JPS63138266A - Method for measuring antigen-antibody reaction - Google Patents

Method for measuring antigen-antibody reaction

Info

Publication number
JPS63138266A
JPS63138266A JP61284878A JP28487886A JPS63138266A JP S63138266 A JPS63138266 A JP S63138266A JP 61284878 A JP61284878 A JP 61284878A JP 28487886 A JP28487886 A JP 28487886A JP S63138266 A JPS63138266 A JP S63138266A
Authority
JP
Japan
Prior art keywords
antigen
antibody
concentration
absorbance
latex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61284878A
Other languages
Japanese (ja)
Other versions
JPH076985B2 (en
Inventor
Hideki Yamamoto
山本 英毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP61284878A priority Critical patent/JPH076985B2/en
Priority to US07/124,997 priority patent/US5093271A/en
Priority to DE87402674T priority patent/DE3787706T2/en
Priority to EP87402674A priority patent/EP0269526B1/en
Publication of JPS63138266A publication Critical patent/JPS63138266A/en
Publication of JPH076985B2 publication Critical patent/JPH076985B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

PURPOSE:To measure an antigen (antibody) concentration with high accuracy and with high sensitivity by deriving the concentration of an antigen (antibody) from the variation of an absorbance in two wavelengths of a liquid to be inspected, containing an antigen - antibody composite. CONSTITUTION:An antibody (antigen) is supported by latex of fine particle size and dispersed into a solvent, and the solvent is allowed to react to the antigen (antibody) and an antigen - antibody composite is generated. Subsequently, the absorbance ratio Alambda1/Alambda2 of different wavelengths lambda1, lambda2 of a liquid to be inspected, containing this composite is measured, and from the variation of its value, the concentration of the antigen (antibody) is measured by using a calibration curve. This method utilizes a fact that the absorbance ratio becomes the function of a mean particle size of particles suspended in the liquid to be inspected, and by measuring the increase of the mean particle size caused by the coagulation of the latex, the concentration of the antigen (antibody) is derived with high accuracy and with high sensitivity by a general purpose spectro-photometer.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、抗原−抗体反応の測定法に関する。[Detailed description of the invention] (b) Industrial application fields The present invention relates to a method for measuring antigen-antibody reactions.

さらに詳しくは、不発明は微細粒径の不溶性担体に抗体
(又は抗原)を相持させ、これに抗原(又は抗体)1−
反応させて、この抗原−抗体複合物に光を照射し、特定
の波長における吸光度を測定することにエフ抗原(又は
抗体)會定量する方法にに関する。
More specifically, in the invention, an antibody (or antigen) is supported on an insoluble carrier having a fine particle size, and the antigen (or antibody) 1-
The present invention relates to a method for quantifying antigen (or antibody) by reacting the antigen-antibody complex, irradiating the antigen-antibody complex with light, and measuring the absorbance at a specific wavelength.

(cQ従来の技術 近年、医療分野においては、病気の診断のために抗原あ
るいは抗体の濃度を定量的に検知することが重要な課題
となってきており、特に通常試料(血液など)中にWi
資しか存在し力い成分例えば急性相反発物質であるCR
Pや腫瘍マーカであるAPPなどについて定量的に測定
できる高感度定量法の開発が課題となってきている。
(cQ Conventional Technology) In recent years, in the medical field, quantitatively detecting the concentration of antigens or antibodies for disease diagnosis has become an important issue.
Strong components such as CR, which is an acute reciprocal
The development of a highly sensitive quantitative method that can quantitatively measure P and the tumor marker APP has become an issue.

