JPS6313728B2 - - Google Patents

Info

Publication number
JPS6313728B2
JPS6313728B2 JP57207749A JP20774982A JPS6313728B2 JP S6313728 B2 JPS6313728 B2 JP S6313728B2 JP 57207749 A JP57207749 A JP 57207749A JP 20774982 A JP20774982 A JP 20774982A JP S6313728 B2 JPS6313728 B2 JP S6313728B2
Authority
JP
Japan
Prior art keywords
catalyst
titania
carrier
component
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57207749A
Other languages
Japanese (ja)
Other versions
JPS5998730A (en
Inventor
Akira Kato
Juichi Kamo
Shigeo Uno
Hiroshi Kawagoe
Hisao Yamashita
Shinpei Matsuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57207749A priority Critical patent/JPS5998730A/en
Priority to CA000442011A priority patent/CA1213875A/en
Priority to KR1019830005628A priority patent/KR910001929B1/en
Priority to US06/556,049 priority patent/US4537873A/en
Publication of JPS5998730A publication Critical patent/JPS5998730A/en
Publication of JPS6313728B2 publication Critical patent/JPS6313728B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の利用分野〕 本発明は燃料を接触燃焼して得られる高温ガス
を利用する装置における高温ガス生成用燃焼触媒
に関し、特に、特定の担体に貴金属を担持した高
温でも性能低下の少ない燃焼触媒に関する。 〔従来技術〕 触媒上で燃料と酸素の反応を促進する接触燃焼
法は、通常のバーナ燃焼法(炎燃焼)と比較し
て、(1)低温度で完全燃焼が可能である、(2)広範囲
の燃料/空気比で安定燃焼が可能である、(3)サー
マルNOxはほとんど生成しない等の特徴があり、
近年特に注目されている。従来、接触燃焼技術の
応用としては、(1)有機溶剤、悪臭の酸化処理、(2)
自動車排気ガス処理、(3)接触燃焼式ヒータ等が挙
げられる。最近になつて、大容量のボイラ、ガス
タービン及び航空機用のジエツトエンジン等に上
記の特徴を生かした接触燃焼技術を応用するため
の開発が各所で進められている。これは燃料を接
触燃焼して得られる高温ガス(又は高圧ガス)を
利用する技術であり、自動車排気ガス処理及び悪
臭除去のような有害成分を除去するためのプロセ
スとは本質的に異なるものである。 触媒の使用温度は、通常400℃以上であり、場
合によつては1400℃ないし1500℃にまで達する。
このため400℃から1400℃ないしそれ以上の温度
にわたつて触媒活性を有すると共に、特に高温に
おける触媒の熱劣化が小さいことが要求される。 従来、接触燃焼法で用いられている温度は悪臭
除去等のため、200〜500℃であり、一番高い温度
で使用されている自動車排気ガス処理の場合でも
最高800℃ないし900℃である。 一般に、触媒としては、比表面積が大きいアル
ミナ及びシリカ等の担体に、貴金属、特に白金、
パラジウム及びロジウム等を担持したものが用い
られている。このような貴金属触媒は、他の金属
酸化物触媒に比較して、熱的に安定であるため自
動車排気ガス処理のような800〜900℃の温度条件
下でも用いられている。しかし、燃料を接触燃焼
して化学エネルギーから熱エネルギーを取出すよ
うなプロセスで触媒を用いる場合には、反応温度
が1000℃以上、条件によつては1400℃ないし1500
℃にまで達する。このような条件下では、貴金属
触媒でも熱劣化を生じ、性能低下が顕著になる。
この原因としては、担体上に微細な粒子で分散さ
れた貴金属が高温度で凝集してしまうことあるい
は担体の焼結による担体比表面積の減少が起るこ
とが挙げられる。 〔発明の目的〕 本発明の目的は、上記した従来技術の欠点をな
くして、高温度条件下における貴金属成分の凝集
を抑制しかつ焼結による比表面積の減少の少ない
担体に貴金属を担持し、高温でも性能低下の少な
い燃焼触媒を提供することである。 〔発明の概要〕 本発明につき概説すれば、本発明の燃焼触媒
は、燃料を接触燃焼して得られる高温ガスを利用
する装置における高温ガス生成用貴金属担持燃焼
触媒において、その担体が、チタニアなる第1成
分と、マグネシウム、ストロンチウム、ランタ
ン、イツトリウム、セリウム、ジルコニウム、ケ
イ素及びスズよりなる群から選択した1種以上の
金属の酸化物なる第2成分とから成ることを特徴
とするものである。 本発明者等は、高温における貴金属微粒子の凝
集を抑制する効果を持つ担体につき種種検討を重
ねた結果、担体としてチタニアを用いることによ
り、従来のアルミナ担体を用いた場合に比して貴
金属成分の凝集が起り難くなることを見出した。
そして、その原因としては、貴金属成分とチタニ
アが強い相互作用を示すためと推定される。しか
しながら、担体としてチタニアのみを用いた場合
には、チタニアが700℃以上で急激に焼結するた
め、比表面積が大きく低下し、活性低下が起るこ
とが判明した。 そこで、本発明者等は、チタニアに種種の第2
成分を添加して焼結を抑制する方法の検討を行つ
た結果、第1成分のチタニアに、第2成分とし
て、マグネシウム、ストロンチウム、ランタン、
イツトリウム、セリウム、ジルコニウム、ケイ素
及びスズよりなる群から選択した1種以上の金属
の酸化物を添加すればよいことを見出して本発明
に到達したものである。 本発明によれば、このような金属の酸化物とチ
タニアとを組合わせた担体に貴金属成分を担持す
ることにより、活性及び耐久性共に優れた燃焼触
媒を得ることができる。 又、本発明によるチタニア系担体は、通常のア
ルミナ担体と比較して、耐SOx性があり、燃料中
に硫黄化合物が含まれていても変質し難い長所が
ある。(アルミナ担体では硫酸アルミニウムに変
質する場合が多い) 本発明におけるチタニア系担体は、第1成分の
チタニアと第2成分の金属の酸化物との組成比
が、金属の原子比でチタン1に対し第2成分の金
属0.05〜1.0未満の範囲にあることが特に好適で
ある。第2成分の金属の割合が上記0.05未満では
その添加効果が不充分でチタニアの焼結が大き
く、又、それが1.0以上ではチタニアの割合が少
なくなり過ぎて、チタニア系の担体としての効果
が少なくなるため望ましくない。 本発明における担体を調製する場合のチタン原
料としては、各種のチタニア、又あるいは、加熱
することによりチタニアを生成するチタン酸
(TiO2・nH2O)、四塩化チタン、硫酸チタン及び
硫酸チタニル等を用いることができる。あるいは
又、四塩化チタン及び硫酸チタン等の水溶液をア
ンモニア水、カ性アルカリ、炭酸アルカリ及び尿
素等で中和して沈殿を生成させ、これを加熱分解
して酸化物を得るのも望ましい方法である。又、
チタンテトライソプロポキシドのような有機チタ
ン化合物を用いることもできる。 第2成分の原料としては、前記各種の金属の酸
化物、水酸化物、塩化物、硝酸塩、硫酸塩、酢酸
塩及びシユウ酸塩等いずれも用いることができ
る。本発明における担体の製造には、通常の製造
に利用される沈殿法、共沈法、混練法及び含浸法
等いずれも使用することができる。あらかじめチ
タン原料と第2成分原料を混合しておいて最終的
に酸化物の形態にしても良いし、あらかじめそれ
ぞれの酸化物を調製した後良く混合、混練して調
製することも可能である。担体の成形方法として
は、打錠成形法、押出成形法及び転動造粒法等い
ずれの方法でも良い。又、ハニカム型の耐火性担
体等に本発明方法における担体成分を含浸して焼
成し、表面に酸化物層を形成させても良いし、コ
ーテイング等の方法で表面にチタニアと第2成分
の金属の酸化物層を形成させた担体を用いること
もできる。 本発明の燃焼触媒において用いられる貴金属成
分としては、白金、パラジウム、ルテニウム、イ
リジウム並びにロジウムが有効である。これらの
成分は合金あるいは混合物の形態として用いるこ
ともできる。 貴金属成分の担持方法としては、含浸法、混練
法等いずれの方法を用いても良いが、貴金属成分
を有効に利用するには含浸法により担体表面に担
持することが望ましい。用いられる原料として
は、塩化白金酸、臭化白金酸アンモニウム、塩化
パラジウム、硝酸パラジウム、塩化ロジウム、塩
化ルテニウム及び塩化イリジウム等の塩類や錯塩
等が使用できる。 又、活性成分としては、貴金属成分以外にも、
遷移金属成分、例えば、ニツケル、コバルト、マ
ンガン及びクロム等を助触媒成分として含んでい
ても良い。 本発明による触媒を用いて接触燃焼を行う場合
の燃料としては、各種の気体燃料及び液体燃料を
用いることができる。適当な燃料としては、例え
ば、メタン、エタン、プロパン及びブタンのよう
な脂肪族炭化水素、ガソリン、ナフサ、灯油及び
軽油等の石油留分、メタノール及びエタノールの
ようなアルコール並びに水素及び一酸化炭素等が
挙げられる。石炭のような固体燃料を用いる場合
には、あらかじめガス化又は液化した後に燃料と
して用いることができる。不活性物質を含有する
希釈燃料、例えば低カロリーの石炭ガス及びコー
クス炉ガス等ももちろん使用できる。 反応温度としては、400℃ないし1500℃、望ま
しくは450℃ないし1400℃の広い温度範囲で効率
的に燃料を燃焼することができる。1500℃を超え
る温度では、本発明による触媒でも貴金属成分の
焼結や蒸発による活性低下が大きくなり望ましく
ない。400℃未満の温度でも本発明の燃焼触媒を
使用することは可能である。特に、水素のような
燃焼性の良い燃料の場合には、400℃未満でも効
率良く燃焼できる。又、燃焼反応では反応による
温度上昇が大きいので、反応を開始させる温度、
すなわち着火温度が400℃より低くても燃焼温度
領域が1000℃以上になることもある。このような
場合には本発明による触媒を用いる温度範囲とし
て400℃未満の領域ももちろん存在している。 以下、添付図面により、本発明の触媒をガスタ
ービンに利用する場合について具体的に説明す
る。 すなわち、添付図面は、本発明の触媒を利用し
た装置の一例の概要図である。 図面において、符号1はコンプレツサ、2は触
媒燃焼器、3はガスタービン、4は発電機、そし
て5はスチームタービンを意味する。 図示したように、ガスタービンに送る空気の一
部を、コンプレツサを経て触媒燃焼器に送つて、
燃料の酸化剤として利用するのが好ましい。 〔本発明の実施例〕 次に、本発明を実施例及び比較例により説明す
るが、本発明はこれらによりなんら限定されるも
のではない。 実施例1並びに比較例1及び2 (1) 触媒の調製 白金−チタニア・マグネシア系の触媒(実施
例1)並びに、比較のため、白金−チタニア系
の触媒(比較例1)及び白金−アルミナ系の触
媒(比較例2)を次のようにしてそれぞれ調製
