JPS63137496A - 半導体レ−ザ装置 - Google Patents
半導体レ−ザ装置Info
- Publication number
- JPS63137496A JPS63137496A JP61285457A JP28545786A JPS63137496A JP S63137496 A JPS63137496 A JP S63137496A JP 61285457 A JP61285457 A JP 61285457A JP 28545786 A JP28545786 A JP 28545786A JP S63137496 A JPS63137496 A JP S63137496A
- Authority
- JP
- Japan
- Prior art keywords
- active layer
- diffraction grating
- layer
- phase shifting
- width
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 21
- 239000013078 crystal Substances 0.000 claims abstract description 7
- 230000001902 propagating effect Effects 0.000 claims description 2
- 230000010355 oscillation Effects 0.000 abstract description 15
- 239000000758 substrate Substances 0.000 abstract description 5
- 230000010363 phase shift Effects 0.000 description 16
- 238000009826 distribution Methods 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 2
- 238000005253 cladding Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 241001156002 Anthonomus pomorum Species 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 229910021486 amorphous silicon dioxide Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/1053—Comprising an active region having a varying composition or cross-section in a specific direction
- H01S5/1064—Comprising an active region having a varying composition or cross-section in a specific direction varying width along the optical axis
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
- H01S5/124—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers incorporating phase shifts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
- H01S5/124—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers incorporating phase shifts
- H01S5/1243—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers incorporating phase shifts by other means than a jump in the grating period, e.g. bent waveguides
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
め要約のデータは記録されません。
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は光通信システムにおける光源に適し、安定な単
一軸モード発振を示す半導体レーザ装置に関する。
一軸モード発振を示す半導体レーザ装置に関する。
(従来の技術)
素子内部の活性層に近接して回折格子を有する分布帰還
型半導体レーザ(以下DFBレーザと称する)は変調時
にも単一軸モードで発振可能であることから、長距離大
容量の光フアイバ通信用光源として期待されている。従
