation amount is δεmhx < t x to-1(-,,,,'')・L
4< m eV) +++ (51. If the maximum deviation of the energy level due to the electric field for the first valley is set as 66m1lX + δε!Meng↓ for the second valley, then the maximum electric field is applied. The energy difference ΔεF between quantum level 1 and quantum level 2 in this case is given by the following equation.

Δ ε 、 =Δ ε 十 δε 二五轟 −δ ε二
孟轟   ・・・(6)ここでδε!A!(j・1.2
)の符号は正とした。ml〈mlより、δε二A!<δ
ε二孟蟲従って、(6)式でΔεFくΔεである。以上
のことから、電界印加により2つの谷間の量子準位間の
エネルギー差を変化させることができる。しかしながら
δε二孟↓の値は、6692以上に変化することはない
ため、本特許請求の範囲記載の如く、量子準位1のエネ
ルギー値が、量子準位2のエネルギー値と第2の谷間の
底のエネルギー値の間にあるときのみ、(1)式で表わ
されるΔεとして、(31式を満足しながら、(6)式
で与えられるΔε1を ΔεF<0         ・・・(′71とするこ
とが可能である。このときの様子を第2図(b)に示す
。m式の条件が満たされた状態では、ソースドレイン電
圧F’spを印加しない熱平衡な状態で電子は第2の谷
に分布し、もはや負性微分伝導率は示さない。
Δ ε , =Δ ε 10 δε 25 Todoroki −δ ε2 Meng Todoro ... (6) Here δε! A! (j・1.2
) is set as positive. ml〈From ml, δε2A! <δ
Therefore, in equation (6), ΔεF×Δε. From the above, the energy difference between the quantum levels in the two valleys can be changed by applying an electric field. However, since the value of δε2meng↓ does not change by more than 6692, the energy value of quantum level 1 is between the energy value of quantum level 2 and the second valley, as described in the claims of this patent. Only when the energy value is between the bottom energy values, as Δε expressed by equation (1), set Δε1 given by equation (6) to ΔεF<0...('71 while satisfying equation 31) This is possible.The situation at this time is shown in Figure 2(b).When the condition of equation m is satisfied, the electrons move to the second valley in a state of thermal equilibrium without applying the source-drain voltage F'sp. distribution and no longer exhibits negative differential conductivity.

以上の様な設計が現実の物質について可能であることを
、第1の半導体としてアンチモン化ガリウム(G^sb
>、第2の半導体としてアンチモン化アルミニウム(A
 Q Sb)を用いた場合について説明する。
Gallium antimonide (G^sb
>, aluminum antimonide (A
The case where QSb) is used will be explained.

この場合第1の谷はGaSbの「谷、第2の谷はGaS
bのL谷に対応する。定量的な計算を行うことによりG
aSbの膜厚りとして、 45λ≦L≦70λ の値が適当であると見積れる。
In this case, the first valley is the GaSb valley, and the second valley is the GaSb valley.
Corresponds to L valley in b. By performing quantitative calculations, G
It is estimated that a value of 45λ≦L≦70λ is appropriate for the film thickness of aSb.

し−45λのとき、Δεa=70meV;Δε。1−8
1−8O,Δe o2= 15m eVであり、δe 
+sax S 2m eV、δε諺澁=8meVである
から、 Δε= 5 m eV> 0 Δεp=−1meV<0 となり、実際に、量子準位1と量子準位2との間のエネ
ルギーの大小関係がゲート電圧VQの印加により逆転す
る。
When −45λ, Δεa=70 meV; Δε. 1-8
1-8O, Δe o2 = 15 m eV, and δe
+sax S 2m eV, δε proverbial = 8meV, so Δε= 5 meV> 0 Δεp=-1meV<0, and in fact, the energy magnitude relationship between quantum level 1 and quantum level 2 is It is reversed by applying gate voltage VQ.

以上のように、本発明による電界効果素子は、ゲート電
圧VGにより、第1の谷間と第2の谷間との間の電子の
分布状態を変化させることができるため、移動度変調ト
ランジスタあるいは電圧変調可能なガン発振器として使
用できる。
As described above, the field effect element according to the present invention can change the distribution state of electrons between the first valley and the second valley by the gate voltage VG, so that it is possible to change the distribution state of electrons between the first valley and the second valley. Can be used as a possible gun oscillator.