した。 (a) 実施例1の触媒 メタチタン酸スラリー500gをとり(TiO2
として150g)、これに硝酸マグネシウム240
gを加えた。更に、蒸留水500mlを加え、こ
の混合物をニーダーで充分混練した。得られ
たペースト状の混合物を300℃で5時間予備
焼成した後に、グラフアイトを3重量%加
え、成型圧力約500Kg/cm2で直径3mm、厚さ
3mmの大きさに打錠成型した。得られた成型
品を700℃で4時間焼成した。次に、ヘキサ
クロロ白金酸水溶液100mlを含浸し、120℃で
5時間乾燥後、空気中、1000℃で3時間焼成
した。担体の組成は、原子比でチタン1に対
しマグネシウム0.5であり、白金の担持量は
担体に対し1重量%であつた。 (b) 比較例1の触媒 メタチタン酸スラリー500gを300℃で5時
間予備焼成した後に、グラフアイトを3重量
%加え、成型圧力約500Kg/cm2で直径3mm、
厚さ3mmの大きさに打錠成型した。得られた
成型品を、700℃で4時間焼成した。次にヘ
キサクロロ白金酸水溶液(3gPt/100g水
溶液)50mlを含浸し、120℃で5時間乾燥後、
空気中、1000℃で3時間焼成した。得られた
触媒は、白金の担持量がチタニア担体の1重
量%であつた。 (c) 比較例2の触媒 ヘキサクロロ白金酸水溶液(2.5gPt/100
g水溶液)40mlを、3ml球状のアルミナ担体
100gに含浸し、120℃で5時間乾燥後、空気
中、1000℃で3時間焼成した。得られた触媒
は、白金の担持量がアルミナ担体の1重量%
であつた。 (2) 触媒の性能試験 上記(a)、(b)及び(c)で調製した3種の触媒の性
能試験を次のようにして行つた。 内径20mmの石英ガラス製反応管に、8ml容量
の触媒をそれぞれ別に充てんし、電気炉で外部
から加熱し、触媒層に入るガスを500℃に予熱
した。反応管にメタン3%で残部が空気よりな
る組成のガスを空間速度50000時-1で流し、10
時間連続試験を行つた。触媒層の入口と出口の
メタンをFID型ガスクロマトグラフにより測定
して、反応率を求めた。メタンの燃焼により、
触媒層の温度は1200℃前後に達した。得られた
結果を下記第1表に示す。
[Field of Application of the Invention] The present invention relates to a combustion catalyst for generating high-temperature gas in a device that utilizes high-temperature gas obtained by catalytic combustion of fuel, and in particular to a combustion catalyst that supports a noble metal on a specific carrier and exhibits little performance deterioration even at high temperatures. Regarding. [Prior art] The catalytic combustion method, which promotes the reaction between fuel and oxygen on a catalyst, has the following advantages compared to the normal burner combustion method (flame combustion): (1) Complete combustion is possible at a lower temperature; (2) It has the following characteristics: stable combustion is possible over a wide range of fuel/air ratios, and (3) almost no thermal NOx is generated.
It has received particular attention in recent years. Conventionally, the applications of catalytic combustion technology include (1) oxidation treatment of organic solvents and bad odors; (2)
Examples include automobile exhaust gas treatment, (3) catalytic combustion heaters, etc. Recently, development efforts have been underway in various places to apply catalytic combustion technology that takes advantage of the above characteristics to large-capacity boilers, gas turbines, aircraft jet engines, and the like. This is a technology that uses high-temperature gas (or high-pressure gas) obtained by catalytic combustion of fuel, and is essentially different from processes for removing harmful components such as automobile exhaust gas treatment and odor removal. be. The operating temperature of the catalyst is usually 400°C or higher, and in some cases reaches 1400°C to 1500°C.
For this reason, it is required that the catalyst has catalytic activity over a temperature range of 400°C to 1400°C or higher, and that thermal deterioration of the catalyst is particularly small at high temperatures. Conventionally, the temperature used in the catalytic combustion method is 200 to 500°C for purposes such as removing bad odors, and even in the case of automobile exhaust gas treatment, which uses the highest temperature, the maximum temperature is 800 to 900°C. In general, catalysts are made of precious metals, especially platinum, on carriers such as alumina and silica, which have a large specific surface area.
Those carrying palladium, rhodium, etc. are used. Such noble metal catalysts are thermally stable compared to other metal oxide catalysts, so they are used even under temperature conditions of 800 to 900°C, such as in automobile exhaust gas treatment. However, when catalysts are used in a process that extracts thermal energy from chemical energy by catalytic combustion of fuel, the reaction temperature is 1000℃ or higher, and depending on the conditions, 1400℃ or 1500℃.
It reaches up to ℃. Under such conditions, even noble metal catalysts undergo thermal deterioration, resulting in a noticeable drop in performance.
This may be due to agglomeration of noble metals dispersed in fine particles on the carrier at high temperatures or a decrease in the specific surface area of the carrier due to sintering of the carrier. [Objective of the Invention] The object of the present invention is to eliminate the drawbacks of the above-mentioned prior art, to support a noble metal on a carrier that suppresses agglomeration of noble metal components under high temperature conditions, and with less decrease in specific surface area due to sintering, An object of the present invention is to provide a combustion catalyst that exhibits little performance deterioration even at high temperatures. [Summary of the Invention] To summarize the present invention, the combustion catalyst of the present invention is a noble metal-supported combustion catalyst for generating high temperature gas in an apparatus that utilizes high temperature gas obtained by catalytic combustion of fuel, and the support is made of titania. It is characterized by comprising a first component and a second component which is an oxide of one or more metals selected from the group consisting of magnesium, strontium, lanthanum, yttrium, cerium, zirconium, silicon, and tin. The present inventors have repeatedly investigated various types of carriers that have the effect of suppressing agglomeration of precious metal fine particles at high temperatures. By using titania as a carrier, the precious metal component can be reduced compared to when using a conventional alumina carrier. It was found that aggregation becomes less likely to occur.
