JPS6314346A - Magneto-optical recording medium - Google Patents

Magneto-optical recording medium

Info

Publication number
JPS6314346A
JPS6314346A JP15798686A JP15798686A JPS6314346A JP S6314346 A JPS6314346 A JP S6314346A JP 15798686 A JP15798686 A JP 15798686A JP 15798686 A JP15798686 A JP 15798686A JP S6314346 A JPS6314346 A JP S6314346A
Authority
JP
Japan
Prior art keywords
intermediate layer
magneto
layer
optical
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15798686A
Other languages
Japanese (ja)
Inventor
Ichiro Saito
一郎 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP15798686A priority Critical patent/JPS6314346A/en
Publication of JPS6314346A publication Critical patent/JPS6314346A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the deterioration in magnetic characteristics and error rate for a long period of time by disposing mixed intermediate layers consisting of a mixture of materials consisting 1st and 2nd intermediate layers between said 1st intermediate layers and the 2nd intermediate layers. CONSTITUTION:The mixed intermediate layers 15a, 15b provided between the 1st intermediate layers 13a, 13b and the 2nd intermediate layers 14a, 14b consist of the mixture of the materials consisting the 1st and 2nd intermediate layers. The mixed intermediate layers 15a, 15b consisting of the mixture of the materials consisting the 1st intermediate layers 13a, 13b and the 2nd intermediate layers 14a, 14b may be formed simply by starting the operation to form the 2nd intermediate layers 14a, 14b just before the end of the operation to form the 1st intermediate layers 13a, 13b and ending the operation to form the 1st intermediate layers 13a, 13b after the lapse of the desired time. The change of the magnetic characteristics and error rate is thereby decreased for a long period of time.

Description

【発明の詳細な説明】 し産業上の利用分野] 本発明は、レーザー光などの光(ここで言う光とは、上
記レーザー光を含む各種波長のエネルギー線のことであ
る)によって情報の記録・再生・消去などを行なう光学
的磁気記録媒体の製造方法に関する。
[Detailed Description of the Invention] Industrial Field of Application] The present invention is a method for recording information using light such as a laser beam (the light here refers to energy rays of various wavelengths including the above-mentioned laser beam). -Relates to a method of manufacturing an optical magnetic recording medium that performs playback, erasure, etc.

[従来の技術] 近年、高密度・大容量のメモリとしてレーザー光を用い
た光メモリ素子の研究および開発が急ピッチで行なわれ
ている。中でも、光磁気記録は書き換えが可能な記録方
法として注目をあびており、該記録に用いられる光学的
磁気記録媒体は書き換えが可能な光メモリ素子として大
いに期待されている。
[Prior Art] In recent years, research and development of optical memory elements using laser light as high-density, large-capacity memories have been carried out at a rapid pace. Among these, magneto-optical recording has attracted attention as a rewritable recording method, and the optical magnetic recording medium used for this recording is highly anticipated as a rewritable optical memory element.

従来、このような光磁気記録に用いられる光学的磁気記
録媒体の光磁気記録層を構成する材料としては、MnB
 i系、ガーネット系、希土類−遷移金属アモルファス
系などが代表的なものとして知られている。MnB i
系は、キューリ一温度が高いため、記録の際にパワーの
大きなレーザーを必要とし、また粒界ノイズが多いため
、 S/N比の高い再生が実施できないという欠点があ
り、ガーネット系では光の透過率が大きいため、記録の
際にパワーの大きなレーザーが必要となる欠点があった
。その中で、希土類−遷移金属アモルファス系はキュー
リ一温度が低く、また光の透過率も比較的小さいため、
両者の欠点を補うものとして期待されている。
Conventionally, MnB has been used as a material constituting the magneto-optical recording layer of an optical-magnetic recording medium used for such magneto-optical recording.
Typical examples are i-based, garnet-based, rare earth-transition metal amorphous-based, and the like. MnB i
The disadvantage of the garnet type is that it requires a high-power laser for recording due to its high Curie temperature, and that reproduction with a high S/N ratio cannot be achieved due to the large amount of grain boundary noise. Because of its high transmittance, it had the disadvantage of requiring a high-power laser for recording. Among them, the rare earth-transition metal amorphous system has a low Curie temperature and relatively low light transmittance, so
It is expected that it will compensate for the shortcomings of both.

以下、図面も参照しつつ、この種の技術について更に詳
しく説明する。
This type of technology will be described in more detail below with reference to the drawings.

第3図(A)は、従来用いられている代表的な光学的磁
気記録媒体の模式的断面図である。
FIG. 3(A) is a schematic cross-sectional view of a typical conventionally used optical magnetic recording medium.

