JPS63139987A - Method and equipment for dry distillation of oil shale - Google Patents

Method and equipment for dry distillation of oil shale

Info

Publication number
JPS63139987A
JPS63139987A JP28590986A JP28590986A JPS63139987A JP S63139987 A JPS63139987 A JP S63139987A JP 28590986 A JP28590986 A JP 28590986A JP 28590986 A JP28590986 A JP 28590986A JP S63139987 A JPS63139987 A JP S63139987A
Authority
JP
Japan
Prior art keywords
gas
shale
carbonization
temperature
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28590986A
Other languages
Japanese (ja)
Inventor
Akira Shimauchi
島内 昭
Koichi Yuda
油田 耕一
Mineo Imamura
今村 峰生
Yoichi Tawara
俵 洋一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP28590986A priority Critical patent/JPS63139987A/en
Priority to CN 87103384 priority patent/CN1013501B/en
Publication of JPS63139987A publication Critical patent/JPS63139987A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To prevent the cracking and powdering of shale and stabilize operation, by using, as a gas introduced for preheating and drying of a raw material shale, a relatively low-temperature air obtained through indirect heat exchange with the waste gas of combustion of residual carbon. CONSTITUTION:A primary drier 13, a crushing and granulating unit 13, and a secondary drier 14 are provided in an arrangement precedent to an oil shale dry distillation unit 2. A gasifying and cooling zone B is formed under a dry distillation zone A of the dry distillation unit 2. A high-temperature gas of about 800 deg.C is taken out of the upper part of the gasifying zone B and introduced into a heat exchanger 6, where its temperature is lowered to 300-400 deg.C. Then this gas of 300-400 deg.C is passed through a heat exchanger 8 for indirect heat exchange with a separately supplied gas, e.g., air. The air thus heated is supplied through pipelines 15, 16, and 17 to the primary drier 12 and the secondary drier 14. A temperature control valve 9 is provided in the pipeline 15 for the control of the temperature of the air to a desired level between 100-150 deg.C. Flow control valves 10 and 11 are provided in the pipelines 16 and 17 respectively for the control of the flow rates of the heated air supplied to the primary drier 13 and the secondary drier 14.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、オイルシェールの乾留による粗シェールオイ
ルの製造における乾留後、フェール中のガ(従来の技術
) オイルシェール乾留ガス化プロセスとしては、連続式竪
型炉を用いたものとしてアメリカ特許第3440162
号及び第3475319号公報が知られている。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to gas in a fail after carbonization in the production of crude shale oil by carbonization of oil shale (prior art) As an oil shale carbonization gasification process, U.S. Patent No. 3440162 using a continuous vertical furnace
No. and No. 3475319 are known.

第3図はその一つの技術であって、所定の粒度範囲に調
整された原料シェールは、装入装置lを介して竪型炉2
に装入され、炉内を自重により重力降下移動し、排出装
置3を介して廃シェールとして排出される。上記炉2内
には、上方に乾留帯A、下方にガス化冷却帯Bが形成さ
れる。
Figure 3 shows one such technique, in which raw material shale adjusted to a predetermined particle size range is passed through a charging device l to a vertical furnace.
The shale is charged into the furnace, moves by gravity under its own weight inside the furnace, and is discharged as waste shale through the discharge device 3. Inside the furnace 2, a carbonization zone A is formed above and a gasification cooling zone B is formed below.

炉2の頂部から排出された、オイルミストを含むガスは
、オイル回収装置4において冷却され、凝縮成分(オイ
ル及び水)が捕集され、プロア5によって昇圧された後
、その大部分は間接型の熱交換器6にて加熱されて乾留
帯Aに導入され、乾留用熱ガスとして使用される。その
一部は副生ガスとして系外に排出される。
The gas containing oil mist discharged from the top of the furnace 2 is cooled in the oil recovery device 4, the condensed components (oil and water) are collected, and the pressure is increased by the proa 5. It is heated in the heat exchanger 6 and introduced into the carbonization zone A, where it is used as hot gas for carbonization. A part of it is discharged outside the system as a by-product gas.

一方、空気を含む気体は、ガス化冷却帯Bに導って昇圧
された後、一部は再びガス化冷却帯Bに導入され、残部
は排ガスとして系外に排出される。
On the other hand, after the gas containing air is introduced into the gasification cooling zone B and its pressure is increased, a portion thereof is introduced into the gasification cooling zone B again, and the remainder is discharged outside the system as exhaust gas.

