JPS6313380A - Amorphous silicon solar cell - Google Patents

Amorphous silicon solar cell

Info

Publication number
JPS6313380A
JPS6313380A JP61156040A JP15604086A JPS6313380A JP S6313380 A JPS6313380 A JP S6313380A JP 61156040 A JP61156040 A JP 61156040A JP 15604086 A JP15604086 A JP 15604086A JP S6313380 A JPS6313380 A JP S6313380A
Authority
JP
Japan
Prior art keywords
type
layer
film
solar cell
amorphous silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61156040A
Other languages
Japanese (ja)
Inventor
Sunao Matsubara
松原 直
Juichi Shimada
嶋田 寿一
Shinichi Muramatsu
信一 村松
Haruo Ito
晴夫 伊藤
Nobuo Nakamura
信夫 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61156040A priority Critical patent/JPS6313380A/en
Publication of JPS6313380A publication Critical patent/JPS6313380A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To obtain a solar cell having large open circuit voltage and the high efficiency of photoelectric conversion by forming a buffer layer with a thin-film having optical band-gap width larger than a p-type layer between the p-type layer and an i-type layer. CONSTITUTION:A transparent conductive film 12 consisting of two layer films of substances such as ITO/SnO2 is formed onto a glass substarte 11, a p-type a-SiC:H film 13 is shaped onto the film 12 through the high-frequency plasma decomposition method of the mixed gas of substances such as SiH4, CH4 and H2-base B2H6, and a buffer layer 14 composed of an i-type-SiC :H film, the quantity of C of which is more than the film 13 that is, an optical band gap of which is larger than the film 13, is formed. The buffer layer is shaped through the high-frequency plasma decomposition method by using the mixed gas of SiH4, CH4 and H2. An i-type a-Si:H film 15 and an n-type crystallite Si film 16 are formed onto the buffer layer in succession, and lastly an Ag electrode 17 is evaporated, thus preparing a solar cell.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアモルファスシリコン太陽電池に係り、大きな
開放電圧を有する高効率なアモルファスシリコン太陽電
池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an amorphous silicon solar cell, and more particularly, to a highly efficient amorphous silicon solar cell having a large open-circuit voltage.

〔従来の技術〕[Conventional technology]

従来、p型層−SiC: H(水素含有アモルファス炭
化シリコン)とi型層−5i:H(水素含有アモルファ
スシリコン)によるヘテロ接合を有する太陽電池におい
て、接合のp/i界面に、カーボン量と膜厚を調整した
バッファ層を設けることにより2層と+5のバンド幅が
連続的につながるようにしτ光電変換効率を高くできる
ことが報告されている(第17回太陽エネルギー推進委
員会第11回アモルファス連絡会予稿集第194および
195頁参照)。
Conventionally, in a solar cell having a heterojunction with a p-type layer -SiC:H (hydrogen-containing amorphous silicon carbide) and an i-type layer -5i:H (hydrogen-containing amorphous silicon), the amount of carbon and It has been reported that by providing a buffer layer with an adjusted film thickness, the two layers and the +5 band width can be connected continuously and the τ photoelectric conversion efficiency can be increased (17th Solar Energy Promotion Committee 11th Amorphous (See Proceedings of the Liaison Committee, pages 194 and 195).

すなわち、この場合のバッファ層はアモルファスシリコ
ン(a−3i)であったり、またアモルファス炭化シリ
コン(a−5iC)の場合には、その光学的バンドギャ
ップ幅は、P型a−SiC:H膜とi型a−8i:H膜
のバンドギャップ幅を連続的につなげるために、P型層
側からi型層側へ向ってバンドギャップ幅が減少してい
るようなものであり、したがってP型層のバンドギャッ
プ幅と同じかより小さいもの、又はi型層と同じかより
大きいものである。
That is, in this case, the buffer layer is amorphous silicon (a-3i), or in the case of amorphous silicon carbide (a-5iC), its optical bandgap width is similar to that of the P-type a-SiC:H film. In order to continuously connect the bandgap width of the i-type a-8i:H film, the bandgap width decreases from the P-type layer side to the i-type layer side, and therefore the P-type layer The bandgap width is the same as or smaller than the bandgap width of the i-type layer.