来のDFBレーザ、すなわち周期の一定な回折格子を素
子内部に有するDFBレーザでは、発振閾値利得がほぼ
同じ2本の軸モードが存在するから、必ずしも全ての素
子で単一軸モード発振が得られるのではなく、2軸モー
ドで発振する素子も数多く見られた。そこで近年、より
高い確率で単一軸モード発振が得られると期待される位
相シフト型DFBレーザが提案された(K、ウタ力他、
1984年4月12日発行のエレクトロニクス・レタ
ーズ誌、第20巻、 326−327頁)0位相シフ
ト型DFBレーザの構造的な特徴は、回折格子の周期性
が素子中央付近で半導体結晶内部を伝搬する光の波長の
1/4程度の長さ分だけシフトしている点で、この様な
構造にすることにより、回折格子の周期で決まるブラッ
グ波長に一致した主モードとその両側の副モードとの発
振閾値利得に大きな差が生じ、主モードのより安定な単
一軸モード発振が得られると期待される。
型半導体レーザ(以下DFBレーザと称する)は変調時
にも単一軸モードで発振可能であることから、長距離大
容量の光フアイバ通信用光源として期待されている。従
来のDFBレーザ、すなわち周期の一定な回折格子を素
子内部に有するDFBレーザでは、発振閾値利得がほぼ
同じ2本の軸モードが存在するから、必ずしも全ての素
子で単一軸モード発振が得られるのではなく、2軸モー
ドで発振する素子も数多く見られた。そこで近年、より
高い確率で単一軸モード発振が得られると期待される位
相シフト型DFBレーザが提案された(K、ウタ力他、
1984年4月12日発行のエレクトロニクス・レタ
ーズ誌、第20巻、 326−327頁)0位相シフ
ト型DFBレーザの構造的な特徴は、回折格子の周期性
が素子中央付近で半導体結晶内部を伝搬する光の波長の
1/4程度の長さ分だけシフトしている点で、この様な
構造にすることにより、回折格子の周期で決まるブラッ
グ波長に一致した主モードとその両側の副モードとの発
振閾値利得に大きな差が生じ、主モードのより安定な単
一軸モード発振が得られると期待される。
(発明が解決しようとする問題点)
しかしながら、従来の位相シフト型DFBレーザを実際
に製作してみると単一軸モードで発振する素子の歩留り
は期待したほどは向上せず、約50%程度と比較的低い
ものであった。
に製作してみると単一軸モードで発振する素子の歩留り
は期待したほどは向上せず、約50%程度と比較的低い
ものであった。
本発明の目的は、高い歩留りで゛製造でき単一軸モード
で発振をする位相シフト型DFBレーザを提供すること
にある。
で発振をする位相シフト型DFBレーザを提供すること
にある。
(問題点を解決するための手段)
本発明による半導体レーザ装置の特徴は、多層半導体結
晶内部にストライプ状活性層とこの活性層に近接した回
折格子とを有し、前記回折格子の周期性が共振器内のあ
る一点において前記半導体結晶内部を伝搬する光の波長
のゴ/4の長さだけシフトしている分布帰還型半導体レ
ーザにおいて、前記ストライプ状活性層の幅が前記回折
格子の周期性がシフトしている部分付近で狭くなってい
ることである。
晶内部にストライプ状活性層とこの活性層に近接した回
折格子とを有し、前記回折格子の周期性が共振器内のあ
る一点において前記半導体結晶内部を伝搬する光の波長
のゴ/4の長さだけシフトしている分布帰還型半導体レ
ーザにおいて、前記ストライプ状活性層の幅が前記回折
格子の周期性がシフトしている部分付近で狭くなってい
ることである。
(作用)
本発明の詳細な説明する0位相シフト型DFBレーザに
おいて理論的に予想されたような高い歩留りでの単一軸
モード発振が得られないのは、共振器方向に沿った主モ
ード光フィールド分布の不均一性に帰因したホールバー
ニングの影響であると考えられている(!Q田他、 1
986年4月21日発行の電子通信学会技術研究報告、
第OQ E 86−7番)6すなわち、位相シフト型D
FBレーザの主モードの光フィールド分布は第3図(a
)に示す様に位相シフト部付近で強くなる。従ってこの
付近のキャリア密度はホールバーニング効果によって減
少し、その分布は第3図(b)の様になる。活性層の屈
折率はキャリア密度が高いほど低くなるから、光が感じ
る1等価屈折率の分布は第3図(c)の様に位相シフト
部で相対的に高くなる0位相シフト型DFBレーザでは
共振器内の等偏屈折率の分布が一様なときに主モードと
副モードとの間の発振閾値利得差が最大となるが、位相
シフト部付近の等偏屈折率が相対的に高くなるとこの発
振閾値利得差は小さくなり、副モードが発振し易くなる
。
おいて理論的に予想されたような高い歩留りでの単一軸
モード発振が得られないのは、共振器方向に沿った主モ
ード光フィールド分布の不均一性に帰因したホールバー
ニングの影響であると考えられている(!Q田他、 1
986年4月21日発行の電子通信学会技術研究報告、
第OQ E 86−7番)6すなわち、位相シフト型D
FBレーザの主モードの光フィールド分布は第3図(a