従来、第6図に示すように抗体(又は抗原)k担持させ
たラテックスを溶媒中に分散させ、これと抗原(又は抗
体)を反応させ、第7図に示すように、′pテックスの
凝集反応に伴なう濁度(g&光度)増21[1t−波長
60()= 2400 nm で測定して、抗原(又は
抗体)?I一定量する方法が特許公開公報(昭58−1
1575)に示され、実用化されている。
Conventionally, as shown in Fig. 6, latex carrying an antibody (or antigen) is dispersed in a solvent, and the antigen (or antibody) is reacted with the latex, and as shown in Fig. 7, the agglutination of 'ptex Turbidity (g & light intensity) increase due to reaction 21 [1t - Wavelength 60 () = 2400 nm Measured with antigen (or antibody)? A method for producing a constant amount of I was published in the patent publication (1982
1575) and has been put into practical use.

また最近第8図に示すように凝集したラテックス粒子を
含む溶液上シーヌフロー中で1個1個の凝集塊に分け、
レーザ光源による光散乱検出法によV凝集の度合全解析
して抗原(又は抗体)t一定量する方法が開発されてい
る。
Recently, as shown in Fig. 8, a solution containing aggregated latex particles is separated into individual aggregates in Sineflow.
A method has been developed in which the total degree of V aggregation is analyzed using a light scattering detection method using a laser light source to determine a certain amount of antigen (or antibody).

(/1発明が解決しようとする問題点 しかしながら、−h記の方法はつぎのような問題点があ
る。
(/1 Problems to be Solved by the Invention However, the method described in -h has the following problems.

前者では、■ラテックス溶液自身の吸光度に比べて、ラ
テックス凝集による吸光度の変化が小さく。
In the former case, ■The change in absorbance due to latex aggregation is small compared to the absorbance of the latex solution itself.

測定波長の選択により吸光度変化を大きく・しようとし
てもラテックス溶液自身の吸光度も大きくなってしまう
ため、 S/Nの改善にはならず、そのため第2図に示
すように、同一の反応液について。
Even if you try to increase the change in absorbance by selecting the measurement wavelength, the absorbance of the latex solution itself will also increase, so the S/N ratio will not improve. Therefore, as shown in Figure 2, for the same reaction solution.

抗原−抗体反応開始後の一定時間後と、それから一定時
間経過後の2点について吸光度の変化分だけ全測定する
2点法の採用が必要となり、十分な反応時間後の吸光度
から試薬であるラテックス溶液のみの吸光度を差引く、
いわゆるエンドポイント法(1点法〕の採用かむつかし
く、E薬あるいは試料の分注から測定まで自動的にコン
トロールされる自動分析装置が必要となる。■吸光度は
粒子の大きさと、数によって決るためラテックス凝集の
度合と吸光度の変化とは1対1に対応せず。
It is necessary to adopt a two-point method in which all changes in absorbance are measured at two points, one after a certain period of time after the start of the antigen-antibody reaction and the other after a certain period of time. Subtract the absorbance of the solution only,
It is difficult to adopt the so-called end-point method (one-point method), and an automatic analyzer is required to automatically control the process from dispensing the drug or sample to measuring it.■Absorbance is determined by the size and number of particles. There is no one-to-one correspondence between the degree of latex aggregation and the change in absorbance.

例えば第9図に示すように抗原の濃度の増加と共にラテ
ックスの凝集が起っているにもかかわらず。
Even though latex aggregation occurs with increasing concentration of antigen, as shown for example in FIG.

ある濃!以上では吸光度が減少しはじめるという反転現
象が生ずる場合がある・02点法においてはラテックス
濃度を減少させると凝集スピードが低下し、感度が悪く
なるので高価なラテックス試薬を多量に必要とする。な
どの問題かあ−】た。
It’s so dark! In the above case, a reversal phenomenon may occur in which the absorbance starts to decrease.In the 02-point method, when the latex concentration is decreased, the aggregation speed decreases and the sensitivity deteriorates, so a large amount of expensive latex reagent is required. Is there a problem like that?