(実施例) 第1図は、本発明の電界効果l・ランジスタの一実施例
を示した断面図で、分子線エピタキシ法により亜鉛ドー
プのP型アンチモン化ガリウム(以下、GaSbと略記
)基板101上に、約2000オンゲスI・ローム(以
下A〉厚のアンチモン化アルミニウ(以下AQSb)ク
ラッド層102.50^厚のアンドープGaSb103
と、50に厚テルル(以下Te)ドープ11型八QSb
104を交互に5層積層することにより形成された能動
層105と、1000人厚アン下−プ^tsbクラッド
層106とを順次成長し、ゲート電極112を製作した
後、セルファライン法により能動層105へのオーミッ
クコンタクト107を作製し、ソース電極111および
ドレイン電極113をとりつける。ここで基板101に
はアイソレーションのためP型を用いた。また、能動層
105について、GaSbに比べ電子親和力の小さい八
Q Sbバリア層に選択的にドープすることにより、G
aSb井戸内に2次元電子ガスを形成し、薄膜に平行な
、ソース、ドレイン間抵抗は低く押え、かつ薄膜に垂直
方向の抵抗を高く保つことでGaSb井戸層に膜厚方向
の十分に強い電界がかかるように設計した。当実施例に
おいては前記作用の項で述べた第1の谷間はr谷、第2
の谷間はL谷となる。以上の設計の下で、vI]をOv
から10vまで変化させたときのソース、ドレイン間の
電流−電界曲線を第3図に示す。vGの印加と共に、N
DCを示す領域が減少し、VG・IOVで完全に消滅す
る。同時に低電界側で電流値も減少している。以上、第
1及び第2の半導体としてGaSb/A Q Sbを用
いた場合について述べたが、材料系としては、砒化ガリ
ウム/砒化ガリウム、アルミニウムを始め、砒化インジ
ウム/テルル化亜鉛等の半導体/半導体へテロ接合や、
砒化ガリウム/フッ化カルシウム、ストロンチウム等の
半導体/絶縁体へテロ接合等、特許請求の範囲の項記載
の条件を満たす第1および第2の物質の組合せは、全て
利用できる。
(Embodiment) FIG. 1 is a cross-sectional view showing an embodiment of the field effect l transistor of the present invention, in which a zinc-doped P-type gallium antimonide (hereinafter abbreviated as GaSb) substrate 101 is formed by molecular beam epitaxy. On top, an aluminum antimonide (hereinafter AQSb) cladding layer 102.50^ thick undoped GaSb 103 with a thickness of about 2000 Å.
and 50 thick tellurium (hereinafter Te) doped type 11 8QSb
An active layer 105 formed by alternately stacking five layers of 104 and a 1000-layer-thick cladding layer 106 are sequentially grown to form a gate electrode 112. An ohmic contact 107 is made to 105, and a source electrode 111 and a drain electrode 113 are attached. Here, a P-type substrate was used for the substrate 101 for isolation. In addition, regarding the active layer 105, by selectively doping the 8Q Sb barrier layer, which has a smaller electron affinity than GaSb, G
By forming a two-dimensional electron gas in the aSb well, keeping the resistance parallel to the thin film low between the source and drain, and keeping the resistance high perpendicular to the thin film, a sufficiently strong electric field in the film thickness direction is created in the GaSb well layer. It was designed to take. In this embodiment, the first valley mentioned in the section of the effect is the r valley, and the second valley is the r valley.
The valley becomes the L valley. Under the above design, vI] is Ov
FIG. 3 shows the current-electric field curve between the source and drain when the voltage is varied from 10V to 10V. With the application of vG, N
The area showing DC decreases and completely disappears at VG/IOV. At the same time, the current value also decreases on the low electric field side. The case where GaSb/A Q Sb is used as the first and second semiconductors has been described above, but the material system includes semiconductors/semiconductors such as gallium arsenide/gallium arsenide, aluminum, indium arsenide/zinc telluride, etc. heterozygous,
Any combination of the first and second materials that satisfies the conditions set forth in the claims can be used, such as semiconductor/insulator heterojunctions such as gallium arsenide/calcium fluoride and strontium.