第4図は他の一つの技術であって、所定の粒度範囲に調
整された原料シェールは、装入装置lを介して竪型炉2
内に炉内を自重により重力降下移動し、排出装置3を介
して炉外に排出される。上記類2内には、上方より予熱
乾燥帯C1乾留帯D、ガス化帯E及び冷却帯Fが形成さ
れる。
Fig. 4 shows another technique in which the raw material shale, which has been adjusted to a predetermined particle size range, is passed through a charging device l to a vertical furnace.
During the process, it moves down the furnace due to its own weight, and is discharged out of the furnace via the discharge device 3. In the above Class 2, a preheating drying zone C1, a carbonization zone D, a gasification zone E, and a cooling zone F are formed from above.

乾留帯り上部から排出されたオイルミストを含むガスは
、オイル回収装置4において冷却され、凝縮成分が捕集
され、ブロア5によって昇圧された後、その大部分は熱
交換器6にて加熱されて、乾留帯りに導入され、乾留用
熱ガスとして使用される。
The gas containing oil mist discharged from the upper part of the carbonization zone is cooled in an oil recovery device 4, the condensed components are collected, and the pressure is increased by a blower 5. After that, most of the gas is heated in a heat exchanger 6. Then, it is introduced into the carbonization zone and used as hot gas for carbonization.

一方、予熱乾燥帯からの排ガスと空気の混合ガスは、ガ
ス化帯Eに導入され、乾留後のシェールとの熱交換及び
フェール中の有機カーボンとの反応が行なわ九、高温ガ
スとなってガス化帯Eの上部から排出され、熱交換器6
で抜熱されて、300〜400℃に降温された後、予熱
乾燥帯Cに導入さ第4図で示した乾留プロセスでは、予
熱乾燥用ガスとして300〜400℃と比較的冒温のガ
ス化排ガスを直接導入使用するために、予熱乾燥帯Cで
原料シェールが急激に加熱されろ。従って、原料シェー
ルが、例えば成泡(中国)やコンドル(オーストラリア
)のシェールの如く、含水量が約10〜20%と比較的
多い場合は薄片状に割れたり、粉化現象を起こす特性を
示す。
On the other hand, the mixed gas of exhaust gas and air from the preheating drying zone is introduced into the gasification zone E, where it exchanges heat with the shale after carbonization and reacts with the organic carbon in the shale, becoming a high-temperature gas. The heat exchanger 6 is discharged from the upper part of the conversion zone E.
In the carbonization process shown in Figure 4, gasification at a relatively high temperature of 300 to 400°C is used as the preheating drying gas. In order to directly introduce and use the exhaust gas, the raw material shale is rapidly heated in the preheating drying zone C. Therefore, if the raw material shale has a relatively high water content of approximately 10 to 20%, such as shale from Foam (China) or Condor (Australia), it may crack into flakes or cause pulverization. .

又、原料フェール中の水分は、鉱石の採掘条件等によっ
てかなり変動するとされているが、従来技術の場合、こ
の変動に対応する制御が困難なため、原石の水分量が多
くなった場合、乾燥不充分なシェールが乾留帯りへ装入
されるため、更に高温の乾留用ガス、例えば500℃の
ガスによって加熱されるため、更にシェールが割れ、粉
化を起こしやすくなる。
Furthermore, it is said that the moisture content in the raw material fer varies considerably depending on the mining conditions of the ore, etc., but with conventional technology, it is difficult to control this variation, so if the moisture content of the raw ore increases, drying Since insufficient shale is charged into the carbonization zone, it is further heated by a high-temperature carbonization gas, for example, 500° C., making the shale more susceptible to cracking and pulverization.

これは第4図のプロセスでは重大な問題である。This is a serious problem in the process of FIG.

乾留帯りへの装入フェール中の水分が多くなると、必然
的に乾留用の循環ガス量を増加させねばならない。この
ために竪型炉内の乾留帯D、ガス化帯出ガス系統及びオ
イル回収部で、飛散ダストによる閉塞トラブルを起こし
、操業が不安定となる。
If the amount of water in the feed charged to the carbonization zone increases, the amount of circulating gas for carbonization must necessarily be increased. This causes blockage problems due to scattered dust in the carbonization zone D, gasification zone outlet gas system, and oil recovery section in the vertical furnace, making the operation unstable.