The reason for this is presumed to be that the noble metal component and titania exhibit a strong interaction. However, it has been found that when only titania is used as a carrier, titania sinters rapidly at temperatures above 700°C, resulting in a large decrease in specific surface area and a decrease in activity. Therefore, the present inventors developed a second species of Titania.
As a result of investigating a method of suppressing sintering by adding components, we added magnesium, strontium, lanthanum, and
The present invention was achieved by discovering that it is sufficient to add an oxide of one or more metals selected from the group consisting of ytrium, cerium, zirconium, silicon, and tin. According to the present invention, a combustion catalyst with excellent activity and durability can be obtained by supporting a noble metal component on a carrier that is a combination of such a metal oxide and titania. In addition, the titania-based carrier according to the present invention has the advantage that it has SOx resistance and is less likely to deteriorate even if sulfur compounds are contained in the fuel, compared to ordinary alumina carriers. (Alumina carriers often degenerate into aluminum sulfate.) The titania-based carrier in the present invention has a composition ratio of titania as a first component and metal oxide as a second component to titanium in an atomic ratio of 1 to 1. It is particularly preferable that the second component metal is in a range of 0.05 to less than 1.0. If the ratio of the second component metal is less than the above 0.05, the effect of its addition will be insufficient and sintering of titania will be large; if it is more than 1.0, the ratio of titania will be too small and the effect as a titania-based carrier will be reduced. This is undesirable as it reduces the number of Titanium raw materials for preparing the carrier in the present invention include various titania, titanic acid (TiO 2 .nH 2 O) that produces titania by heating, titanium tetrachloride, titanium sulfate, titanyl sulfate, etc. can be used. Alternatively, a desirable method is to neutralize an aqueous solution of titanium tetrachloride, titanium sulfate, etc. with aqueous ammonia, caustic alkali, alkali carbonate, urea, etc. to form a precipitate, and then thermally decompose this to obtain an oxide. be. or,
Organotitanium compounds such as titanium tetraisopropoxide can also be used. As the raw material for the second component, any of the aforementioned various metal oxides, hydroxides, chlorides, nitrates, sulfates, acetates, oxalates, etc. can be used. In the production of the carrier in the present invention, any of the precipitation methods, coprecipitation methods, kneading methods, impregnation methods, etc. used in normal production can be used. The titanium raw material and the second component raw material may be mixed in advance to form the final oxide, or the respective oxides may be prepared in advance and then thoroughly mixed and kneaded. The carrier may be formed by any method such as a tableting method, an extrusion method, or a rolling granulation method. Alternatively, a honeycomb-shaped refractory carrier or the like may be impregnated with the carrier component in the method of the present invention and fired to form an oxide layer on the surface, or titania and the second component metal may be coated on the surface by a method such as coating. A carrier on which an oxide layer is formed can also be used. Effective noble metal components used in the combustion catalyst of the present invention include platinum, palladium, ruthenium, iridium, and rhodium. These components can also be used in the form of alloys or mixtures. As a method for supporting the noble metal component, any method such as an impregnation method or a kneading method may be used, but in order to effectively utilize the noble metal component, it is preferable to support the noble metal component on the surface of the carrier by an impregnation method. Examples of the raw materials that can be used include salts and complex salts such as chloroplatinic acid, ammonium bromoplatinate, palladium chloride, palladium nitrate, rhodium chloride, ruthenium chloride, and iridium chloride. In addition to noble metal components, active ingredients include:
A transition metal component such as nickel, cobalt, manganese, chromium, etc. may be included as a promoter component. Various gaseous fuels and liquid fuels can be used as the fuel when performing catalytic combustion using the catalyst according to the present invention. Suitable fuels include, for example, aliphatic hydrocarbons such as methane, ethane, propane and butane, petroleum distillates such as gasoline, naphtha, kerosene and gas oil, alcohols such as methanol and ethanol, and hydrogen and carbon monoxide. can be mentioned. When using solid fuel such as coal, it can be used as a fuel after being gasified or liquefied in advance. Of course, dilute fuels containing inert substances, such as low-calorie coal gas and coke oven gas, can also be used. The fuel can be efficiently combusted over a wide reaction temperature range of 400°C to 1500°C, preferably 450°C to 1400°C. At temperatures exceeding 1500°C, even the catalyst according to the present invention is undesirable because the activity decreases significantly due to sintering and evaporation of the noble metal component. It is possible to use the combustion catalyst of the invention even at temperatures below 400°C. In particular, in the case of highly combustible fuels such as hydrogen, they can burn efficiently even at temperatures below 400°C. In addition, in combustion reactions, the temperature rise due to the reaction is large, so the temperature at which the reaction starts,
In other words, even if the ignition temperature is lower than 400°C, the combustion temperature range may exceed 1000°C. In such cases, there is of course a temperature range below 400°C in which the catalyst of the present invention can be used. Hereinafter, the case where the catalyst of the present invention is utilized in a gas turbine will be specifically explained with reference to the accompanying drawings. That is, the accompanying drawing is a schematic diagram of an example of an apparatus using the catalyst of the present invention. In the drawings, reference numeral 1 indicates a compressor, 2 indicates a catalytic combustor, 3 indicates a gas turbine, 4 indicates a generator, and 5 indicates a steam turbine. As shown in the diagram, a portion of the air sent to the gas turbine is sent to the catalytic combustor via the compressor.
Preferably, it is used as a fuel oxidizer. [Examples of the present invention] Next, the present invention will be explained using Examples and Comparative Examples, but the present invention is not limited by these in any way. Example 1 and Comparative Examples 1 and 2 (1) Preparation of catalysts Platinum-titania-magnesia-based catalyst (Example 1), and for comparison, platinum-titania-based catalyst (Comparative Example 1) and platinum-alumina-based catalyst Each of the catalysts (Comparative Example 2) was prepared as follows. (a) Catalyst of Example 1 Take 500 g of metatitanic acid slurry (TiO 2
150g) and 240g of magnesium nitrate.
g was added. Further, 500 ml of distilled water was added, and the mixture was thoroughly kneaded using a kneader. After preliminarily baking the resulting paste-like mixture at 300° C. for 5 hours, 3% by weight of graphite was added and the mixture was compressed into tablets with a diameter of 3 mm and a thickness of 3 mm at a molding pressure of about 500 Kg/cm 2 . The obtained molded product was fired at 700°C for 4 hours. Next, it was impregnated with 100 ml of hexachloroplatinic acid aqueous solution, dried at 120°C for 5 hours, and then calcined in air at 1000°C for 3 hours. The composition of the carrier was 1 part titanium to 0.5 part magnesium, and the amount of platinum supported was 1% by weight based on the part of the carrier. (b) Catalyst of Comparative Example 1 After preliminarily calcining 500 g of metatitanic acid slurry at 300°C for 5 hours, 3% by weight of graphite was added, and a molding pressure of about 500 Kg/cm 2 was applied to form a catalyst with a diameter of 3 mm.
It was molded into tablets with a thickness of 3 mm. The obtained molded product was fired at 700°C for 4 hours. Next, it was impregnated with 50 ml of hexachloroplatinic acid aqueous solution (3 g Pt/100 g aqueous solution) and dried at 120°C for 5 hours.
It was fired in air at 1000°C for 3 hours. In the obtained catalyst, the amount of platinum supported was 1% by weight based on the titania carrier. (c) Catalyst of Comparative Example 2 Hexachloroplatinic acid aqueous solution (2.5gPt/100
g aqueous solution) 40ml to 3ml spherical alumina carrier
It was impregnated with 100 g, dried at 120°C for 5 hours, and then fired in air at 1000°C for 3 hours. The amount of platinum supported in the obtained catalyst was 1% by weight of the alumina support.
It was hot. (2) Performance test of catalyst Performance tests of the three types of catalysts prepared in (a), (b), and (c) above were conducted as follows. Each quartz glass reaction tube with an inner diameter of 20 mm was filled with 8 ml of catalyst and heated from the outside in an electric furnace to preheat the gas entering the catalyst layer to 500°C. A gas with a composition of 3% methane and the balance air was flowed into the reaction tube at a space velocity of 50,000 h -1 ,
A continuous time test was conducted. Methane at the inlet and outlet of the catalyst layer was measured using an FID type gas chromatograph to determine the reaction rate. By burning methane,
The temperature of the catalyst layer reached around 1200°C. The results obtained are shown in Table 1 below.