第3図(A)において、31はポリメチルメタクリレー
ト(PMMA)、ポリカーボネート(pc)等のプラス
チック、あるいはガラス等からなる透光性基材であり、
一般にはドーナツ状など名種形状の板状基板が用いられ
る。33は5iO1Si02、 AIN、ZnS等から
なる中間層である。32は光磁気記録層であり、上記の
ような理由によって、現在は例えばTbFe、 GdT
bFe、TbFeCo等の希土類−遷移金属アモルファ
ス系が汎用されている。34は光磁気記録層32の酸化
防止などのための保護層であり、酸化物、硫化物などの
無機材料や金属材料で構成される。
In FIG. 3(A), 31 is a transparent base material made of plastic such as polymethyl methacrylate (PMMA), polycarbonate (PC), or glass,
Generally, a plate-like substrate having a variety of shapes such as a donut shape is used. 33 is an intermediate layer made of 5iO1Si02, AIN, ZnS, etc. 32 is a magneto-optical recording layer, and for the reasons mentioned above, it is currently made of, for example, TbFe, GdT.
Rare earth-transition metal amorphous systems such as bFe and TbFeCo are widely used. 34 is a protective layer for preventing oxidation of the magneto-optical recording layer 32, and is made of an inorganic material such as an oxide or a sulfide, or a metal material.

このような光学的磁気記録媒体における記録・再生・消
去は、一般には以下のように行なわれる。
Recording, reproducing, and erasing on such an optical magnetic recording medium is generally performed as follows.

まず、記録媒体を基板31に対して垂直な一定方向に磁
化した後、基板31側からレーザー光をスポット照射す
る。磁化方向は、一定であれば所望の方向でよい。基板
31上に照射されたレーザー光か、基板31および中間
層33を透過して光磁気記録層32に到達すると、光磁
気記録層32のレーザー光照射部分において、光の吸収
か起こり局所的に温度が上昇する。その結果、該部分の
みか層構成材料のキューリ一点以上に達し、磁化が消失
する。
First, the recording medium is magnetized in a certain direction perpendicular to the substrate 31, and then a spot of laser light is irradiated from the substrate 31 side. The magnetization direction may be any desired direction as long as it is constant. When the laser beam irradiated onto the substrate 31 passes through the substrate 31 and the intermediate layer 33 and reaches the magneto-optical recording layer 32, absorption of the light occurs in the laser beam irradiated portion of the magneto-optical recording layer 32, causing local damage. Temperature rises. As a result, only this portion reaches one or more Curie points of the layer-constituting material, and the magnetization disappears.

この時、光磁気記録層32の磁化が消失した部分に面記
磁化方向とは逆方向に磁場を印加すると、該部分の磁化
か反転し、レーザー光非照射部分と磁化方向を異にする
反転磁区がそこに形成されて情報の記録が成される。記
録の消去は、光磁気記録層32の記録部分にレーザー光
を再照射して該部分の温度をキューリ一点以上に上昇さ
せると共に、記録時とは反対方向の磁化を印加すること
によって該部分の磁化方向を記録開始前の状態に戻すこ
とにより行なう。このような記録、消去に際し、図に示
したように中間層33を設け、該層の膜厚を使用するレ
ーザー光の波長に対して反射防止機能を示す厚さに設定
しておくことにより、光磁気記録層32の温度上昇を記
録、消去に極めて存効なものとすることができる。
At this time, when a magnetic field is applied in the direction opposite to the in-plane magnetization direction to the part of the magneto-optical recording layer 32 where the magnetization has disappeared, the magnetization of the part is reversed, and the magnetization direction is different from that of the part not irradiated with the laser beam. Magnetic domains are formed there, and information is recorded. Erasing a record is achieved by re-irradiating the recorded portion of the magneto-optical recording layer 32 with a laser beam to raise the temperature of the portion above the Curie point, and applying magnetization in the opposite direction to that during recording. This is done by returning the magnetization direction to the state before the start of recording. In such recording and erasing, an intermediate layer 33 is provided as shown in the figure, and the thickness of the layer is set to a thickness that exhibits an antireflection function for the wavelength of the laser beam used. The temperature rise of the magneto-optical recording layer 32 can be made extremely effective for recording and erasing.