)に示す様に位相シフト部付近で強くなる。従ってこの
付近のキャリア密度はホールバーニング効果によって減
少し、その分布は第3図(b)の様になる。活性層の屈
折率はキャリア密度が高いほど低くなるから、光が感じ
る1等価屈折率の分布は第3図(c)の様に位相シフト
部で相対的に高くなる0位相シフト型DFBレーザでは
共振器内の等偏屈折率の分布が一様なときに主モードと
副モードとの間の発振閾値利得差が最大となるが、位相
シフト部付近の等偏屈折率が相対的に高くなるとこの発
振閾値利得差は小さくなり、副モードが発振し易くなる
。
従って、位相シフト型DFBレーザで安定な単一軸モー
ド発振を高い確率で得るなめには、ホールバーニングに
よって生じる等偏屈折率の位相シフト部付近での増加を
打ち消すような工夫が必要となる。
ド発振を高い確率で得るなめには、ホールバーニングに
よって生じる等偏屈折率の位相シフト部付近での増加を
打ち消すような工夫が必要となる。
そのひとつの手段として、位相シフト部付近の活性層の
幅を第3図(d)のaICこ光フィールド分布に合わせ
て狭くすることが考えられる。活性層の屈折率はその回
りのクラッドの屈折率よりも高い、従って活性層の幅を
狭くすることによりその部分の等偏屈折率は低下する。
幅を第3図(d)のaICこ光フィールド分布に合わせ
て狭くすることが考えられる。活性層の屈折率はその回
りのクラッドの屈折率よりも高い、従って活性層の幅を
狭くすることによりその部分の等偏屈折率は低下する。
また、活性層幅が狭いと活性層内の注入キャリア密度が
高くなり、このことも位相シフト部付近の等偏屈折率を
低くするように働く、従って位相シフト部付近の活性層
の幅を狭くすれば、前述のホールバーニングによる位相
シフト部付近での等偏屈折率の増加が生じても、その増
加の程度を非常に小さく抑えることができ、安定な単一
軸モード発振が得られる。
高くなり、このことも位相シフト部付近の等偏屈折率を
低くするように働く、従って位相シフト部付近の活性層
の幅を狭くすれば、前述のホールバーニングによる位相
シフト部付近での等偏屈折率の増加が生じても、その増
加の程度を非常に小さく抑えることができ、安定な単一
軸モード発振が得られる。
(実施例1)
本発明の実施例を図面を参照して詳細に説明する。
第1図(a)及び(b)はそれぞれ本発明の第1の実施
例である半導体レーザ装置の斜視図及び断面図であり、
本図(b)の断面図は本図(a)の活性層3を通り基板
1の上面に平行な平面で切断して示す図である。この半
導体レーザ装置の製造においては、まずn−1nP基板
1の表面にピッチ2400人の回折格子10と左右の領
域で回折格子10の凹凸の周期性を反転させる位相シフ
ト部11を形成した後、波長組成1.3B+のn−1n
GaAsPガイド屑2、波長組成1.55B+のノンド
ープInGaAsP活性7!J3、波長組成1.3μm
のp−1nGaAsPアンチメルトバック層4及びp−
1nPクロット層5をそれぞれ0.1μm。
例である半導体レーザ装置の斜視図及び断面図であり、
本図(b)の断面図は本図(a)の活性層3を通り基板
1の上面に平行な平面で切断して示す図である。この半
導体レーザ装置の製造においては、まずn−1nP基板
1の表面にピッチ2400人の回折格子10と左右の領
域で回折格子10の凹凸の周期性を反転させる位相シフ
ト部11を形成した後、波長組成1.3B+のn−1n
GaAsPガイド屑2、波長組成1.55B+のノンド
ープInGaAsP活性7!J3、波長組成1.3μm
のp−1nGaAsPアンチメルトバック層4及びp−
1nPクロット層5をそれぞれ0.1μm。
0、1μm 、 O,Ohm及び11JJ11の厚さに
エピタキシャル成長させる。こうして得られた多層半導
体結晶に活性層3よりも深い2本の平行な溝12とそれ
によって挾まれるメサストライプ13を形成する。この
時メサストライプ13の幅は位相シフト部11から遠い
所で1.5μm、位相シフト部11でi、olJmとな
るようにし、メサストライプ13が位相シフト部11で
くびれなような形状にする。その後、メサストライプ1
3の上部を除いてp−InP電流ブロック、16及びn
−1nP電流ブロック層7をエピタキシャル成長し、引
き続いて全面にp−1nP埋め込み層8及び波長組成1
.15μsのP÷−1nGaAsPコンタクト層9をエ
ピタキシャル成長する。を流ブロック層6,7、埋め込
み層8及びコンタクト!N9はそれぞれ平坦部で厚さI
IJm、IIJJI!、21Jl+及び0.51Jmで
ある。更にp ”−1nGaAsPコンタクト層9の上
にCr/八Uへらなる金属電極14を、n−1nP基板
1の下に^uGeN iからなる金属電極15を形成し
、このように形成した半導体レーザ用ウェハを位相シフ
ト部11が中央になるように襞間して各素子に分離し、
2つの襞間端面にプラズマCVD法等によりSiN膜に
よる無反射コーティング16.17を施す。
エピタキシャル成長させる。こうして得られた多層半導