まfc後者ではラテックスの凝集と測定結果が1対1に
対応し、ま友エンドポイント法の採用が可能であり反応
時間を長くするほど凝集が進み高感度となり、かつラテ
ックス濃度を減少させても感度は変らないなど前者の欠
点が改善されているが。
In the latter case, there is a one-to-one correspondence between latex aggregation and measurement results, making it possible to use the Mayu endpoint method.The longer the reaction time, the more aggregation progresses, resulting in higher sensitivity, and even if the latex concentration is reduced. Although the drawbacks of the former have been improved, such as the sensitivity remaining the same.

シースフロー構造とすることが必要でかつ1個の粒子に
よる散乱光を検出するためレーザ光源が必要で専用装置
とならざるを得ないという問題点があった。
There were problems in that it required a sheath flow structure and required a laser light source to detect light scattered by a single particle, requiring a dedicated device.

この発明は、かかる状況に鑑みなされたものであり専用
装置を用いなくても、汎用の分光光度計を用いて、エン
ドポイント法により抗原(又は抗体)の濃度′t−潤定
する方法全提供しようとするものである。
The present invention was made in view of this situation, and provides a complete method for determining the concentration of an antigen (or antibody) by an end point method using a general-purpose spectrophotometer without using a dedicated device. This is what I am trying to do.

(に)問題点を解決するための手段 かくしてこの発明によれば、抗原−抗体複合物を含有す
る被検液に光を照射して、2つの波長λ1、λ2におけ
る吸光度Aλ1.AUzを求め、この値の変化に工9抗
原(又は抗体)の濃度を求めること全特徴とする抗原−
抗体反応の測定法が提供されるO この発明の方法の最も特徴とする点は、異なる2波長の
吸光度比Aλl/Aλ2が被検液中に懸濁する粒子の平
均粒径の函数となることを利用するものであり、ラテッ
クスの凝集による平均粒径の増加音測定することに工9
.抗原(又は抗体ンの眞区全求めることができる。
(2) Means for Solving the Problems Thus, according to the present invention, a test liquid containing an antigen-antibody complex is irradiated with light, and the absorbance at two wavelengths λ1 and λ2 is Aλ1. Determine AUz and calculate the concentration of the antigen (or antibody) from the change in this value.
A method for measuring an antibody reaction is provided. The most distinctive feature of the method of the present invention is that the absorbance ratio Aλl/Aλ2 at two different wavelengths is a function of the average particle diameter of particles suspended in the test liquid. It is a method that utilizes the technology, and it takes nine steps to measure the increase in average particle size due to latex agglomeration.
.. The entire antigen (or antibody) can be determined.

2波長の吸光度の比は懸濁液の濃度に関係なく。The ratio of absorbance at two wavelengths is independent of the concentration of the suspension.

粒子の屈折率と、測定波長に対する粒子の相対的な大き
さによるので、2波長の比をとる方法は。
The method of calculating the ratio of the two wavelengths depends on the refractive index of the particle and the relative size of the particle to the measurement wavelength.

ラテックス濃度により、あまり影響されないので。It is not affected much by latex concentration.

エンドポイント法の採用が可能となる。It becomes possible to adopt the endpoint method.

各種粒径のポリスチレンラテックスについて数段階の濃
度の懸濁液について、 34Qnm〜11000r1の
吸光度を測定し、 11000nの吸光度A100Oに
対する他の波長の吸光度Aλの比Aλ/A100Of求
めた結果全第1図に示す。第1図のAu/Atooo 
の値は、数段階の濃度の懸濁液についての平均値である
。各波長での吸光度はラテックス濃度と共に増加し穴が
For suspensions of polystyrene latex of various particle sizes at several concentrations, the absorbance at 34Qnm to 11000r1 was measured, and the ratio Aλ/A100Of of the absorbance at other wavelengths to the absorbance A100O at 11000n was calculated, and the results are shown in Figure 1. show. Au/Atooo in Figure 1
The values are average values for suspensions of several concentrations. The absorbance at each wavelength increases with latex concentration.