また、記録の再生は、光磁気記録層32がキューリ一点
以上に温度上昇しない程度にパワーを下げたレーザー光
を基材31側から照射し、磁気カー効果を利用して記録
部分の磁化方向を読み出すことにより行う。
In addition, for reproduction of recording, a laser beam whose power is lowered to such an extent that the temperature of the magneto-optical recording layer 32 does not rise above one Curie point is irradiated from the base material 31 side, and the direction of magnetization of the recorded portion is changed using the magnetic Kerr effect. This is done by reading.

上述したような光学的磁気記録媒体の記録感度を向上さ
せるため、例えば基材材質を熱伝導率の比較的小さな有
機樹脂とすることにより、記録に必要な熱の拡散を防止
し、光磁気記録層の実効的な温度上昇を図り記録感度を
向上させる試みや、例えば第3図(B)に示すように光
磁気記録層32を薄膜化し、更には反射層35を設ける
ことにより、記録感度を向上させるとともに、磁気ファ
ラデー効果を利用してみかけ上のカー回転角を上昇させ
るといった種々の試みがなされている。
In order to improve the recording sensitivity of the optical magnetic recording medium as mentioned above, for example, by using an organic resin with relatively low thermal conductivity as the base material, it is possible to prevent the diffusion of the heat necessary for recording, and to improve the recording sensitivity of the optical magnetic recording medium. Attempts have been made to improve the recording sensitivity by increasing the effective temperature of the layer, or by thinning the magneto-optical recording layer 32 and further providing a reflective layer 35 as shown in FIG. 3(B). Various attempts have been made to increase the apparent Kerr rotation angle by utilizing the magnetic Faraday effect.

[発明か解決しようとする問題点] しかし、このような光学的磁気記録にあって、光磁気記
録層は、その酸化や腐食等に関して基材の影響を受は易
く、特に基材として有機樹脂を用いた場合には、光磁気
記録層の形成時に、基材に吸着されている酸素や水分な
どが光磁気記録層に取込まれて、磁気特性に劣化を生し
ることかあった。また、形成された光学的磁気記録媒体
を高温、高湿の雰囲気に長く保存した場合には、基材を
透過して光磁気記録層に侵入する酸素や水分により磁気
特性が劣化し、結果として記録、再生時のエラーの増加
や信号品質の劣化を招くといった問題があった。
[Problems to be solved by the invention] However, in such optical magnetic recording, the magneto-optical recording layer is easily affected by the base material in terms of oxidation, corrosion, etc., and in particular when organic resin is used as the base material, When using magneto-optical recording layers, oxygen, moisture, etc. adsorbed on the base material may be taken into the magneto-optical recording layer during formation of the magneto-optical recording layer, resulting in deterioration of magnetic properties. In addition, if the formed optical magnetic recording medium is stored in a high temperature and high humidity atmosphere for a long time, the magnetic properties will deteriorate due to oxygen and moisture penetrating the base material and entering the magneto-optical recording layer. There have been problems such as an increase in errors during recording and reproduction and a deterioration in signal quality.

従って、このような問題を解消し、記録感度や保存環境
特性等に優わた光学的磁気記録媒体を得るためには、基
板の光磁気記録層に対する影響を減じるため、光磁気記
録層と基板との間に設けられた中間層を高品位なものと
することが必要となる。しかしながら、従来この要求に
必ずしも答えているとは言い難かった。
Therefore, in order to solve these problems and obtain an optical-magnetic recording medium with excellent recording sensitivity and storage environment characteristics, it is necessary to improve the relationship between the magneto-optical recording layer and the substrate in order to reduce the influence on the magneto-optical recording layer of the substrate. It is necessary that the intermediate layer provided between the two be of high quality. However, it cannot be said that this demand has always been met in the past.

また、中間層を、反射防止構造にしたり、外部からの酸
素や水分の侵入をより効果的に防止するために多層膜と
した時には冬服の熱膨張率の差や膜の応力の違いによっ
て薄膜にクラックが発生したり、薄膜の剥離が起こると
いった問題があった。
In addition, when the intermediate layer has an anti-reflection structure or a multilayer film to more effectively prevent the intrusion of oxygen and moisture from the outside, it is possible to create a thin layer due to differences in the coefficient of thermal expansion of winter clothing and differences in the stress of the film. There were problems such as cracking and peeling of the thin film.

本発明は上記問題点を除くために成されたものであり、
その主たる目的は、長期間にわたって磁気特性やエラー
レートの変化が少ないうえに中間層を構成する薄膜の密
着性の向上とクラックの発生防止とが達成された光学的
磁気記録媒体を提供することにある。
The present invention has been made to eliminate the above problems,
The main purpose is to provide an optical magnetic recording medium that has little change in magnetic properties and error rate over a long period of time, and also improves the adhesion of the thin film that makes up the intermediate layer and prevents the occurrence of cracks. be.