体結晶に活性層3よりも深い2本の平行な溝12とそれ
によって挾まれるメサストライプ13を形成する。この
時メサストライプ13の幅は位相シフト部11から遠い
所で1.5μm、位相シフト部11でi、olJmとな
るようにし、メサストライプ13が位相シフト部11で
くびれなような形状にする。その後、メサストライプ1
3の上部を除いてp−InP電流ブロック、16及びn
−1nP電流ブロック層7をエピタキシャル成長し、引
き続いて全面にp−1nP埋め込み層8及び波長組成1
.15μsのP÷−1nGaAsPコンタクト層9をエ
ピタキシャル成長する。を流ブロック層6,7、埋め込
み層8及びコンタクト!N9はそれぞれ平坦部で厚さI
IJm、IIJJI!、21Jl+及び0.51Jmで
ある。更にp ”−1nGaAsPコンタクト層9の上
にCr/八Uへらなる金属電極14を、n−1nP基板
1の下に^uGeN iからなる金属電極15を形成し
、このように形成した半導体レーザ用ウェハを位相シフ
ト部11が中央になるように襞間して各素子に分離し、
2つの襞間端面にプラズマCVD法等によりSiN膜に
よる無反射コーティング16.17を施す。
こうして得られた二重チャネル・ブレナー埋め込み構造
位相シフト型DFBレーザは、光を発する部分であるス
トライプ状活性層3の幅が第1図(b)に示した様に位
相シフト部11付近で狭く、この部分での等価屈折率が
あらかじめ低くなっているから、前述のようなホールバ
ーニングが生じても位相シフト部11付近の等価屈折率
の増加が抑えられ、約90%の歩留りで波長1.55μ
m帯での安定な単一軸モード発振が得られた。
位相シフト型DFBレーザは、光を発する部分であるス
トライプ状活性層3の幅が第1図(b)に示した様に位
相シフト部11付近で狭く、この部分での等価屈折率が
あらかじめ低くなっているから、前述のようなホールバ
ーニングが生じても位相シフト部11付近の等価屈折率
の増加が抑えられ、約90%の歩留りで波長1.55μ
m帯での安定な単一軸モード発振が得られた。
(実施例2)
第2図<a)は本発明の第2の実施例である半導体レー
ザ装置の斜視図であり、本図(b)は本図(a)の活性
Ni3を通り基板1の上面に平行な平面における断面図
である。レーザ構造は第1の実施例で示した構造とほと
んど同じであり、各部の符号及び名称も同じである。異
なる点は2つある襞間端2面のうち、一方にSiN膜を
用いた無反射コーティング21を施し、他方にアモルフ
ァスS I / SiO2,の多層膜を用いた高反射コ
ーティング22を施し、位相シフト部11を高反射コー
ティング22を施した側に2=8の割合で近づけて設け
た点である。ストライプ状活性層3の幅は第2図(b)
に示した様に位相シフト部11で狭く、くびれな形状と
なっており、最も狭い部分で1.0μm、広い部分で1
.5μmとなっている。
ザ装置の斜視図であり、本図(b)は本図(a)の活性
Ni3を通り基板1の上面に平行な平面における断面図
である。レーザ構造は第1の実施例で示した構造とほと
んど同じであり、各部の符号及び名称も同じである。異
なる点は2つある襞間端2面のうち、一方にSiN膜を
用いた無反射コーティング21を施し、他方にアモルフ
ァスS I / SiO2,の多層膜を用いた高反射コ
ーティング22を施し、位相シフト部11を高反射コー
ティング22を施した側に2=8の割合で近づけて設け
た点である。ストライプ状活性層3の幅は第2図(b)
に示した様に位相シフト部11で狭く、くびれな形状と
なっており、最も狭い部分で1.0μm、広い部分で1
.5μmとなっている。
この高反射−低反射率端面を有する二重チャネル・プレ
ナー埋め込み槽造位相シフト型DFBレーザは端面反射
率の非対称性から、無反射コーティング21を施した端
面側から高い光出力を得ることができ、且つ第1の実施
例と同様にホールバーニングの影響をほとんど受けずに
約90%の歩留りで波長1.551Jmでの安定な単一
軸モード発振を得ることができた。
ナー埋め込み槽造位相シフト型DFBレーザは端面反射
率の非対称性から、無反射コーティング21を施した端
面側から高い光出力を得ることができ、且つ第1の実施
例と同様にホールバーニングの影響をほとんど受けずに
約90%の歩留りで波長1.551Jmでの安定な単一
軸モード発振を得ることができた。
尚、実施例では波長1.55gm帯の二重チャネル・プ
レナー埋め込み構造位相シフト型DFBレーザを示した
が、本発明における発振波長及びレーザ構造はこれに限
定されないのは言うまでもなく、用いる半導体材料系も
他の材料系からなってもよい。
レナー埋め込み構造位相シフト型DFBレーザを示した
が、本発明における発振波長及びレーザ構造はこれに限
定されないのは言うまでもなく、用いる半導体材料系も
他の材料系からなってもよい。
(発明の効果)
本発明による位相シフト型DFBレーザにおいては、従
来単一軸モードで動作する素子の歩留りが約50%程度