【表】 第1表から明らかなように、本発明による実
施例1の触媒は、比較例1及び2の触媒に比較
して活性及び耐久性共に優れている。 実施例2並びに比較例3及び4 (1) 触媒の調製 パラジウム−チタニア・ジルコニア系の触媒
(実施例2)並びに、比較のため、パラジウム
−チタニア系の触媒(比較例3)及びパラジウ
ム−アルミナ系の触媒(比較例4)を次のよう
にしてそれぞれ調製した。 (a) 実施例2の触媒 四塩化チタン(TiCl4)溶液500gを蒸留
水1に溶解した。この溶液を1規定の水酸
化ナトリウム水溶液中に徐徐に滴下し、チタ
ン酸の沈殿物を生成させた。生じた沈殿をデ
カンテーシヨンにより、蒸留水でよく洗浄し
た後過し、これに硝酸ジルコニル〔ZrO
(NO32・2H2O〕352gを加え、ニーダーで
充分混練した。得られたペースト状の混合物
を、300℃で5時間予備焼成した後に、実施
例1の触媒の調製法と同様の方法で成型、焼
成した。次に硝酸パラジウム水溶液100mlを
含浸し、120℃で5時間乾燥後、空気中、
1000℃で3時間焼成した。担体の組成は、原
子比でチタン1に対しジルコニウム0.5であ
つた。パラジウムの担持量は、担体に対し2
重量%であつた。 (b) 比較例3の触媒 実施例2の触媒の調製と同様にして、チタ
ン酸の沈殿物をつくり、洗浄、過した後、
300℃で5時間予備焼成した。これを成型し、
700℃で焼成した後、硝酸パラジウム水溶液
60mlを含浸し、120℃で5時間乾燥後、空気
中、1000℃で3時間焼成した。得られた触媒
は、重量でパラジウムが担体に対し2%であ
つた。 (c) 比較例4の触媒 市販のアルミナ担体100gに硝酸パラジウ
ム水溶液60mlを含浸し、120℃で5時間乾燥
後、空気中、1000℃で3時間焼成した。得ら
れた触媒は、重量でパラジウムが担体に対し
2%であつた。 (2) 触媒の性能試験 上記(a)、(b)及び(c)で調製した3種の触媒の性
能試験を実施例1と同様の方法により行つた。
得られた結果を下記第2表に示す。
[Table] As is clear from Table 1, the catalyst of Example 1 according to the present invention is superior to the catalysts of Comparative Examples 1 and 2 in both activity and durability. Example 2 and Comparative Examples 3 and 4 (1) Preparation of catalysts Palladium-titania-zirconia-based catalyst (Example 2), and for comparison, palladium-titania-based catalyst (Comparative Example 3) and palladium-alumina-based catalyst The catalysts (Comparative Example 4) were prepared as follows. (a) Catalyst of Example 2 500 g of titanium tetrachloride (TiCl 4 ) solution was dissolved in 1 part of distilled water. This solution was gradually dropped into a 1N aqueous sodium hydroxide solution to form a precipitate of titanic acid. The resulting precipitate was filtered by decantation, thoroughly washed with distilled water, and then zirconyl nitrate [ZrO
(NO 3 ) 2.2H 2 O] (352 g) was added and thoroughly kneaded with a kneader. The resulting paste-like mixture was preliminarily calcined at 300°C for 5 hours, and then molded and calcined in the same manner as the catalyst preparation method of Example 1. Next, it was impregnated with 100ml of palladium nitrate aqueous solution, dried at 120℃ for 5 hours, and then
It was baked at 1000°C for 3 hours. The composition of the carrier was 1 part titanium to 0.5 part zirconium in atomic ratio. The amount of palladium supported is 2
It was in weight%. (b) Catalyst of Comparative Example 3 A titanic acid precipitate was prepared in the same manner as in the preparation of the catalyst of Example 2, and after washing and filtering,
Preliminary firing was performed at 300°C for 5 hours. Mold this,
After baking at 700℃, palladium nitrate aqueous solution
60ml was impregnated, dried at 120°C for 5 hours, and then calcined in air at 1000°C for 3 hours. The resulting catalyst contained 2% palladium by weight based on the support. (c) Catalyst of Comparative Example 4 100 g of a commercially available alumina carrier was impregnated with 60 ml of an aqueous palladium nitrate solution, dried at 120°C for 5 hours, and then calcined in air at 1000°C for 3 hours. The resulting catalyst contained 2% palladium by weight based on the support. (2) Performance test of catalyst Performance tests of the three types of catalysts prepared in (a), (b), and (c) above were conducted in the same manner as in Example 1.
The results obtained are shown in Table 2 below.