C問題点を解決するための手段〕 本発明の上記目的は、光磁気記録層と、該光磁気記録層
の少なくとも一方の面に接して設けられた誘電体からな
る第1中間層と、該中間層に接して設けられた誘電体か
らなる第2中間層を基板上に有して成る光学的磁気記録
媒体において、第1中間層と第2中間層との間にこれら
両層を構成する材料の混合物から成る混合中間層を配説
することにより達成される。
Means for Solving Problem C] The above object of the present invention is to provide a magneto-optical recording layer, a first intermediate layer made of a dielectric provided in contact with at least one surface of the magneto-optical recording layer, In an optical magnetic recording medium having a second intermediate layer made of a dielectric material provided in contact with the intermediate layer on a substrate, both of these layers are constituted between the first intermediate layer and the second intermediate layer. This is achieved by disposing a mixed interlayer consisting of a mixture of materials.

〔発明の実施態様 ) 以下、図面を参照しつつ、本発明の詳細な説明する。[Embodiments of the invention] Hereinafter, the present invention will be described in detail with reference to the drawings.

本発明の光学的磁気記録媒体の一態様の模式的断面を第
1図に示す。
A schematic cross section of one embodiment of the optical magnetic recording medium of the present invention is shown in FIG.

第1図の光学的磁気記録媒体に於いて、11はガラス、
PMMA、ポリカーボネート等の各様の材料からなる。
In the optical magnetic recording medium shown in FIG. 1, 11 is glass;
It is made of various materials such as PMMA and polycarbonate.

使用光に対して透光性の基材である。その形状は特に限
定されるものではなく、ディスク状等、所望のものとし
得る。
The base material is transparent to the light used. Its shape is not particularly limited, and may be any desired shape, such as a disk shape.

12は光磁気記録層であり、その材質としてはTbFe
、 GdTbFe、 TbFeCo、 GdTbFeC
o等の希土類−遷移金属アモルファス系が好適に用いら
れる。勿論、前述のMnB i系、ガーネット系などと
することも可能である。
12 is a magneto-optical recording layer, the material of which is TbFe.
, GdTbFe, TbFeCo, GdTbFeC
A rare earth-transition metal amorphous system such as o is preferably used. Of course, the above-mentioned MnBi type, garnet type, etc. can also be used.

X3a 、 13bは第1中間層、14a、14bは第
2中間層である。各中間層は、例えば酸化物、窒化物、
硫化物、炭化物の一種以上の誘電体から成り、それぞれ
異なる材質で構成される。酸化物としては5iO1Si
02、ZrO2、MgOなど、硫化物としてはZnS 
、 B1043など、窒化物としては+lN。
X3a and 13b are first intermediate layers, and 14a and 14b are second intermediate layers. Each intermediate layer is made of, for example, oxide, nitride,
It consists of one or more dielectric materials such as sulfide and carbide, each of which is composed of different materials. As an oxide, 5iO1Si
02, ZrO2, MgO, etc., and ZnS as a sulfide
, B1043, etc., +lN as a nitride.

Si3N4 、ZrN 、 CrNなど、炭化物として
は5iC1TiCなどが挙げられる。
Examples of the carbide include Si3N4, ZrN, CrN, etc., and 5iC1TiC.

+5a、15bは第1中間層と第2中間層との間に設け
られた混合中間層を示す。混合中間層15a 、 15
bは第1及び第2中間層を構成する材料の混合物からな
る。これらの混合中間層は、2元同時に成膜できる、蒸
着法、 CVD法、スパッタリング法、イオンブレーテ
ィング法などを用いて形成することができる。具体的に
は、第1中間層を形成する操作が終了する直前において
第2中間層を形成する操作を開始し、(あるいは第2中
間層の形成操作が終了する直前において第1中間層の形
成操作を開始し)、所望時間の後に第1中間層の形成操
作を終了することにより第1中間層および第2中間層を
構成する材料の混合物からなる混合中間層を形成すれば
よい。熱容量(記録感度)と中間層の膜質どの点から、
第1中間層の膜厚100人〜3000人程度が好ましく
、第2中間層の膜厚も100人〜3000人程度が好ま
しい。また、第1中間層と第2中間層との間に設けられ
る、それら両層の混合物からなる混合中間層はIOλ〜
1000人程度、好適には50人〜300人程度の膜厚
とする。
+5a and 15b indicate a mixed intermediate layer provided between the first intermediate layer and the second intermediate layer. Mixed intermediate layer 15a, 15
b consists of a mixture of materials constituting the first and second intermediate layers. These mixed intermediate layers can be formed using a vapor deposition method, a CVD method, a sputtering method, an ion-blating method, etc., which can simultaneously form two layers. Specifically, the operation for forming the second intermediate layer is started immediately before the operation for forming the first intermediate layer is completed (or the operation for forming the first intermediate layer is started immediately before the operation for forming the second intermediate layer is completed). A mixed intermediate layer consisting of a mixture of the materials constituting the first intermediate layer and the second intermediate layer may be formed by starting the operation) and terminating the operation of forming the first intermediate layer after a desired time. In terms of heat capacity (recording sensitivity) and film quality of the intermediate layer,
The thickness of the first intermediate layer is preferably about 100 to 3,000 layers, and the thickness of the second intermediate layer is also preferably about 100 to 3,000 layers. Further, the mixed intermediate layer provided between the first intermediate layer and the second intermediate layer and consisting of a mixture of both layers is IOλ~
The film thickness is about 1000 people, preferably about 50 to 300 people.