又、予熱・乾燥用の導入ガスとしてガス化排ガラプルが
発生する。例えば、成泡及びコンドルの場合、ガス化排
ガス中のSOxは数千ppmであり、酸露点は約170
℃以上となる。
In addition, gasification waste gas is generated as the introduced gas for preheating and drying. For example, in the case of foaming and condor, the SOx in the gasification exhaust gas is several thousand ppm, and the acid dew point is about 170.
℃ or more.

(発明の目的) 本発明は、原料シェールの予熱乾燥用ガスとして、残カ
ーボンガス化排ガスと間接的に熱交換して得られた比較
的低温の昇温気体を用いて、原料シェールを多段で予熱
乾燥し、且つ低温域における酸腐食を防止するための方
法及びその装置の提供を目的としたものである。
(Object of the invention) The present invention uses a relatively low-temperature heated gas obtained by indirectly exchanging heat with residual carbon gasification exhaust gas as a gas for preheating and drying the raw material shale, to dry the raw material shale in multiple stages. The object of the present invention is to provide a method and apparatus for preheating and drying and preventing acid corrosion in a low temperature range.

(発明の構成及び作用) 本発明はオイルシェールの乾留において、オイルシェー
ル乾留後のフェール中の有機カーボンの燃焼ガス化反応
によって得られる高温ガスと気体を熱交換して、100
−150℃の昇温気体となし、この昇温気体を用いて原
料シェールを乾燥した後、乾燥シェールを乾留帯に供給
することを!vj徴とし、オイルシェール乾留装置の前
段に、1次乾燥装置、破砕整粒装置及び2次乾燥装置を
夫々設け、上記乾留装置のガス化帯から導出される高温
ガスと別に供給する気体の熱交換器を設け、該熱交換器
で使用されるので、その組成は制限されるものでなく、
所望の顕熱な保有できればよいものであるが、その中で
も特に空気は安価且つ大量に入手できることから最も好
ましい。
(Structure and operation of the invention) In the carbonization of oil shale, the present invention heat-exchanges the gas with a high-temperature gas obtained by the combustion gasification reaction of organic carbon in the fer after carbonization of the oil shale.
After heating the gas to -150℃ and drying the raw material shale using this heated gas, the dried shale is supplied to the carbonization zone! vj characteristic, a primary drying device, a crushing and sizing device, and a secondary drying device are installed upstream of the oil shale carbonization device, and the heat of the gas is supplied separately from the high-temperature gas derived from the gasification zone of the carbonization device. Since an exchanger is provided and used in the heat exchanger, the composition is not limited,
Any material can be used as long as it can retain the desired amount of sensible heat, but air is the most preferred because it is inexpensive and available in large quantities.

上記気体、例えば空気はオイルシェール乾留後のシェー
ル中の有機カーボンの燃焼ガス化反応によって得られる
高温ガスと熱交換して、100〜150℃の昇温空気と
する。上記昇温気体は、原料シェールとの直接接触によ
って予熱乾燥に供されるが、その気体温度が150℃を
超えると、急熱により原料シェールに亀裂が多発し、こ
れに起因して割れ粉化が多くなり、次工程である乾留及
びガス化、冷却時の各ガス流分布を乱し効率を低下する
The above gas, for example air, exchanges heat with high-temperature gas obtained by combustion gasification reaction of organic carbon in shale after carbonization of oil shale, and heats the air to 100 to 150°C. The above-mentioned heated gas is subjected to preheating and drying by direct contact with the raw material shale, but when the gas temperature exceeds 150°C, the raw material shale cracks frequently due to rapid heating, which causes it to break into powder. This increases the gas flow distribution during the next steps of carbonization, gasification, and cooling, resulting in a decrease in efficiency.

又、気体温度が100℃未満となると、原料シェールの
予熱乾燥効果が低下し、多量の昇温気体と、大きな容積
の乾燥域を必要とするなど好ましくない。
Moreover, if the gas temperature is less than 100° C., the effect of preheating and drying the raw material shale will decrease, and a large amount of heated gas and a large volume of drying area will be required, which is not preferable.