【表】 第2表の結果から明らかなように、本発明に
よる実施例2の触媒は、比較例3及び4の触媒
に比較して活性及び耐久性共に優れており、チ
タニア・ジルコニア系の担体の効果は明白であ
る。 実施例 3 実施例1の触媒の担体と同じ成分(チタニアと
マグネシア)でその組成を変えて5種の触媒を調
製し、実施例1と同様にしてそれらの性能試験を
行つた。得られた結果を下記第3表に示す。
[Table] As is clear from the results in Table 2, the catalyst of Example 2 according to the present invention was superior in activity and durability compared to the catalysts of Comparative Examples 3 and 4, and the catalyst of Example 2 according to the present invention was superior in activity and durability. The effect is obvious. Example 3 Five types of catalysts were prepared using the same components as the catalyst carrier of Example 1 (titania and magnesia) but with different compositions, and their performance tests were conducted in the same manner as in Example 1. The results obtained are shown in Table 3 below.

【表】 第3表から明らかなように、チタニアとマグネ
シアの組成比が原子比でチタン1に対しマグネシ
ウムが0.05〜1.0未満の範囲(番号2〜4)にあ
ると性能が特に優れた触媒が得られる。なお、マ
グネシウムでない他の第2成分を用いた場合もほ
ぼ同様の結果が得られている。 実施例 4 実施例1の触媒において、第2成分として、マ
グネシアの代りに、それぞれ酸化ストロンチウ
ム、酸化ランタン、イツトリア、セリア、ジルコ
ニア、シリカ又は酸化スズを用い、これらをチタ
ニアと組合せた担体を使用した8種の触媒を調製
し、実施例1と同様にしてそれらの性能試験を行
つた。得られた結果を下記第4表に示す。
[Table] As is clear from Table 3, when the composition ratio of titania and magnesia is in the range of 0.05 to less than 1.0 atomic ratio of magnesium to 1 titanium (numbers 2 to 4), a catalyst with particularly excellent performance can be obtained. can get. Note that almost similar results were obtained when a second component other than magnesium was used. Example 4 In the catalyst of Example 1, strontium oxide, lanthanum oxide, ittria, ceria, zirconia, silica, or tin oxide was used instead of magnesia as the second component, and a carrier in which these were combined with titania was used. Eight types of catalysts were prepared and their performance tests were conducted in the same manner as in Example 1. The results obtained are shown in Table 4 below.

