JPS61120480A - Photoelectric converter - Google Patents

Photoelectric converter

Info

Publication number
JPS61120480A
JPS61120480A JP59240649A JP24064984A JPS61120480A JP S61120480 A JPS61120480 A JP S61120480A JP 59240649 A JP59240649 A JP 59240649A JP 24064984 A JP24064984 A JP 24064984A JP S61120480 A JPS61120480 A JP S61120480A
Authority
JP
Japan
Prior art keywords
layer
amorphous
photoelectric conversion
layers
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59240649A
Other languages
Japanese (ja)
Inventor
Shinichi Muramatsu
信一 村松
Juichi Shimada
嶋田 寿一
Haruo Ito
晴夫 伊藤
Sunao Matsubara
松原 直
Nobuo Nakamura
信夫 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59240649A priority Critical patent/JPS61120480A/en
Publication of JPS61120480A publication Critical patent/JPS61120480A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Abstract

PURPOSE:To obtain excellent photoelectric conversion efficiency, when a photoelectric converter is formed by using an amorphous thin film including Si, by laminating two or more layers of a layer of non-single crystal Si or Si alloy and a compound in IV, III-V and II-VI groups in the periodic table with the band gap being changed in the order of lamination. CONSTITUTION:A first P layer 2 of amorphous Si is deposited on a substrate 1 comprising SUS. A first I layer 3 comprising a super thin I layer 31 of amorphous Si and a super thin I layer 32 of amorphous SiSn, which are laminated one after another, is formed on the layer 2. Then, a first N layer 4 of fine crysal Si is deposited on the layer 3. Thus the first photovoltaic element having the P-I-N layers is constituted. Thereafter, a second P layer 5 of amorphous Si, a second I layer 6 and a second N layer 7 of fine crystal Si are formed thereon. Thus the second photovoltaic element having the P-I-N layers is constituted. In this way, the band gaps are sequentially changed in the order of lamination. The efficiency is improved up to 7.1% in comparison with the case only amorphous SiSn is used.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は光電変換装置に係り、特にバンドギャップの狭
い非単結晶材料を用いた薄膜光電変換装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a photoelectric conversion device, and particularly to a thin film photoelectric conversion device using a non-single crystal material with a narrow band gap.

〔発明の背景〕[Background of the invention]

従来、アモルファスシリコン(a−8i)を主材料とす
る光起電力装置が良く知られているが、バンドギャップ
が約i、7evと広いため可視波長域から長波長域に成
分が多い太陽光に対しては高い充電変換効率が得られて
いない。このため、よりバンドギャップの狭いアモルフ
ァス材料が求めラレアモルファスシリコン・ゲル甘ニュ
ーム(a−8i()e)、アモルファスシリコン@ii
I!<a−3i5n)等が提案されている。たとえば、
JapanJ、Appl 、 phys、、 Mol 
21 、5upp1.21−2 、’ り297〜30
2に示されるようにa−8iセルとa −8iGeセル
を組合せたダブルセルもしくはトリプルセルが、作製さ
れ、a−79iシングルセルに比べて、より高い光電変
換効率が得られている。しかしながら、GeO量が増え
るに従って光導電度が低下し、望ましいバンドギャップ
である1、4〜1.5evではa−8iに比べて1桁か
ら2桁も低くなる。このため、ダブルセル、トリプルセ
ルにおいてもシングルセルに比べて、その光電変換効率
の飛躍的な向上はなかった。
Conventionally, photovoltaic devices mainly made of amorphous silicon (A-8i) are well known, but because of their wide bandgap of about i,7ev, they are difficult to absorb sunlight that has many components in the visible wavelength range to the long wavelength range. However, high charging conversion efficiency has not been achieved. For this reason, amorphous materials with narrower band gaps are required, such as Larrea amorphous silicon gel sweet newum (a-8i()e), amorphous silicon@ii
I! <a-3i5n) etc. have been proposed. for example,
JapanJ, Appl, phys, Mol
21, 5upp1.21-2,'ri297-30
As shown in Fig. 2, a double cell or a triple cell combining an a-8i cell and an a-8i Ge cell was fabricated, and a higher photoelectric conversion efficiency was obtained than that of an a-79i single cell. However, as the amount of GeO increases, the photoconductivity decreases, and at a desirable band gap of 1.4 to 1.5 ev, it is one to two orders of magnitude lower than that of a-8i. For this reason, even in double cells and triple cells, there was no dramatic improvement in photoelectric conversion efficiency compared to single cells.