(発明の効果) 本発明によれば、ゲート電圧の印加により、該第1の半
導体中の第1の谷間にいる電子と第2の谷間にいる電子
の分布を逆転させることができ、第1の谷間の電子と、
第2の谷間の電子の有効質量の違いから、ソース、ドレ
イン間を流れる電流の伝導特性を変化させることができ
る。この活眼、本発明による電界効果トランジスタを移
動度変調型電界効果トランジスタあるいは、電圧変調型
ガン発振器等に応用できる。
(Effects of the Invention) According to the present invention, by applying a gate voltage, the distribution of electrons in the first valley and electrons in the second valley in the first semiconductor can be reversed, and the distribution of electrons in the first valley can be reversed. The electrons in the valley of
Due to the difference in effective mass of electrons in the second valley, the conduction characteristics of the current flowing between the source and drain can be changed. The field effect transistor according to the present invention can be applied to a mobility modulated field effect transistor, a voltage modulated Gunn oscillator, or the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による電界効果トランジスタの断面図、
第2図(a)は、本発明による電界効果トランジスタに
おいて、ゲート電圧が印加されていない状態での、実空
間におけるエネルギーバンド図(左)を、電子の波数空
間でのエネルギーバンド図(右)、第2図(b)は、ゲ
ート電圧が印加されている状態での実空間におけるエネ
ルギーバンド図(左)と、電子の波数空間でのエネルギ
ーバンド図(右)、第3図は本発明による電界効果トラ
ンジスタのソース、トレイン間の電流、電界特性のゲー
ト電圧に対する依存性を示す図、第4図は、従来から用
いられている負性微分抵抗素子での電流−電界特性を示
す図、第5図は、電子の谷間間遷移を表わす概念図。 図において、 101・P型GaSb基板 102・・・アンドープ^QSbクラッド層103・・
・アンドープGaSbポテンシャル井戸層104・・・
n−型A Q Sbポテンシャルバリア層105・・・
能動層 106・・・アンドープ^QSbクラッド層107・・
・ソース及びドレインオーシックコンタクト層 111・・・ソース電極 112・・・ゲート電極 113・・・ドレイン電極 201・・−第1の谷間により形成されるポテンシャル 202・・・第2の谷間により形成されるポテンシャル 211・・・量子準位1 212・・・量子準位2 第3図 第4図 電界 第5図 第5図
FIG. 1 is a cross-sectional view of a field effect transistor according to the present invention;
FIG. 2(a) shows an energy band diagram in real space (left) and an energy band diagram in electron wavenumber space (right) in a field effect transistor according to the present invention, with no gate voltage applied. , Fig. 2(b) shows the energy band diagram in real space with gate voltage applied (left) and the energy band diagram in electron wavenumber space (right), and Fig. 3 shows the energy band diagram according to the present invention. Figure 4 is a diagram showing the dependence of the current between the source and train of a field effect transistor, and the electric field characteristics on the gate voltage. Figure 5 is a conceptual diagram showing the valley-to-trough transition of electrons. In the figure, 101, P-type GaSb substrate 102... undoped QSb cladding layer 103...
- Undoped GaSb potential well layer 104...
n-type AQ Sb potential barrier layer 105...
Active layer 106...Undoped^QSb cladding layer 107...
Source and drain ossic contact layer 111...source electrode 112...gate electrode 113...drain electrode 201...-potential formed by the first valley 202...formed by the second valley Potential 211...Quantum level 1 212...Quantum level 2 Figure 3 Figure 4 Electric field Figure 5 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 半絶縁性またはP型の基板上に、該基板よりも電子親和
力が大きく、電子の平均自由行程程度以下の膜厚を持つ
第一の半導体薄膜と、該第一の半導体薄膜より電子親和
力の小さい第二の半導体層の対よりなる二層構造を、少
なくとも一つ以上持ち、該積層構造の最上部に積層方向
に電界を印加するための第一の電極と、前記第一の半導
体薄膜の面内方向に電子を注入するための第二の電極と
電子を排出するための第三の電極をもつ電界効果素子で
あって、前記第一の半導体薄膜は伝導帯にエネルギーの
低い順に第一の谷間、第二の谷間と少なくとも2つ以上
の谷間を持ち第二の谷間の有効質量は第一の谷間の有効
質量より大きく、第一の谷間に形成される最低次の量子
準位が、第二の谷間に形成される最低次の量子準位と該
第二の谷間の底との間に存在する構造を持つことを特徴
とする電界効果素子。
a first semiconductor thin film on a semi-insulating or P-type substrate, which has a larger electron affinity than the substrate and has a film thickness equal to or less than the mean free path of electrons; and a first semiconductor thin film having a smaller electron affinity than the first semiconductor thin film. It has at least one two-layer structure consisting of a pair of second semiconductor layers, and a first electrode for applying an electric field in the stacking direction on the top of the stacked structure, and a surface of the first semiconductor thin film. A field effect element having a second electrode for injecting electrons inward and a third electrode for ejecting electrons, wherein the first semiconductor thin film is arranged in a conduction band in order of decreasing energy. The effective mass of the second valley is larger than the effective mass of the first valley, and the lowest quantum level formed in the first valley is the second valley. A field effect element characterized by having a structure that exists between the lowest quantum level formed between two valleys and the bottom of the second valley.
JP61293124A 1986-12-08 1986-12-08 Field effect element Expired - Lifetime JP2703892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61293124A JP2703892B2 (en) 1986-12-08 1986-12-08 Field effect element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61293124A JP2703892B2 (en) 1986-12-08 1986-12-08 Field effect element