その比Aλ/Atoooはほぼ一定であった。第1図の
結果! vI P+ トして9粒径Asoo/ Al 
000およばA600/A100Oとの関係を求めた結
果を第2図に示す。第2図より1粒径の増加と共にAs
oo/AloooおよびAF100/A100Oの値が
減少することが判る。
The ratio Aλ/Atooo was almost constant. Results in Figure 1! vI P+ and 9 particle size Asoo/Al
FIG. 2 shows the results of determining the relationship between A600 and A600/A100O. From Figure 2, as the grain size increases, As
It can be seen that the values of oo/Alooo and AF100/A100O decrease.

以上より、抗体(又は抗原)を担持したラテックスの凝
集反応において、抗原(又は抗体)の濃度の増加と共に
凝集の度合も増加して平均粒径が増大した結果Asoo
/A 1000あるいはA600/A100Oの値が減
少することが予測でき、これにより抗原または抗体の定
量が可能と思われる。
From the above, in the agglutination reaction of latex carrying antibodies (or antigens), as the concentration of antigens (or antibodies) increases, the degree of agglutination also increases and the average particle size increases.
It can be predicted that the value of /A 1000 or A600/A100O will decrease, and it seems possible to quantify the antigen or antibody.

この発明の方法に用いる2つの波長は、2波長が離れて
いるほど高感度となるが、短波長側では吸光度が大きく
なり、吸光度測定不能となる場合tあるので、使用する
ラテックスの大きさと濃度および抗原(又は抗体)の測
定濃度範囲によって最適条件を選択することが望ましい
Regarding the two wavelengths used in the method of this invention, the farther apart the two wavelengths are, the higher the sensitivity becomes.However, the absorbance increases at the short wavelength side, and there are cases where absorbance cannot be measured. Therefore, the size and concentration of the latex used It is desirable to select optimal conditions depending on the measurement concentration range of the antigen (or antibody) and the antigen (or antibody).

通常の分光光度計においては、波長範囲は330〜11
000n 、 e光finは2 AF18以下であるの
で。
In a normal spectrophotometer, the wavelength range is 330-11
000n, e optical fin is 2 AF18 or less.

ラテックス試薬としては、ラテックスの直径が01〜0
.3μmで、 500nmの吸光度が2 AB8以下に
なるような濃度に調整するのが望ましい。
As a latex reagent, the diameter of the latex is 01 to 0.
.. It is desirable to adjust the concentration so that the absorbance at 500 nm is 2 AB8 or less at 3 μm.

(ホ)作 用 この発明によれば、抗体(又は抗原)t−担持したラテ
ックス試薬と、濃度既知の抗原(又は抗体2の希釈系列
をもたして調整した各試料とを一定時間反応させたとき
の濃度とA11%す2の関係を示す@量線を求めておき
、この検量線を用いて濃度未知の試料中の抗原(又は抗
体)濃度を求めることになる。
(e) Effect According to the present invention, a latex reagent carrying an antibody (or antigen) is reacted with each sample prepared with a dilution series of the antigen (or antibody 2) of known concentration for a certain period of time. A dose curve showing the relationship between the concentration and A11%2 is determined in advance, and this calibration curve is used to determine the antigen (or antibody) concentration in a sample of unknown concentration.

以下実施例によりこの発明の詳細な説明するが。The present invention will be explained in detail below with reference to Examples.

これによりこの発明が限定されるものではない。This invention is not limited by this.

(ハ)実fI例 第1表はCRP抗体を粒径約0.21Omのラテックス
量した試薬と、 CRP濃度既知の血清と全37℃で反
応させた時の90分後の各波長での吸光度A300〜A
1000と吸光度比A!100/A600およびA60
0/Al 000 f示す。
(c) Practical fI example Table 1 shows the absorbance at each wavelength after 90 minutes when a latex amount of CRP antibody with a particle size of approximately 0.21 Om was reacted with serum of known CRP concentration at 37°C. A300~A
1000 and absorbance ratio A! 100/A600 and A60
0/Al 000 f is shown.