【表】【table】

【表】 第4表から明らかなように、本発明による触媒
は、いずれも活性及び耐久性共に優れたものであ
る。 実施例 5 本実施例においては、チタニア・ジルコニア・
シリカ、チタニア・ジルコニア・セリア、及びチ
タニア・マグネシア・酸化ランタンの組合せの3
種の担体をつくり、貴金属としてパラジウムを担
体に対し0.5重量%担持させた触媒を調製し、そ
の性能を実施例1と同様の方法で調べた。担体の
組成及びそれらを用いた触媒の性能試験結果を下
記第5表に示す。
[Table] As is clear from Table 4, the catalysts according to the present invention are all excellent in both activity and durability. Example 5 In this example, titania, zirconia,
3 combinations of silica, titania/zirconia/ceria, and titania/magnesia/lanthanum oxide
A seed carrier was prepared, and a catalyst was prepared in which 0.5% by weight of palladium as a noble metal was supported on the carrier, and its performance was examined in the same manner as in Example 1. The compositions of the carriers and the performance test results of catalysts using them are shown in Table 5 below.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、チタニ
アに特定の金属の酸化物を組合せた担体に貴金属
を担持させることにより、優れた性能を有する燃
焼触媒を提供することができる。
As described above, according to the present invention, a combustion catalyst having excellent performance can be provided by supporting a noble metal on a carrier made of a combination of titania and a specific metal oxide.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明の触媒を利用した装置の一例の
概要図である。 1:コンプレツサ、2:触媒燃焼器、3:ガス
タービン、4:発電機、5:スチームタービン。
The drawing is a schematic diagram of an example of an apparatus using the catalyst of the present invention. 1: compressor, 2: catalytic combustor, 3: gas turbine, 4: generator, 5: steam turbine.

Claims (1)

【特許請求の範囲】 1 燃料を接触燃焼して得られる高温ガスを利用
する装置における高温ガス生成用貴金属担持燃焼
触媒において、その担体が、チタニアなる第1成
分と、マグネシウム、ストロンチウム、ランタ
ン、イツトリウム、セリウム、ジルコニウム、ケ
イ素及びスズよりなる群から選択した1種以上の
金属の酸化物なる第2成分とから成ることを特徴
とする燃焼触媒。 2 該担体における第1成分のチタニアと第2成
分の金属の酸化物との組成比が、金属の原子比で
チタン1に対し第2成分の金属0.05〜1.0未満の
範囲にある特許請求の範囲第1項記載の燃焼触
媒。
[Scope of Claims] 1. A noble metal-supported combustion catalyst for producing high-temperature gas in an apparatus that utilizes high-temperature gas obtained by catalytic combustion of fuel, in which the carrier comprises a first component of titania, magnesium, strontium, lanthanum, and yttrium. , and a second component consisting of an oxide of one or more metals selected from the group consisting of cerium, zirconium, silicon, and tin. 2 Claims in which the composition ratio of the first component titania and the second component metal oxide in the carrier is in the range of 0.05 to less than 1.0 of the second component metal to titanium 1 to titanium atomic ratio. The combustion catalyst according to item 1.
JP57207749A 1982-11-29 1982-11-29 Combustion catalyst Granted JPS5998730A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP57207749A JPS5998730A (en) 1982-11-29 1982-11-29 Combustion catalyst
CA000442011A CA1213875A (en) 1982-11-29 1983-11-25 Catalyst for catalytic combustion
KR1019830005628A KR910001929B1 (en) 1982-11-29 1983-11-29 Combustion catalyst
US06/556,049 US4537873A (en) 1982-11-29 1983-11-29 Catalyst for catalytic combustion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57207749A JPS5998730A (en) 1982-11-29 1982-11-29 Combustion catalyst