本発明において使用する原料シェールは、乾留装置に装
入するに先立って、200間以下の粒度の害する。又、
上記したように、かかる原料シェールは乾留等で急熱さ
れると割れ率が高くなる。
The raw shale used in the present invention is reduced to a particle size of 200 mm or less before being charged into the carbonization apparatus. or,
As described above, when such raw material shale is rapidly heated by carbonization or the like, the cracking rate increases.

しかして、本発明は1次乾燥装置で200間以下の粒度
なオイルシェールを1次乾燥することで、次工程の破砕
整粒効率を高め、6〜70闘の原料シェールとなし、こ
れを2次乾燥装置で乾燥することで、次工程の乾留及び
ガス化・冷却域での粉化を抑制するものである。
Therefore, the present invention improves the crushing and sizing efficiency in the next step by primary drying oil shale with a particle size of 200 mm or less in a primary drying device, and produces raw material shale with a particle size of 6 to 70 mm. By drying in the next drying device, powdering in the carbonization and gasification/cooling area of the next process is suppressed.

次に、第1図にもとづいて本発明装置の詳細な説明する
Next, the apparatus of the present invention will be explained in detail based on FIG.

オイルシェール乾留装置2の前段には1次乾燥装置12
、破砕整粒装置13及び2次乾燥装置14を設ける。上
記乾燥装置12.14は公知の乾燥装置を選択使用でき
るもので、例えば1次乾燥装置12としては、ドラム型
乾燥装置、2次乾燥装置14としては、固定床型乾燥装
置(サーキュラ−グレート炉)が採用できる。
A primary drying device 12 is provided before the oil shale carbonization device 2.
, a crushing and sizing device 13 and a secondary drying device 14 are provided. The drying devices 12 and 14 can be selected from known drying devices. For example, the primary drying device 12 is a drum type drying device, and the secondary drying device 14 is a fixed bed type drying device (circular grate oven). ) can be adopted.

上記乾留装置2の乾留帯Aの下部には、ガス化・冷却帯
Bが形成される。このガス化・冷却帯Bは、ガス化帯と
冷却帯に区分された形態であってもよに降温される。本
発明装置は上記300〜400℃の高温ガスを、熱交換
器8に通過せしめ、別に供給する気体、例えば空気と間
接熱交換する。ここで昇温された空気は、管路15.1
6.17によって夫々1次乾燥装置12.2次乾燥装置
14に供給される。
A gasification/cooling zone B is formed below the carbonization zone A of the carbonization apparatus 2. The temperature of this gasification/cooling zone B can be lowered even if it is divided into a gasification zone and a cooling zone. In the apparatus of the present invention, the high-temperature gas of 300 to 400 DEG C. is passed through the heat exchanger 8 to indirectly exchange heat with a separately supplied gas, such as air. The air heated here is transferred to pipe 15.1
6.17 are supplied to the primary drying device 12 and the secondary drying device 14, respectively.

上記管路15には温度調節弁9を設けてあり、空気の温
度を100〜150℃の範囲で、所望の温度に調節する
ために使われる。又、管路16.17には、夫々流量調
節弁10.1)を設けてあり、1次及び2次乾燥装置1
2.14に供給する昇温空気の量を調節する。
The pipe line 15 is provided with a temperature control valve 9, which is used to adjust the temperature of the air to a desired temperature within the range of 100 to 150°C. In addition, the pipe lines 16.17 are each provided with a flow rate control valve 10.1), and the primary and secondary drying devices 1
2. Adjust the amount of heated air supplied in step 14.

なお、図示していないが、管路16.17に対応させて
管路15を2系統とし、各乾燥装置12.14に供給す
る昇温空気の温度、流量を、独立に制御供給することも
できる。
Although not shown, the pipe line 15 may be made into two systems corresponding to the pipe lines 16, 17, and the temperature and flow rate of the heated air supplied to each drying device 12, 14 may be independently controlled and supplied. can.

(実施例1〕 第2図はオイルシェールの乾燥及び乾留の実験装置であ
るが、乾燥及び乾留の実施例について説明する〇 乾燥(又は乾留)装置2に20〜30間の粒径に動水で
常温迄冷却して排気する。
(Example 1) Figure 2 is an experimental apparatus for drying and carbonization of oil shale, and an example of drying and carbonization will be explained. Cool to room temperature and exhaust.