第1表 また第3図にCRPfi度に対する各波長での吸光度の
検量線を示す。第3図においては添加するラテックス量
のバラツキによる測定点のバラツキが出ており、t*濃
度の増加に対して、 A5υ0では吸光度の変化は大き
く、感度が高いことになるが。
Table 1 and FIG. 3 show calibration curves of absorbance at each wavelength with respect to CRPfi degree. In Figure 3, there are variations in the measurement points due to variations in the amount of latex added, and as the t* concentration increases, the change in absorbance is large for A5υ0, which means that the sensitivity is high.

途中から吸光度が減少するという反転現象が起−)てい
る。A100Oではこのような現象はないが、rJ&光
度の変化が小さく、感度が低いため、低濃度でのS/N
が悪くなる・ 第4図に本発明の例として、 CRP濃度に対するA3
00/A100OおよびA300/A100Oの検量線
を示す0第4図においてAs0o/At0OOおよびA
600/A100Oij低濃度域でもその変化率が大き
く高感度であり、かつ濃度増加していっても反転現象は
起っていない。また2波長の吸光度の比をとることによ
り、ラテックス添加量のバラツキによる各吸光度のバラ
ツキが相殺されているので、測定点のバラツキもない。
A reversal phenomenon occurs in which the absorbance decreases halfway through the process. A100O does not have this phenomenon, but the change in rJ & luminosity is small and the sensitivity is low, so the S/N at low concentration is low.
Figure 4 shows, as an example of the present invention, A3 for CRP concentration.
00/A100O and A300/A100O, As0o/At0OO and A
600/A100Oij Even in the low concentration range, the rate of change is large and the sensitivity is high, and no reversal phenomenon occurs even when the concentration increases. In addition, by taking the ratio of the absorbances of two wavelengths, variations in absorbance due to variations in the amount of latex added are offset, so there is no variation in measurement points.

第5図に、第2図に示したA600/A100Oの値を
用いて抗原−抗体複合物の各濃度における結果を示すが
FIG. 5 shows the results at each concentration of the antigen-antibody complex using the A600/A100O value shown in FIG.

これから本発明がラテックス凝集を適確にとらえること
ができる簡便でかつ有用な方法であることが判る。
This shows that the present invention is a simple and useful method that can accurately detect latex aggregation.