第1中間層には酸化物で緻密な膜質の誘電体が好ましく
使用できる。好適には第1中間層材料にZnS、SiC
,AIN、SiN 、第2中間層材料にSiO,lAg
0゜AIN、SiN、SiCが使用できる。
For the first intermediate layer, a dense film-like dielectric material made of oxide can preferably be used. Preferably, the first intermediate layer material is ZnS or SiC.
, AIN, SiN, SiO, lAg as the second intermediate layer material
0°AIN, SiN, and SiC can be used.

中間層を2層化した場合には、両層の熱膨張率差や応力
差によりクラックや、両層の界面での膜の剥離が生じ易
いのに対し、第1中間層と第2中間層との間に、これら
両層の混合物からなる混合中間層を設けたことにより、
上記欠点を解決することができる。
When the intermediate layer is made of two layers, cracks and film peeling at the interface between the two layers tend to occur due to the difference in thermal expansion coefficient and stress difference between the two layers. By providing a mixed intermediate layer consisting of a mixture of these two layers between
The above drawbacks can be solved.

本発明は上記態様に限らず種々の態様の光学的磁気記録
媒体に適用できる。再生にカー効果とファラデー効果を
゛利用する上記とは別の態様の光学的磁気記録媒体を第
2図に示す。
The present invention is applicable not only to the above embodiment but also to various embodiments of optical magnetic recording media. FIG. 2 shows another embodiment of an optical magnetic recording medium that utilizes the Kerr effect and Faraday effect for reproduction.

22は光学的磁気層である。膜厚としては100〜30
0八程度か好ましい。23a、23bは第1中間層、2
4a、24bは、第2中間層で、25a、25bは混合
中間層である。
22 is an optical magnetic layer. The film thickness is 100-30
08 or so is preferable. 23a and 23b are first intermediate layers;
4a and 24b are second intermediate layers, and 25a and 25b are mixed intermediate layers.

26は^u、Ag、Cu、AIなどの反射層である。こ
の反射層は、従来技術て説明したように、磁気ファラデ
ー効果を利用して見かけのカー回転角を上昇させ再生効
率を向上させる役割を果す。
26 is a reflective layer made of ^u, Ag, Cu, AI, or the like. As explained in the prior art section, this reflective layer plays the role of increasing the apparent Kerr rotation angle by utilizing the magnetic Faraday effect and improving the reproduction efficiency.

27は光磁気記録層の酸化防止などのための保護層であ
り、有機高分子膜、あるいは酸化物、硫化物、窒化物、
炭化物などの無機材料や金属材料で構成される。
27 is a protective layer for preventing oxidation of the magneto-optical recording layer, and is made of an organic polymer film, or an oxide, sulfide, nitride, etc.
It is composed of inorganic materials such as carbides and metal materials.

〔実施例〕〔Example〕

以下、実施例に基づいて本発明を更に詳細に説明する。 Hereinafter, the present invention will be explained in more detail based on Examples.