なお、この太陽電池の性能は、光電変換効率が10%、
開放電圧が0.88Vであった。
The performance of this solar cell is that the photoelectric conversion efficiency is 10%,
The open circuit voltage was 0.88V.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術による太陽電池の開放電圧は、主要光電変
換部であるi型a−Si:H膜のバンドギャップが1.
82〜1.86 eVであることがら推定して充分な値
ではない。したがって本発明の目的は、開放電圧が大き
く、光電変換効率の高いアモルファスシリコン太陽電池
を提供することにある。
The open-circuit voltage of the solar cell according to the above-mentioned conventional technology is determined by the band gap of the i-type a-Si:H film, which is the main photoelectric conversion part, of 1.
Since it is 82 to 1.86 eV, it is not a sufficient value. Therefore, an object of the present invention is to provide an amorphous silicon solar cell with a high open circuit voltage and high photoelectric conversion efficiency.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は次の如き構成で実現出来る。即ち、ρ型、i型
、n型の各層が積層されたpin構造を有するアモルフ
ァス・シリコン太陽電池におけるP型層とi型層との間
に当該P型層よりも光学的バンドギャップ幅の大きい薄
膜を有するバッファ層を設けることである。具体例を例
示すればバッファ層として、P型a−SiC:H膜より
も光学的バンドギャップの大きいi型a−SiC:H膜
を少なくとも一層用いることである。
The present invention can be realized with the following configuration. That is, in an amorphous silicon solar cell having a pin structure in which ρ-type, i-type, and n-type layers are laminated, the optical band gap width between the P-type layer and the i-type layer is larger than that of the P-type layer. A buffer layer having a thin film is provided. A specific example is to use at least one layer of an i-type a-SiC:H film, which has a larger optical bandgap than a P-type a-SiC:H film, as the buffer layer.

〔作用〕[Effect]

該バッファ層は、2層とi層のバンドの連続性、特に伝
導帯側を従来技術に比し、より連続的につなぐ作用をな
し、その結果界面再結合速度が減少して、開放電圧が大
きくなる。バッファ層としてpJlより大きいバンドギ
ャップを有するi型a −5iC: H膜一層だけでな
く、同種類の膜で順次1ffl側へバンドギャップが漸
減するような膜を連続的にあるいは積層することにより
、上記作用は顕著となり、さらに開放電圧の増加が図れ
た。
The buffer layer acts to connect the band continuity of the 2-layer and the i-layer, especially the conduction band side, more continuously than in the prior art, and as a result, the interfacial recombination rate decreases and the open circuit voltage increases. growing. As a buffer layer, not only a single layer of i-type a-5iC:H film having a band gap larger than pJl, but also continuous or laminated films of the same type whose band gap gradually decreases toward 1ffl side, The above effect became remarkable, and the open-circuit voltage was further increased.

〔実施例〕〔Example〕

以下、本発明を実施例により説明する。 Hereinafter, the present invention will be explained by examples.

実施例1 第1図に本発明の実施例を示す。まずガラス基板11上
にITO/5n02の2層膜から成る透明導電膜12を
形成した。この上に、SiH4゜CH4,H2ベースB
 2H6の混合ガスの高周波プラズマ分解法により膜厚
80人のp型a−SiC:H膜13を形成し、さらに膜
13よりもC量が多く、シたがって膜13より光学的バ
ンドギャップの大きい膜厚80人のi型a−SiC:H
膜のバッファ層14を形成した。該バッファ層は、5i
)(a、c)I4およびH2の混合ガスを用い周知の高
周波プラズマ分解法によって成膜した。さらに、この上
にi型a−3i:H膜15.’n型微結晶SS模膜6を
順次形成し、最後にAg電極17を蒸着して太陽電池を
作成した。本太陽電池の開放電圧は0.92Vと高い値
を示し、光電変換効率は11.1%であった。
Example 1 FIG. 1 shows an example of the present invention. First, a transparent conductive film 12 consisting of a two-layer film of ITO/5n02 was formed on a glass substrate 11. On top of this, SiH4゜CH4, H2 base B
A p-type a-SiC:H film 13 with a film thickness of 80 mm was formed by high-frequency plasma decomposition of a mixed gas of 2H6, and furthermore, it contained a larger amount of C than the film 13, and therefore had a larger optical bandgap than the film 13. Film thickness 80 people i type a-SiC:H
A buffer layer 14 of the film was formed. The buffer layer is 5i
) (a, c) Films were formed by a well-known high frequency plasma decomposition method using a mixed gas of I4 and H2. Furthermore, an i-type a-3i:H film 15. An n-type microcrystalline SS pattern film 6 was sequentially formed, and finally an Ag electrode 17 was deposited to form a solar cell. The open circuit voltage of this solar cell was as high as 0.92 V, and the photoelectric conversion efficiency was 11.1%.

実施例2 第2図を用いて説明する。Example 2 This will be explained using FIG.