Publications (2)

Publication Number Publication Date
JPS63144579A true JPS63144579A (en) 1988-06-16
JP2703892B2 JP2703892B2 (en) 1998-01-26

Family

ID=17790730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61293124A Expired - Lifetime JP2703892B2 (en) 1986-12-08 1986-12-08 Field effect element

Country Status (1)

Country Link
JP (1) JP2703892B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0979529A1 (en) * 1997-04-29 2000-02-16 THE GOVERNMENT OF THE UNITED STATES OF AMERICA, as represented by THE SECRETARY OF THE NAVY DESIGN AND FABRICATION OF ELECTRONIC DEVICES WITH InA1AsSb/A1Sb BARRIER
US7652310B2 (en) 2005-08-31 2010-01-26 Japan Science And Technology Agency Negative resistance field effect device and high-frequency oscillation device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61156773A (en) * 1984-12-27 1986-07-16 Sumitomo Electric Ind Ltd Heterojunction semiconductor device
JPS61210677A (en) * 1985-03-15 1986-09-18 Sumitomo Electric Ind Ltd Compound semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61156773A (en) * 1984-12-27 1986-07-16 Sumitomo Electric Ind Ltd Heterojunction semiconductor device
JPS61210677A (en) * 1985-03-15 1986-09-18 Sumitomo Electric Ind Ltd Compound semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0979529A1 (en) * 1997-04-29 2000-02-16 THE GOVERNMENT OF THE UNITED STATES OF AMERICA, as represented by THE SECRETARY OF THE NAVY DESIGN AND FABRICATION OF ELECTRONIC DEVICES WITH InA1AsSb/A1Sb BARRIER
EP0979529A4 (en) * 1997-04-29 2000-09-20 Us Navy DESIGN AND FABRICATION OF ELECTRONIC DEVICES WITH InA1AsSb/A1Sb BARRIER
US7652310B2 (en) 2005-08-31 2010-01-26 Japan Science And Technology Agency Negative resistance field effect device and high-frequency oscillation device

Also Published As

Publication number Publication date
JP2703892B2 (en) 1998-01-26

Similar Documents

Publication Publication Date Title
JPS5946425B2 (en) High mobility multilayer heterojunction device using modulated doping
US4704622A (en) Negative transconductance device
JPH06104288A (en) Heterojunction field-effect transistor and its manufacture
JPH06120520A (en) Field-effect transistor provided with nonlinear transfer characteristic
JP2003518326A (en) Type II interband heterostructure rear diode
JPS62115780A (en) Semiconductor element
Schulman Effects of compositional grading on GaAs–Ga1− x Al x As interface and quantum well electronic structure
JPS63144579A (en) Field-effect element
JPS639388B2 (en)
Fujisawa et al. AlGaAs/InGaAs/GaAs single electron transistors fabricated by Ga focused ion beam implantation
US5489786A (en) Current-controlled resonant tunneling device
JP2546483B2 (en) Tunnel transistor and manufacturing method thereof
JPS6353705B2 (en)
JPH01135063A (en) Transistor
TWI429074B (en) Heterojunction bipolar transistor
JP3138335B2 (en) Quantum interference device
JP2796113B2 (en) Semiconductor device
JP3119207B2 (en) Resonant tunnel transistor and method of manufacturing the same
JP2675362B2 (en) Semiconductor device
JPH0311767A (en) Velocity modulation type field-effect transistor
JP2513118B2 (en) Tunnel transistor and manufacturing method thereof
Brounkov et al. Electron escape from self-assembled InAs/GaAs quantum dot stacks
JPH07326727A (en) Resonance tunnel element
US5294809A (en) Resonant tunneling diode with reduced valley current
JPH0666465B2 (en) Field effect transistor