実施例1 第1図に例示したと同様の光学的磁気記録媒体を次のよ
うに作製した。ディスク状のポリカーボネート基板ll
上に、 SiO薄膜を、1分間に厚さ100人(100
人/m1n)の速度でスパッタリングによる成膜を続け
、8分経過後に、80人/minの成膜速度でZnSの
スパッタリングを開始し、 SiOと ZnSの2元同
時スパッタリングを1分間行なった。その後、 SiO
のスパッタリングを終了し、引き続き、 ZnSを3分
間スパッタリングすることにより、 SiO膜(第2中
間層14a、1154厚=800人)、 SiOとZn
Sの混合中間層15a (150人)、及びZnS膜(
第1中間層12a、 240人)を成膜した。この上に
、光磁気記録層12として膜厚1000人のTbFeC
o薄膜をスパッタリング法により形成した。更にその上
にZQS膜(第1中間層13b、 400人) 、In
sとSiOの混合中間層15b (200人)及びSi
O膜(第2中間層14b、3000人)を上記と同様に
して形成し、本例の光学的磁気記録媒体を得た。
Example 1 An optical magnetic recording medium similar to that illustrated in FIG. 1 was produced as follows. Disc-shaped polycarbonate substrate ll
On top of the film, a SiO thin film was deposited at a thickness of 100 mm (100 mm) per minute.
Film formation by sputtering was continued at a speed of 80 people/min), and after 8 minutes, ZnS sputtering was started at a film formation rate of 80 people/min, and binary simultaneous sputtering of SiO and ZnS was performed for 1 minute. After that, SiO
After finishing sputtering, ZnS was sputtered for 3 minutes to form a SiO film (second intermediate layer 14a, 1154 thickness = 800 layers), SiO and Zn.
A mixed intermediate layer 15a of S (150 people), and a ZnS film (
A first intermediate layer 12a (240 people) was formed. On top of this, the magneto-optical recording layer 12 is made of TbFeC with a film thickness of 1000 nm.
o A thin film was formed by sputtering method. Furthermore, on top of that, a ZQS film (first intermediate layer 13b, 400 layers), In
s and SiO mixed intermediate layer 15b (200 people) and Si
An O film (second intermediate layer 14b, 3000 layers) was formed in the same manner as above to obtain the optical magnetic recording medium of this example.

比較例1 第1中間層1:Ia、 13bをそれぞれ300人、5
00人のZnS薄膜、第2中間層+4a、 14bをそ
れぞれ900人、 3100人のSiO薄膜とし、混合
中間層を全く設けない以外は実施例1と同構成の従来例
の光学的磁気記録媒体を作製した。
Comparative Example 1 First intermediate layer 1: Ia, 13b, 300 people, 5 people, respectively
A conventional optical magnetic recording medium having the same structure as Example 1 was used except that the second intermediate layers +4a and 14b were made of 900 and 3100 SiO thin films, respectively, and no mixed intermediate layer was provided. Created.

(実施例1と比較例1の光磁気記録媒体の評価)各記録
媒体を温度60℃、相対湿度90%RHの=囲気に放置
し、保存テストを行なった。放置前の保磁力Hcoと、
 500時間放置後の保磁力Hcを測定し、放置前に対
する放置後の保磁力の比Hc/Hc。
(Evaluation of the magneto-optical recording media of Example 1 and Comparative Example 1) Each recording medium was left in an atmosphere with a temperature of 60° C. and a relative humidity of 90% RH, and a storage test was conducted. Coercive force Hco before leaving,
The coercive force Hc after being left for 500 hours was measured, and the ratio of the coercive force after being left to that before being left was Hc/Hc.

を求め保存性を評価した(該比の大きいものほど保存性
に優れていることを示す)。測定結果を第1表に示す。
The preservability was evaluated by determining the ratio (the larger the ratio, the better the preservability). The measurement results are shown in Table 1.

第1表に示される如く、Hc/Hcoは0.90 (実
施例1)と、0.80 (比較例1)であった。尚、 
500時間放置後も、実施例1の記録媒体には光学顕微
鏡観察によりクラック等の外観上の変化は観察されなか
った。比較例1のものはクラックの発生が確認された。
As shown in Table 1, Hc/Hco was 0.90 (Example 1) and 0.80 (Comparative Example 1). still,
Even after being left for 500 hours, no changes in appearance such as cracks were observed in the recording medium of Example 1 when observed with an optical microscope. In Comparative Example 1, it was confirmed that cracks were generated.

実施例2 第2図に例示したと同様の光学的磁気記録媒体を次のよ
うに作製した。
Example 2 An optical magnetic recording medium similar to that illustrated in FIG. 2 was produced as follows.