であったものを、約90%に改善することができた。
来単一軸モードで動作する素子の歩留りが約50%程度
であったものを、約90%に改善することができた。
第1図(a>及び(b)は本発明の第1の実施例である
半導体レーザ装=の斜視図及び断面図、第2図(a>及
び(b)はそれぞれ本発明の第2の実施例である半導体
レーザ装置の斜視図及び断面図であり、1はn−1nP
基板、2はn −1nGaAsPガイド層、3はノンド
ープInGaAsP活性層、4はp−1nGaAsPア
ンチメルトバック層、5はp −1nPクラッド層、6
はp−1nP電流ブロック層、7はn + l np
を流ブロック層、8はp−1nP埋め込み層、9はp
”−1nGaASP:7ンタクト層、1oは回折格子、
11は位相シフト部、12は溝、13はメサストライプ
、14、15は電極、16.17.21は無反射コーテ
イング膜、22は画反射コーティング膜である。 第3図は本発明の詳細な説明する図であり、第3図(a
>は光フィールド・分布、同図(b)はキャリア密度分
布、同図(c)は等偏屈折率分布、同図(d)はストラ
イプ状活性層の幅をそれぞれ示す図である。
半導体レーザ装=の斜視図及び断面図、第2図(a>及
び(b)はそれぞれ本発明の第2の実施例である半導体
レーザ装置の斜視図及び断面図であり、1はn−1nP
基板、2はn −1nGaAsPガイド層、3はノンド
ープInGaAsP活性層、4はp−1nGaAsPア
ンチメルトバック層、5はp −1nPクラッド層、6
はp−1nP電流ブロック層、7はn + l np
を流ブロック層、8はp−1nP埋め込み層、9はp
”−1nGaASP:7ンタクト層、1oは回折格子、
11は位相シフト部、12は溝、13はメサストライプ
、14、15は電極、16.17.21は無反射コーテ
イング膜、22は画反射コーティング膜である。 第3図は本発明の詳細な説明する図であり、第3図(a
>は光フィールド・分布、同図(b)はキャリア密度分
布、同図(c)は等偏屈折率分布、同図(d)はストラ
イプ状活性層の幅をそれぞれ示す図である。
Claims (1)
- 多層半導体結晶内部にストライプ状活性層とこの活性層
に近接した回折格子とを有し、前記回折格子の周期性が
共振器内のある一点において前記半導体結晶内部を伝搬
する光の波長の1/4の長さだけシフトしている分布帰
還型半導体レーザにおいて、前記ストライプ状活性層の
幅が前記回折格子の周期性がシフトしている部分付近で
狭くなっていることを特徴とする半導体レーザ装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61285457A JPS63137496A (ja) | 1986-11-28 | 1986-11-28 | 半導体レ−ザ装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61285457A JPS63137496A (ja) | 1986-11-28 | 1986-11-28 | 半導体レ−ザ装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63137496A true JPS63137496A (ja) | 1988-06-09 |
Family
ID=17691769
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61285457A Pending JPS63137496A (ja) | 1986-11-28 | 1986-11-28 | 半導体レ−ザ装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63137496A (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0461632A2 (en) * | 1990-06-12 | 1991-12-18 | Kabushiki Kaisha Toshiba | Phase-shifted distributed feedback type semiconductor laser device |
EP0632298A2 (de) * | 1993-07-03 | 1995-01-04 | Robert Bosch Gmbh | DFB oder DBR Gitter |
JP2011176374A (ja) * | 2011-06-13 | 2011-09-08 | Fujitsu Ltd | 半導体レーザ及び半導体光集積素子 |
US20210344172A1 (en) * | 2018-11-19 | 2021-11-04 | Mitsubishi Electric Corporation | Optical semiconductor device and method of manufacturing optical semiconductor device |