示す。即ち乾燥温度150℃、200℃及び300℃−
1で乾燥した時の乾燥前後のシェールの水分チ及びでは
25チ、33%となる。
show. That is, drying temperature 150℃, 200℃ and 300℃-
The moisture content of shale before and after drying in step 1 is 25%, 33%.

又、各々の温度で乾燥した後、更に上記装置に軟派後の
シェールを再充填し、窒素ガスを流量計21で一定流量
75NM’/Hに調節し、電気ヒーター22で一定温度
550℃に調節し1時間乾留する。
After drying at each temperature, the above-mentioned apparatus was further filled with the shale after softening, the nitrogen gas was adjusted to a constant flow rate of 75 NM'/H using the flow meter 21, and the temperature was adjusted to a constant temperature of 550°C using the electric heater 22. and carbonize for 1 hour.

乾留装置出口の排ガスは冷却器24で常温迄冷却し、重
質油を捕集し、更に過冷却器25で、液体窒素により一
5℃迄冷却し、軽質油を捕集する。
The exhaust gas at the carbonization apparatus outlet is cooled to room temperature in a cooler 24 to collect heavy oil, and further cooled to -5° C. with liquid nitrogen in a supercooler 25 to collect light oil.

第1表に示すように乾燥後、シェールを乾留することに
よって、150℃での乾燥シェールは、10fi以下に
割れた割れ率がわずか3%に対して200℃での乾燥シ
ェールは45%、300℃での乾燥シェールは53%と
大幅に増加する。
As shown in Table 1, by carbonizing the shale after drying, the shale dried at 150°C has a cracking rate of 10fi or less, which is only 3%, while the cracking rate of shale dried at 200°C is 45%, 300°C. Dry shale at ℃ increases significantly by 53%.

(実施例2) 実施例1で説明した実験装置を使用して、原料時の乾燥
後シェールの10−以下の割れ率は、1%、28%、3
7%であった。更にこの乾燥後シェールを再充填し、5
50℃で乾留した時の割れ率は、3%、47%、54チ
であった。
(Example 2) Using the experimental apparatus described in Example 1, the cracking rate of 10- or less of shale after drying as a raw material was 1%, 28%, and 3.
It was 7%. Furthermore, after this drying, the shale was refilled, and 5
The cracking rates when carbonized at 50°C were 3%, 47%, and 54%.

実施例1.2で示すように、原料フェール中の水分量が
約10%以上と比較的多い銘柄の場合は、乾燥温度のコ
ントロールによってシェールの予熱乾燥、乾留過程にお
ける割れ、粉化な大幅に軽減することができる。
As shown in Example 1.2, in the case of brands with a relatively high moisture content of about 10% or more in the raw material fer, controlling the drying temperature can significantly reduce cracking and powdering during the preheating drying of shale and the carbonization process. It can be reduced.

第1表 第2表 従来技術では、予熱乾燥温度は300℃以筆迄加熱する
ようにしているので、割れ、粉化は避けられないが、実
施例で示す如く150℃以下で乾燥することKよって割
れ、粉化を大幅に軽減することができる。
Table 1 Table 2 In the conventional technology, the preheating drying temperature is heated to 300°C or higher, so cracking and powdering are unavoidable, but as shown in the examples, drying at 150°C or lower is recommended. Therefore, cracking and powdering can be significantly reduced.

(発明の効果) 原料シェールの予熱、乾燥用に残カーボン燃焼排ガスと
、間接的に熱交換して得られた比較的低温の空気、例え
ば150℃以下の空気を導入ガスダスト減による各排出
ガス系統、オイル回収部におけるダストトラブル発生減
少による操業の安定化に効果がある。
(Effect of the invention) Relatively low temperature air obtained by indirect heat exchange with residual carbon combustion exhaust gas for preheating and drying raw material shale, for example, air at a temperature of 150°C or lower, is introduced into each exhaust gas system by reducing gas dust. This is effective in stabilizing operations by reducing the occurrence of dust problems in the oil recovery section.

原料7工−ル破砕整粒時の付着水による篩機の目詰り防
止をはかることができ、乾燥用導入ガスとして空気を使
用するため、乾燥器における贋食が起こらない等の工業
的効果がある。
It is possible to prevent clogging of the sieve machine due to adhering water during raw material crushing and sizing, and since air is used as the drying gas, it has industrial effects such as preventing forgeries in the dryer. be.