ディスク状のポリカーボネート基板21上に、第2中間
層24a、中間混合層25a、第1中間層23aとして
、それぞれSiO膜(900人)、SiOとZnSの7
昆合中間層(200人)、 7.nS膜(200人)を
実施例1と同様に順次61層した。その上、光磁気記録
層22として膜厚160人のTbFe(:o薄1摸をス
パッタリング法により成膜した。更にその上に、第1中
間層23b、混合中間層25b、第2中間層25bとし
てそれぞれZnS膜(200人)、 ZnSとSiOの
混合中間層(200人)、SiO膜(1100人)を上
記と同様にして順次積層した。その上に反射層26とし
て膜厚800人のA1薄膜をスパッタリング法で形成し
た後、最後に保護層27として膜厚3000人のSiO
薄月莫をスパッタリング法て形成し、本例の光学的磁気
記録媒体を得た。
On a disk-shaped polycarbonate substrate 21, a SiO film (900 layers), 7 layers of SiO and ZnS are formed as a second intermediate layer 24a, an intermediate mixed layer 25a, and a first intermediate layer 23a, respectively.
Kunhe middle class (200 people), 7. Similarly to Example 1, 61 layers of nS films (200 people) were sequentially formed. Furthermore, a thin film of TbFe (:o) with a thickness of 160 mm was formed as a magneto-optical recording layer 22 by a sputtering method. As described above, a ZnS film (200 layers), a mixed intermediate layer of ZnS and SiO (200 layers), and an SiO film (1100 layers) were sequentially laminated in the same manner as above.A1 layer with a thickness of 800 layers was formed as a reflective layer 26 thereon. After forming a thin film by sputtering, a protective layer 27 of SiO with a thickness of 3000 nm is finally formed.
The optical magnetic recording medium of this example was obtained by forming a thin film using a sputtering method.

比較例2 第1中間層23a、 23bをそれぞれ300人のZn
S薄膜、第2中間層14a、 +4bをそれぞれ900
人。
Comparative Example 2 The first intermediate layers 23a and 23b were each made of 300 Zn
S thin film, second intermediate layer 14a, +4b each 900
Man.

1300人のSiO薄膜とし、混合中間層を全く設けな
い以外は実施例2と同構成の従来例の光学的電気記録媒
体を作製した。
A conventional optical-electrical recording medium having the same structure as Example 2 was produced, except that the SiO thin film was made of 1,300 layers and no mixed intermediate layer was provided.

(実施例2と比較例2の光磁気記録媒体の評価)これら
記録媒体につき、実施例1と同様の方法で記録、再生な
行ないC/N値および保磁力の比)1c/Hcoを求め
、これら媒体の保存性を評価した。
(Evaluation of the magneto-optical recording media of Example 2 and Comparative Example 2) Recording and reproduction were performed on these recording media in the same manner as in Example 1, and the C/N value and coercive force ratio (1c/Hco) were determined. The storage stability of these media was evaluated.

結果を第1表に示す。 llc/Hcoは0.90 (
実施例2)と、0.79 (比較例2)であった。また
、実施例2の記録媒体にはクラック等の外観上の変化は
観察されなかフだが、比較例2のものはクラックの発生
が確認された。
The results are shown in Table 1. llc/Hco is 0.90 (
Example 2) and 0.79 (Comparative Example 2). In addition, no changes in appearance such as cracks were observed in the recording medium of Example 2, but cracks were observed in the recording medium of Comparative Example 2.

実施例3〜6.7〜lO 第1表の実施例3〜6に示す構成とした以外は、実施例
1と同様の方法で種々の光学的磁気記録媒体を作製した
Examples 3 to 6.7 to IO Various optical magnetic recording media were produced in the same manner as in Example 1, except that the configurations shown in Examples 3 to 6 in Table 1 were adopted.

第1表の実施例7〜10に示す構成とした以外は実施例
2と同様の方法で種々の光学的記録媒体を作成した。
Various optical recording media were produced in the same manner as in Example 2, except that the structures shown in Examples 7 to 10 in Table 1 were used.

実施例3〜IOの各記録媒体につき、実施例1と同様の
方法で記録、再生を行ないC/N値および保磁力の比)
1c/1lcoを求め、これら媒体の保存性を評価した
。結果を第1表に示す。各記録媒体にはクラック等の外
観上の変化は観察されなかった。
For each recording medium of Examples 3 to IO, recording and reproduction were performed in the same manner as in Example 1, and the C/N value and coercive force ratio)
1c/1lco was determined and the storage stability of these media was evaluated. The results are shown in Table 1. No changes in appearance such as cracks were observed in each recording medium.