上記実施例1においては、バッファ層14は、P型層よ
りバンドギャップの大きいi型a−SiC二■(膜の1
層より成っているが、本実施例は、バッファ層が2層(
第1層目24.第2層目34)より構成されている太陽
電池である。該太陽電池は2層から成るバッファ層薄膜
以外は全て実施例1と同じ構造である。第2図における
2層のバッファ層は、第1層目24が2層よりバンドギ
ャップの大きい膜厚40Aのi型a−SiC:H膜であ
り、第2層目34が第1層目24のi型a −5iC:
 H膜よりバンドギャップが小さくかつi型a−5i 
: H暎15よりもバンドギャップが大きい膜厚40A
のi型a−SiC:H膜であり、P型層側からi型層側
へ向ってバッファ層24゜34の順でバンドギャップが
小さくなっている。
In the first embodiment described above, the buffer layer 14 is made of i-type a-SiC2 (one layer of the film) which has a larger band gap than the P-type layer.
However, in this example, the buffer layer consists of two layers (
1st layer 24. This solar cell is composed of a second layer 34). The solar cell had the same structure as Example 1 except for the buffer layer thin film consisting of two layers. In the two buffer layers in FIG. 2, the first layer 24 is an i-type a-SiC:H film with a film thickness of 40A with a larger band gap than the second layer, and the second layer 34 is the first layer 24. Type i a-5iC:
The bandgap is smaller than the H film and the i-type a-5i
: Film thickness 40A with larger band gap than H15
It is an i-type a-SiC:H film, and the band gap decreases in the order of buffer layers 24° to 34 from the P-type layer side to the i-type layer side.

2層のバッファ層24.34を有る本太陽電池の開放電
圧は0.95Vとより高い値を示し、光電変換効率は1
1.5%であった。
The open circuit voltage of this solar cell with two buffer layers 24.34 shows a higher value of 0.95V, and the photoelectric conversion efficiency is 1
It was 1.5%.

本実施例では、P型層側からi型層側へバンドギャップ
が小さくなる様に2層のバッファ層を積層したものであ
るが、同様に3層以上のバッファ層を積層しても同じく
高い開放電圧が得られる。
In this example, two buffer layers are laminated so that the band gap becomes smaller from the P-type layer side to the i-type layer side, but if three or more buffer layers are laminated in the same way, the band gap will be the same. Open circuit voltage can be obtained.

また、バッファ層にP型層側からi型層側へバンドギャ
ップが連続的に減少するようなグレイディソドバンドギ
ャップ層を設けてた場合も同様の結果が得られる。
Further, similar results can be obtained when the buffer layer is provided with a graded bandgap layer in which the bandgap decreases continuously from the P-type layer side to the i-type layer side.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、p型a−SiC: H膜のバンドギャ
ップよりも大きいi型a−SiC:H膜をバッファ層と
してpi接合のp/i界面に設けるのみで、アモルファ
スシリコン太陽電池の開放電圧を大きくすることができ
、その結果、開放電圧が0.9V以上、光電変換効率が
11%以上という高性能な太陽電池を簡便に、かつ低コ
ストで作製できる。
According to the present invention, by simply providing an i-type a-SiC:H film, which has a bandgap larger than that of the p-type a-SiC:H film, as a buffer layer at the p/i interface of the pi junction, it is possible to open an amorphous silicon solar cell. The voltage can be increased, and as a result, a high-performance solar cell with an open circuit voltage of 0.9 V or more and a photoelectric conversion efficiency of 11% or more can be easily produced at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、バッファ層一層からなるアモルファスシリコ
ン太陽電池の縦断面図、第2図は、バッファ層が2層の
薄、膜からなるアモルファスシリコン太陽電池の縦断面
図である。 11・・・ガラス基板、12・・・透明導電膜、13−
p型a−SiC: H膜、14−・・バッファ層、15
− i型a−3i:H膜、16− n型微結晶Si膜、
17・・・Ag電極、24・・・バッファ層の第一層、
34・・・バッファ層の第二層。
FIG. 1 is a longitudinal sectional view of an amorphous silicon solar cell having a single buffer layer, and FIG. 2 is a longitudinal sectional view of an amorphous silicon solar cell having two buffer layers. 11...Glass substrate, 12...Transparent conductive film, 13-
p-type a-SiC: H film, 14--buffer layer, 15
- i-type a-3i: H film, 16- n-type microcrystalline Si film,
17...Ag electrode, 24...First layer of buffer layer,
34...Second layer of buffer layer.