-
1986
- 1986-11-28 JP JP61285457A patent/JPS63137496A/ja active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0461632A2 (en) * | 1990-06-12 | 1991-12-18 | Kabushiki Kaisha Toshiba | Phase-shifted distributed feedback type semiconductor laser device |
US5185759A (en) * | 1990-06-12 | 1993-02-09 | Kabushiki Kaisha Toshiba | Phase-shifted distributed feedback type semiconductor laser device |
EP0632298A2 (de) * | 1993-07-03 | 1995-01-04 | Robert Bosch Gmbh | DFB oder DBR Gitter |
EP0632298A3 (en) * | 1993-07-03 | 1995-02-22 | Ant Nachrichtentech | DFB or DBR grid. |
JP2011176374A (ja) * | 2011-06-13 | 2011-09-08 | Fujitsu Ltd | 半導体レーザ及び半導体光集積素子 |
US20210344172A1 (en) * | 2018-11-19 | 2021-11-04 | Mitsubishi Electric Corporation | Optical semiconductor device and method of manufacturing optical semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4796273A (en) | Distributed feedback semiconductor laser | |
US9312663B2 (en) | Laser device, light modulation device, and optical semiconductor device | |
JP2008204999A (ja) | 光素子及びその製造方法 | |
JP2009244868A (ja) | 回折格子デバイス、半導体レーザ及び波長可変フィルタ | |
JP6510391B2 (ja) | 半導体レーザ | |
US20010014109A1 (en) | Single-transverse-mode laser diode with multi-mode waveguide region and manufacturing method of the same | |
JP2982422B2 (ja) | 半導体レーザおよびその製造方法 | |
JPH1168242A (ja) | 半導体レーザー | |
JP2000077774A (ja) | 分布帰還型半導体レーザ | |
US20210143609A1 (en) | Semiconductor optical device and method for producing semiconductor optical device | |
JP2002084033A (ja) | 分布帰還型半導体レーザ | |
JP7277825B2 (ja) | 半導体光素子 | |
JPS63137496A (ja) | 半導体レ−ザ装置 | |
JPH0311554B2 (ja) | ||
JP2950302B2 (ja) | 半導体レーザ | |
JPS6250075B2 (ja) | ||
JPH11220220A (ja) | 半導体レーザ装置及びその製造方法 | |
JP6927153B2 (ja) | 半導体レーザ | |
JP2804502B2 (ja) | 半導体レーザ素子及びその製造方法 | |
JP2005353761A (ja) | 分布帰還型半導体レーザ | |
US5784398A (en) | Optoelectronic component having codirectional mode coupling | |
JP2894285B2 (ja) | 分布帰還型半導体レーザおよびその製造方法 | |
JP3239387B2 (ja) | 半導体レーザおよびその製造方法 | |
WO2024100836A1 (en) | Semiconductor laser, method of designing diffraction grating layer of semiconductor laser, and method of manufacturing semiconductor laser | |
JPH06196799A (ja) | 分布帰還型半導体レーザ |