[発明の効果] 以上詳細に説明した本発明により、長期間にわたりて磁
気特性やエラーレートの変化が少なく、しかも媒体に剥
離やクラックのない保存安定性に優れた光学的磁気記録
媒体を提供か可能になった。
[Effects of the Invention] The present invention described in detail above provides an optical magnetic recording medium that exhibits little change in magnetic properties and error rate over a long period of time, and has excellent storage stability without peeling or cracking in the medium. It's now possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は各々本発明の光学的記録媒体の基
本的態様を示す模式的断面図、第3図(A)’、(B)
は従来例の光学的記録媒体を模式的断面図である。 11、21.31・・・基板、 12、22.32・・・光磁気記録層、13a、 13
b、 23a、 23b・−第1中間層、+4a、 1
4 b、24a、 24b・・・第2中間層33、43
・・・中間層、 15a、 15b、 25a、 25b・−混合膜、2
6.35・・−反射層、 27.34・・・保護層。 (八)                (8)牙3回
1 and 2 are schematic sectional views showing the basic aspects of the optical recording medium of the present invention, and FIGS. 3(A)' and 3(B) respectively.
1 is a schematic cross-sectional view of a conventional optical recording medium. 11, 21.31... Substrate, 12, 22.32... Magneto-optical recording layer, 13a, 13
b, 23a, 23b・-first intermediate layer, +4a, 1
4b, 24a, 24b... second intermediate layer 33, 43
...Intermediate layer, 15a, 15b, 25a, 25b - mixed film, 2
6.35...-Reflection layer, 27.34... Protective layer. (8) (8) Fang 3 times

Claims (2)

【特許請求の範囲】[Claims] (1)光磁気記録層と、該光磁気記録層の少なくとも一
方の面に接して設けられた誘電体からなる第1中間層と
、該中間層に接して設けられた誘電体からなる第2中間
層を基板上に有して成る光学的磁気記録媒体において、
第1中間層と第2中間層との間にこれら両層を構成する
材料の混合物から成る混合中間層を配設したことを特徴
とする光学的磁気記録媒体。
(1) A magneto-optical recording layer, a first intermediate layer made of a dielectric material provided in contact with at least one surface of the magneto-optical recording layer, and a second intermediate layer made of a dielectric material provided in contact with the intermediate layer. In an optical magnetic recording medium having an intermediate layer on a substrate,
An optical magnetic recording medium characterized in that a mixed intermediate layer made of a mixture of materials constituting both layers is disposed between a first intermediate layer and a second intermediate layer.
(2)前記光磁気記録層からみて基板と反対側に設けら
れた第2中間層に接して金属より成る層を積層した特許
請求の範囲第1項記載の光学的磁気記録媒体。
(2) The optical magnetic recording medium according to claim 1, wherein a layer made of metal is laminated in contact with the second intermediate layer provided on the opposite side of the substrate as viewed from the magneto-optical recording layer.
JP15798686A 1986-07-07 1986-07-07 Magneto-optical recording medium Pending JPS6314346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15798686A JPS6314346A (en) 1986-07-07 1986-07-07 Magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15798686A JPS6314346A (en) 1986-07-07 1986-07-07 Magneto-optical recording medium

Publications (1)

Publication Number Publication Date
JPS6314346A true JPS6314346A (en) 1988-01-21

Family

ID=15661742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15798686A Pending JPS6314346A (en) 1986-07-07 1986-07-07 Magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JPS6314346A (en)

Similar Documents

Publication Publication Date Title
JP2547768B2 (en) Optical magnetic recording medium
JPS6148148A (en) Thermooptical magnetic recording medium
JPH02779B2 (en)
JPH0550400B2 (en)
EP0475452B1 (en) Use of a quasi-amorphous or amorphous zirconia dielectric layer for optical or magneto-optic data storage media
JPS6314346A (en) Magneto-optical recording medium
JPS6314342A (en) Magneto-optical recording medium
JPS60219655A (en) Optical recording medium
JPS62121944A (en) Optical recording medium
JPS5938950A (en) Magneto-optic storage element
JPS6316439A (en) Production of magneto-optical recording medium
JP2829335B2 (en) Magneto-optical recording medium
JPS62192048A (en) Photomagnetic recording medium
JPS62114134A (en) Optical information recording medium
JPS6122454A (en) Photomagnetic recording medium
JPS62109247A (en) Optical magnetic recording medium
JPS61202352A (en) Photomagnetic recording medium
JP2604361B2 (en) Magneto-optical recording medium
JP3205921B2 (en) Magneto-optical recording medium
JPS62226449A (en) Optical magnetic recording medium
JP2590925B2 (en) Magneto-optical recording medium
JPH0462140B2 (en)
JPS6168748A (en) Photomagnetic recording medium
JP2740814B2 (en) Magneto-optical recording medium
JPS5956241A (en) Photomagnetic recording medium