(ト]発明の効果 本発明により、専用の自vJrI&光度変化測定装置や
シースフローとレーザ光散乱法を用いた特殊な装置を用
いなくとも、汎用の分光光度計によシラテックス凝tR
ヲ利用し几抗原−抗体反応における抗原(又は抗体)の
濃度を精度よく高!e、度に測定することが可能となる
(G) Effects of the Invention The present invention enables the use of a general-purpose spectrophotometer to measure silatex tR without using a dedicated self-vJrI & light intensity change measuring device or a special device using a sheath flow and laser light scattering method.
Accurately increase the concentration of antigen (or antibody) in the antigen-antibody reaction by using e, it becomes possible to measure at once.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は各種粒径のラテックス溶液の波長11000n
の吸光度に対する他の波長での吸光度の比Aλ%Aln
o。 全示す図、第2因はラテックスの粒径と、 A300/
A100OおよびΔ6oo/Atoooの関係を示す図
、第3図・第4因・第5図はラテックス凝集反応を利用
してeRP濃度を測定する場合のCRP濃度と各波長で
の吸光度。 A300/A100OおよびAF100/A100O、
平均粒径の関係を示す図、第6図はラテックス凝集を利
用した抗原−抗体反応を示す図であり、第7図は吸光度
測定による従来のラテックス凝集反応?利用した抗原−
抗体反応の測定法、第8図にシースフローとレーザ光散
乱光法による従来のラテックス凝集反応を利用した抗原
−抗体反応の測定法、第9図は抗ぷ濃度と吸光度あるい
は凝集ラテックスの平均粒径の関係の1例を示す図であ
る。 特許出願人 株式会社島津製作所′ □゛代理人 弁理
士 武 石 端 彦 −1゛a吸(μm〕 0    1    2,545 CF:r(四/dJり ¥31刺 子4図 第5囲 凄1反も 第6図 第7図 第δ口
Figure 1 shows the wavelength of latex solutions with various particle sizes at 11,000 nm.
The ratio of the absorbance at other wavelengths to the absorbance of Aλ%Aln
o. The second factor is the particle size of the latex and the A300/
A diagram showing the relationship between A100O and Δ6oo/Atoooo, and Figures 3, 4, and 5 show CRP concentration and absorbance at each wavelength when eRP concentration is measured using latex agglutination reaction. A300/A100O and AF100/A100O,
Figure 6 is a diagram showing the relationship between average particle size, and Figure 6 is a diagram showing an antigen-antibody reaction using latex agglutination, and Figure 7 is a diagram showing the conventional latex agglutination reaction using absorbance measurement. Antigen used
Method for measuring antibody reaction. Figure 8 shows a method for measuring antigen-antibody reaction using conventional latex agglutination reaction using sheath flow and laser light scattering method. Figure 9 shows antibody concentration and absorbance or average particles of aggregated latex. FIG. 3 is a diagram showing an example of the relationship between diameters. Patent applicant: Shimadzu Corporation' □゛Agent: Patent attorney Hajiko Takeishi -1゛a (μm) 0 1 2,545 CF: r (4/dJ ¥31 Sashiko 4 figure 5 encircling 1 anti Figure 6 Figure 7 Figure δ

Claims (1)

【特許請求の範囲】[Claims] 微細粒径の不溶性担体に抗体(又は抗原)を支持したも
のを溶媒中に分散させ、これと抗原(又は抗体)を反応
させて生成する抗原−抗体複合物に異なる波長λ_1、
λ_2の光を照射し各波長の吸光度Aλ_1、Aλ_2
の比Aλ_1/Aλ_2を測定し、その値の変化の度合
により抗原(又は抗体)の濃度を測定することを特徴と
する抗原−抗体反応の測定法。
An antigen-antibody complex produced by dispersing an antibody (or antigen) supported on a fine particle-sized insoluble carrier in a solvent and reacting it with the antigen (or antibody) has different wavelengths λ_1,
Irradiate light of λ_2 and absorbance of each wavelength Aλ_1, Aλ_2
A method for measuring an antigen-antibody reaction, characterized in that the ratio Aλ_1/Aλ_2 is measured, and the concentration of the antigen (or antibody) is determined based on the degree of change in that value.
JP61284878A 1986-11-28 1986-11-28 Method for measuring antigen-antibody reaction Expired - Lifetime JPH076985B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP61284878A JPH076985B2 (en) 1986-11-28 1986-11-28 Method for measuring antigen-antibody reaction
US07/124,997 US5093271A (en) 1986-11-28 1987-11-24 Method for the quantitative determination of antigens and antibodies by ratio of absorbances at different wavelengths
DE87402674T DE3787706T2 (en) 1986-11-28 1987-11-26 Method for the quantitative determination of antigens and antibodies.
EP87402674A EP0269526B1 (en) 1986-11-28 1987-11-26 Method of quantitative determination of antigens and antibodies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61284878A JPH076985B2 (en) 1986-11-28 1986-11-28 Method for measuring antigen-antibody reaction

Publications (2)

Publication Number Publication Date
JPS63138266A true JPS63138266A (en) 1988-06-10
JPH076985B2 JPH076985B2 (en) 1995-01-30

Family

ID=17684204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61284878A Expired - Lifetime JPH076985B2 (en) 1986-11-28 1986-11-28 Method for measuring antigen-antibody reaction

Country Status (1)