【図面の簡単な説明】[Brief explanation of the drawing]

はオイルシェール乾留装置の従来技術の代表例の説明図
である。 2:オイルシェール乾留装置 3:排出装首     4ニオイル回収装置6:熱交換
器    12ニ一次乾燥装置13:破砕整粒装置  
14:二次乾燥装置出願人 工業技術院長  飯 塚 
幸 三第2図 第4図
FIG. 1 is an explanatory diagram of a typical example of a conventional oil shale carbonization apparatus. 2: Oil shale carbonization device 3: Discharge neck 4. Oil recovery device 6: Heat exchanger 12. Primary drying device 13: Crushing and sizing device
14: Secondary drying device applicant Iizuka, Director of the Agency of Industrial Science and Technology
Kozo 2nd figure 4th figure

Claims (2)

【特許請求の範囲】[Claims] (1)オイルシェールの乾留において、オイルシェール
乾留後のシェール中の有機カーボンの燃焼ガス化反応に
よつて得られる高温ガスと気体を熱交換して、100〜
150℃の昇温気体となし、この昇温気体を用いて原料
シェールを乾燥した後、乾燥シェールを乾留帯に供給す
ることを特徴とするオイルシェール乾留方法。
(1) In the carbonization of oil shale, heat exchange is performed between the gas and the high-temperature gas obtained by the combustion gasification reaction of organic carbon in the shale after carbonization of the oil shale.
An oil shale carbonization method characterized in that the temperature of the oil shale is increased to 150° C., the raw material shale is dried using the heated gas, and then the dried shale is supplied to a carbonization zone.
(2)オイルシェール乾留装置の前段に、1次乾燥装置
、破砕整粒装置及び2次乾燥装置を夫々設け、上記乾留
装置のガス化帯から導出される高温ガスと別に供給する
気体の熱交換器を設け、該熱交換器で昇温された気体を
、上記1次及び2次乾燥装置に制御供給する導管を接続
したことを特徴とするオイルシェール乾留装置。
(2) A primary drying device, a crushing and sizing device, and a secondary drying device are installed upstream of the oil shale carbonization device to exchange heat between the high-temperature gas derived from the gasification zone of the carbonization device and the gas supplied separately. An oil shale carbonization apparatus characterized in that a conduit is connected to control and supply the gas heated by the heat exchanger to the primary and secondary drying apparatuses.
JP28590986A 1986-12-02 1986-12-02 Method and equipment for dry distillation of oil shale Pending JPS63139987A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP28590986A JPS63139987A (en) 1986-12-02 1986-12-02 Method and equipment for dry distillation of oil shale
CN 87103384 CN1013501B (en) 1986-12-02 1987-05-05 Process for dry distillation of oil shale and its apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28590986A JPS63139987A (en) 1986-12-02 1986-12-02 Method and equipment for dry distillation of oil shale

Publications (1)

Publication Number Publication Date
JPS63139987A true JPS63139987A (en) 1988-06-11

Family

ID=17697587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28590986A Pending JPS63139987A (en) 1986-12-02 1986-12-02 Method and equipment for dry distillation of oil shale

Country Status (2)

Country Link
JP (1) JPS63139987A (en)
CN (1) CN1013501B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110470A1 (en) * 2009-03-24 2010-09-30 Jfeスチール株式会社 Method for producing biomass charcoal and device for producing biomass charcoal to be used therefor
JP2010222471A (en) * 2009-03-24 2010-10-07 Jfe Steel Corp Method for producing biomass charcoal and apparatus for producing biomass charcoal used therefor
WO2011085087A3 (en) * 2010-01-06 2011-12-15 General Electric Company Systems and method for heating and drying solid feedstock in a gasification system
CN104152166A (en) * 2014-06-11 2014-11-19 华南理工大学 Comprehensive utilization system and process for hydrogen production by gasification of oil shale refining integrated associated coal