Publications (2)

Publication Number Publication Date
JPS5998730A JPS5998730A (en) 1984-06-07
JPS6313728B2 true JPS6313728B2 (en) 1988-03-28

Family

ID=16544901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57207749A Granted JPS5998730A (en) 1982-11-29 1982-11-29 Combustion catalyst

Country Status (1)

Country Link
JP (1) JPS5998730A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100555984B1 (en) 2004-07-27 2006-03-03 김병훈 composition for elevation of fuel ratio and cooling water in radiator utilizing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5065467A (en) * 1973-10-15 1975-06-03
JPS52122293A (en) * 1976-04-08 1977-10-14 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for purifying nox
JPS53146991A (en) * 1977-05-30 1978-12-21 Nippon Shokubai Kagaku Kogyo Co Ltd Exhaust gas purification catalyst
JPS54142187A (en) * 1978-04-28 1979-11-06 Hitachi Ltd Preparation of speherical titanium oxide catalyst
JPS5567331A (en) * 1978-11-14 1980-05-21 Mitsubishi Heavy Ind Ltd Catalyst and method for removing nitrogenoxide in exhaust gas
JPS57184439A (en) * 1981-01-20 1982-11-13 Johnson Matthey Co Ltd Three-way catalyst for purifying exhaust gas and its manufacture and exhaust gas system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5065467A (en) * 1973-10-15 1975-06-03
JPS52122293A (en) * 1976-04-08 1977-10-14 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for purifying nox
JPS53146991A (en) * 1977-05-30 1978-12-21 Nippon Shokubai Kagaku Kogyo Co Ltd Exhaust gas purification catalyst
JPS54142187A (en) * 1978-04-28 1979-11-06 Hitachi Ltd Preparation of speherical titanium oxide catalyst
JPS5567331A (en) * 1978-11-14 1980-05-21 Mitsubishi Heavy Ind Ltd Catalyst and method for removing nitrogenoxide in exhaust gas
JPS57184439A (en) * 1981-01-20 1982-11-13 Johnson Matthey Co Ltd Three-way catalyst for purifying exhaust gas and its manufacture and exhaust gas system

Also Published As

Publication number Publication date
JPS5998730A (en) 1984-06-07

Similar Documents

Publication Publication Date Title
KR910001929B1 (en) Combustion catalyst
US4906176A (en) High temperature stable catalyst, process for preparing same, and process for conducting chemical reaction using same
TWI600467B (en) Oxidation catalyst, exhaust treatment device, regenerative burner, combustible component in oxidizing gas, and method for removing nitrogen oxides in gas
CN101069856A (en) Diesel-oil engine tail-gas contamminaut oxidation catalyst
JPH10277394A (en) Automobile exhaust gas catalyst and its preparation
KR20060093102A (en) A catalyzed diesel particulate matter filter with improved thermal stability
US3945946A (en) Compositions and methods for high temperature stable catalysts
US4008037A (en) Compositions and methods for high temperature stable catalysts
JP2011518931A (en) A method for reducing the tar content in a gas derived from a gasification process using a noble metal catalyst.
JPS6313728B2 (en)
JP2011518930A (en) Use of noble metal based catalysts to reduce the tar content in gases derived from gasification processes
CN1192190A (en) Catalyst support for high temperature applications and catalysts and catalytic processes employing same
WO1993018347A1 (en) Catalytic combustion process using supported palladium oxide catalysts
JPS59160536A (en) Combustion-catalyst and its manufacture
JPH0729055B2 (en) Catalyst for oxidizing carbon-containing compound and method for producing the same
JPH04166228A (en) Oxidation catalyst
JPS59112836A (en) Combustion catalyst
JP3318352B2 (en) Catalyst for combustion of hydrocarbons
JPS59189935A (en) Ethanol reforming catalyst
JPS59112835A (en) Catalyst for reforming methanol
JPH04166227A (en) Oxidation catalyst
JP2523484B2 (en) Gas turbine combustor
JPH04135641A (en) Oxidation catalyst
JPH07112542B2 (en) Method for producing oxidation catalyst
JP6171947B2 (en) Exhaust gas purification catalyst device and exhaust gas purification method