Claims (1)

【特許請求の範囲】 1、p型層、i型層およびn型層でなるpin構造を有
するアモルファスシリコン太陽電池において、該p型層
と該i型層との間に該p型層よりも光学的バンドギャッ
プ幅の大きい薄膜を少なくとも含むバッファ層を有する
ことを特徴とするアモルファスシリコン太陽電池。 2、上記バッファ層が2層以上の多層薄膜を有し、該多
層薄膜の上記p型層側の第1層は上記p型層よりも光学
的バンドギャップ幅が大きく、第2層目以降は上記p型
層から上記i型層に向って順次第1層目の光学的バンド
ギャップ幅よりも次第に光学的バンドギャップ幅が小さ
くなるようになっていることを特徴とする特許請求の範
囲第1項記載のアモルファスシリコン太陽電池。 3、上記p層がp型水素含有アモルファス炭化シリコン
(a−SiC:H)であり、上記バッファ層がi型a−
SiC:Hであることを特徴とする特許請求の範囲第1
もしくは2項記載のアモルファスシリコン太陽電池。 4、上記多層薄膜のうちの最も小さいバンドギャップ幅
が上記i型層のバンドギャップ幅より大きいことを特徴
とする特許請求の範囲第2項記載のアモルファスシリコ
ン太陽電池。
[Claims] 1. In an amorphous silicon solar cell having a pin structure consisting of a p-type layer, an i-type layer, and an n-type layer, there is a layer between the p-type layer and the i-type layer that is larger than the p-type layer. An amorphous silicon solar cell characterized by having a buffer layer including at least a thin film with a large optical bandgap width. 2. The buffer layer has a multilayer thin film of two or more layers, the first layer on the p-type layer side of the multilayer thin film has a larger optical bandgap width than the p-type layer, and the second and subsequent layers have Claim 1 characterized in that the optical bandgap width is gradually smaller from the optical bandgap width of the first layer from the p-type layer to the i-type layer. The amorphous silicon solar cell described in . 3. The p layer is p-type hydrogen-containing amorphous silicon carbide (a-SiC:H), and the buffer layer is i-type amorphous silicon carbide (a-SiC:H).
Claim 1 characterized in that it is SiC:H.
Or an amorphous silicon solar cell according to item 2. 4. The amorphous silicon solar cell according to claim 2, wherein the smallest bandgap width of the multilayer thin film is larger than the bandgap width of the i-type layer.
JP61156040A 1986-07-04 1986-07-04 Amorphous silicon solar cell Pending JPS6313380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61156040A JPS6313380A (en) 1986-07-04 1986-07-04 Amorphous silicon solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61156040A JPS6313380A (en) 1986-07-04 1986-07-04 Amorphous silicon solar cell

Publications (1)

Publication Number Publication Date
JPS6313380A true JPS6313380A (en) 1988-01-20

Family

ID=15619002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61156040A Pending JPS6313380A (en) 1986-07-04 1986-07-04 Amorphous silicon solar cell

Country Status (1)

Country Link
JP (1) JPS6313380A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0461385A (en) * 1990-06-29 1992-02-27 Sharp Corp Amorphous solar cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57160175A (en) * 1981-03-28 1982-10-02 Semiconductor Energy Lab Co Ltd Photoelectric converter
JPS60242682A (en) * 1984-05-16 1985-12-02 Hitachi Maxell Ltd Semiconductor photoelectric conversion device
JPS62106670A (en) * 1985-11-05 1987-05-18 Kanegafuchi Chem Ind Co Ltd Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57160175A (en) * 1981-03-28 1982-10-02 Semiconductor Energy Lab Co Ltd Photoelectric converter
JPS60242682A (en) * 1984-05-16 1985-12-02 Hitachi Maxell Ltd Semiconductor photoelectric conversion device
JPS62106670A (en) * 1985-11-05 1987-05-18 Kanegafuchi Chem Ind Co Ltd Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0461385A (en) * 1990-06-29 1992-02-27 Sharp Corp Amorphous solar cell

Similar Documents

Publication Publication Date Title
JP2740284B2 (en) Photovoltaic element
KR960015529B1 (en) Thin film sola cell including a spatially modulated intrinsic layer
JP2719230B2 (en) Photovoltaic element
US4289920A (en) Multiple bandgap solar cell on transparent substrate
Hamakawa et al. New types of high efficiency solar cells based on a‐Si
US20050092357A1 (en) Hybrid window layer for photovoltaic cells
JPH05243596A (en) Manufacture of laminated type solar cell
JPS59205770A (en) Photovoltaic device
JPS6313380A (en) Amorphous silicon solar cell
JPS6235680A (en) Amorphous silicon solar battery and manufacture of the same
JPH0125235B2 (en)
JPH0122991B2 (en)
JPS62159475A (en) Amorphous silicon solar cell
Krühler Amorphous thin-film solar cells
JPH0346377A (en) Solar cell
JP2632740B2 (en) Amorphous semiconductor solar cell
JPH0620151B2 (en) Amorphous solar cell
JPS61120480A (en) Photoelectric converter
JPS61135167A (en) Thin-film solar cell
JP2744680B2 (en) Manufacturing method of thin film solar cell
JP2846639B2 (en) Amorphous solar cell
JPH03101274A (en) Manufacture of amorphous solar cell
Dhere Present status of the development of thin-film solar cells
JPS632385A (en) Multilayer structure p-type silicon film and solar cell
JPH01194370A (en) Optical power generation device