Country Link
JP (1) JPH076985B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105510200A (en) * 2015-11-23 2016-04-20 太原理工大学 Nanoparticle suspension stability quantitative evaluation device
CN106596963A (en) * 2016-05-27 2017-04-26 安徽伊普诺康生物技术股份有限公司 Kit for measuring alpha fetoprotein
CN111795939A (en) * 2020-07-21 2020-10-20 郑州安图生物工程股份有限公司 Method for monitoring subpackaging uniformity of magnetic particle suspension

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5446829A (en) * 1977-09-21 1979-04-13 Hitachi Ltd Nephelometry
JPS57168142A (en) * 1981-03-19 1982-10-16 Svenska Traeforskningsinst Measurement of content of fine fiber particle in pulp fiber suspension
JPS5896251A (en) * 1981-12-04 1983-06-08 Asahi Medical Kk Measuring method for antigen or antibody and reagent for measurement
JPS59100862A (en) * 1982-12-01 1984-06-11 Hitachi Ltd Automatic analyzer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5446829A (en) * 1977-09-21 1979-04-13 Hitachi Ltd Nephelometry
JPS57168142A (en) * 1981-03-19 1982-10-16 Svenska Traeforskningsinst Measurement of content of fine fiber particle in pulp fiber suspension
JPS5896251A (en) * 1981-12-04 1983-06-08 Asahi Medical Kk Measuring method for antigen or antibody and reagent for measurement
JPS59100862A (en) * 1982-12-01 1984-06-11 Hitachi Ltd Automatic analyzer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105510200A (en) * 2015-11-23 2016-04-20 太原理工大学 Nanoparticle suspension stability quantitative evaluation device
CN105510200B (en) * 2015-11-23 2018-04-13 太原理工大学 A kind of device of quantitative assessment nanoparticle suspension stability
CN106596963A (en) * 2016-05-27 2017-04-26 安徽伊普诺康生物技术股份有限公司 Kit for measuring alpha fetoprotein
CN111795939A (en) * 2020-07-21 2020-10-20 郑州安图生物工程股份有限公司 Method for monitoring subpackaging uniformity of magnetic particle suspension

Also Published As

Publication number Publication date
JPH076985B2 (en) 1995-01-30

Similar Documents

Publication Publication Date Title
US4157871A (en) System for rate immunonephelometric analysis
JP6367942B2 (en) Method for detecting prozone effects in photometric assays
US8673576B2 (en) Multi-wavelength analyses of sol-particle specific binding assays
JPS6365369A (en) Method for measuring antigen-antibody reaction
JPH0666808A (en) Chromogen measurement method
US5093271A (en) Method for the quantitative determination of antigens and antibodies by ratio of absorbances at different wavelengths
JPS63138266A (en) Method for measuring antigen-antibody reaction
JPS6281567A (en) Quantification method using particle agglutination reaction
JPH0635980B2 (en) How to measure body fluid components
US20030013083A1 (en) Particle analysis as a detection system for particle-enhanced assays
JPS63169564A (en) Method for measuring antigen-antibody reaction with high sensitivity
JPS63169563A (en) Method for measuring antigen-antibody reaction with high sensitivity
JPS6319560A (en) Method for discriminating prozone in immunoreaction
EP0433629B1 (en) A method for the qualitative and quantitative determination of antibodies against bacterial antigens by means of the photometric measurement of agglutination
JPH0233097B2 (en)
JPH0635976B2 (en) Prozone determination method in immune reaction
JPH01313737A (en) Inspection device for body to be inspected
JPH0599925A (en) Method for measuring concentration of antigen or antibody
JPS63247644A (en) Method for measuring immune reaction
JPH01270643A (en) Method for examination of specimen
JPH03274462A (en) Apparatus and reagent for examining specimen
JPH07117538B2 (en) Antigen-antibody reaction determination method
JPH0617916B2 (en) Assay method for antigen-antibody reaction
JPH01207663A (en) Method and instrument for sample inspection
JPS62116264A (en) Method for quantification using particle agglutination reaction