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101691493B (en) * 2009-09-15 2013-04-03 北京国电富通科技发展有限责任公司 External combustion internally heated coal carbonization furnace
DE102010036425A1 (en) * 2010-07-15 2012-01-19 Polysius Ag Apparatus and method for drying and Torrefizierung of at least one carbonaceous material flow in a multi-deck oven
CN102643658B (en) * 2011-02-22 2014-07-16 山东省冶金设计院股份有限公司 Furnace gas management method for oil shale destructive distillation shaft furnace and destructive distillation shaft furnace realizing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3440162A (en) * 1966-04-18 1969-04-22 Exxon Research Engineering Co Retorting of oil shale
US3475319A (en) * 1966-12-22 1969-10-28 Exxon Research Engineering Co Retorting of oil shale
JPS57117715A (en) * 1981-01-13 1982-07-22 Agency Of Ind Science & Technol Pyrolysis process and device therefor
JPS5819385A (en) * 1981-07-27 1983-02-04 Mitsubishi Heavy Ind Ltd Method and apparatus for recovering oil and gas from oil shale
JPS60258285A (en) * 1984-06-04 1985-12-20 Nippon Kokan Kk <Nkk> Retorting of oil shale

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3440162A (en) * 1966-04-18 1969-04-22 Exxon Research Engineering Co Retorting of oil shale
US3475319A (en) * 1966-12-22 1969-10-28 Exxon Research Engineering Co Retorting of oil shale
JPS57117715A (en) * 1981-01-13 1982-07-22 Agency Of Ind Science & Technol Pyrolysis process and device therefor
JPS5819385A (en) * 1981-07-27 1983-02-04 Mitsubishi Heavy Ind Ltd Method and apparatus for recovering oil and gas from oil shale
JPS60258285A (en) * 1984-06-04 1985-12-20 Nippon Kokan Kk <Nkk> Retorting of oil shale

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110470A1 (en) * 2009-03-24 2010-09-30 Jfeスチール株式会社 Method for producing biomass charcoal and device for producing biomass charcoal to be used therefor
JP2010222471A (en) * 2009-03-24 2010-10-07 Jfe Steel Corp Method for producing biomass charcoal and apparatus for producing biomass charcoal used therefor
WO2011085087A3 (en) * 2010-01-06 2011-12-15 General Electric Company Systems and method for heating and drying solid feedstock in a gasification system
US8349036B2 (en) 2010-01-06 2013-01-08 General Electric Company Systems and method for heating and drying solid feedstock in a gasification system
CN104152166A (en) * 2014-06-11 2014-11-19 华南理工大学 Comprehensive utilization system and process for hydrogen production by gasification of oil shale refining integrated associated coal

Also Published As

Publication number Publication date
CN87103384A (en) 1988-06-22
CN1013501B (en) 1991-08-14

Similar Documents

Publication Publication Date Title
CN104130790B (en) A kind of coal carbonization technology of indirect heat exchange
CN105087835B (en) System and method for recycling high-temperature slag waste heat in coal gasification manner
CN106854684B (en) One kind being used for iron ore magnetizing roast tunnel oven and iron ore magnetizing roast method
CN105621410B (en) A kind of process for preparing activated carbon
CN201343520Y (en) Flash dry distillation technology device of oil shale
CN101289621A (en) Process for preparing carbocoal, coke tar and coal gas by treating bovey coal by suspending pyrogenation device
CN102816611A (en) Comprehensive and recycling utilization method of coal pyrolysis gases
CN104891489B (en) A kind of fluidization produces the equipment of activated carbon
JPS63139987A (en) Method and equipment for dry distillation of oil shale
CN108504813B (en) A kind of gas-based shaft kiln directly reduced system of coal gas-and technique
CN107903924A (en) A kind of uplink heat accumulating type fine coal fast pyrogenation reaction system and method
CN103820138A (en) Equipment and method for powdered coal dry distillation and high-temperature coal gas purification
CN105331377A (en) Coal pyrolysis method and system
JP4680588B2 (en) Carbon black pellet drying
CN117534063A (en) Reaction device and reaction process for graphite anode material of battery
CN207659386U (en) A kind of uplink heat accumulating type fine coal fast pyrogenation reaction system
CN201053005Y (en) Low-temperature pyrolysis combination producing device for furnace slag and coal powder
CN102827993B (en) Inject the recovery method of combustion type coal gas of converter and converter gas sensible heat
JP2003095629A (en) Method and system for producing valuable substance from organic waste
CN113483554B (en) Drying device and drying method for lump ore for blast furnace concentrate
CN205328940U (en) System for pyrolysis coal
CN204079892U (en) A kind of low temperature pyrogenation reaction unit of coal
CN207958247U (en) Coal heat carrier combines pyrolysis installation
CN203108399U (en) Carbon black tail gas treatment device
CN105368472A (en) Pyrolysis apparatus and method