一方、アモルファス合金材料の性質を変える方法として
、異なる材料の薄膜を多層に重ね合わせることが試みら
れている。たとえば、日本学術振興会光電相互変換第i
zs姿員会、第111回研究会資料第426号に示され
る工うに、a−3iトアモルファスゲルマニューム(a
−Ge)の多層薄膜を形成し、光学的、電気的特性につ
いて検討し膜質の改造の確認が行われている。1.かし
Get多量に含むため、光導電度が低下し、光電変換効
率の大巾な向上は期待できない。
On the other hand, as a method of changing the properties of amorphous alloy materials, attempts have been made to stack thin films of different materials in multiple layers. For example, the Japan Society for the Promotion of Science Photoelectricity Interconversion Part I
The a-3i amorphous germanium (a
A multilayer thin film of -Ge) has been formed, and its optical and electrical properties have been examined to confirm modification of the film quality. 1. Since it contains a large amount of Get, the photoconductivity decreases and a significant improvement in photoelectric conversion efficiency cannot be expected.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、a−3i膜よりバンドギャップが小さ
く、光導電特性の良好な薄膜を有する光電変換効率の良
い光電変換装置を提供することにるる。
An object of the present invention is to provide a photoelectric conversion device having a thin film with a smaller bandgap and better photoconductive properties than an a-3i film and with good photoelectric conversion efficiency.

〔発明の概要〕[Summary of the invention]

本発明者は、;1−3iもしくはB−8i()eなどの
シリコン合金とこれと異なるa−8iGe、a−8in
n等のV族合金、もしくはGaASなどの■−V族化合
物、もしくはInPなどの■−■低化合物を多層に積層
した半導体膜がバンドギャップが小さく、また光導電特
性もよいことを見出した。
The present inventor has discovered that silicon alloys such as;1-3i or B-8i()e, and different a-8iGe, a-8in
It has been found that a semiconductor film formed by laminating multiple layers of a V group alloy such as n, a ■-V group compound such as GaAS, or a ■-■ low compound such as InP has a small band gap and good photoconductive properties.

特1c a −3iと!−8iGei、 a−8iとa
 −3L9nの工うにSiを共通に含む半導体の多層膜
は界面準位やトラップが生じることが少なく、単なるa
−f3iQe膜やa−3i3nより光導電特性の良い半
導体薄膜を得ることができた。
Special 1c a-3i! -8iGei, a-8i and a
-3L9n semiconductor multilayer films that commonly contain Si rarely generate interface states or traps, and are simply a
A semiconductor thin film with better photoconductive properties than the -f3iQe film and the a-3i3n film could be obtained.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

実施例1  第1図を用いて説明する。Example 1 This will be explained using FIG. 1.

808基板lの上にプラズマCVD法により非単結晶薄
膜を積層した。まず、a−79iの第1p層2t−30
0人の厚さに形成した。次にa−3iの超薄膜i層31
とa−8i3nの超薄膜i層32を交互に、それぞれ2
00人と100人の膜厚で積層して、膜厚4500 人
の第11層31r形成した。
A non-single crystal thin film was laminated on the 808 substrate l by plasma CVD. First, the first p layer 2t-30 of a-79i
It was formed to a thickness of 0 people. Next, the ultra-thin i-layer 31 of a-3i
and a-8i3n ultra-thin i-layers 32 alternately.
The 11th layer 31r having a thickness of 4,500 layers was formed by laminating layers with a thickness of 0.00 layers and a thickness of 100 layers.

このとき3iと3nの組成はS i (L711 S 
flLlsとした。次に微結晶3iの第1n層4を20
0人の厚さに形成し、以上のpin層で第1光起電力素
子とした。次に、a−3iの第2p層5t−300人、
a−3iの第21層6を1500人、微結晶StO第2
n層7t−10OAの厚さに形成し、以上のpin層で
第2光起電力素子とした。最後に透明電極8としテI 
T O(Indium ’l’in Qxide ) 
t−200OA、真空蒸着法で形成した。本構造と、第
11層3を本発明のものと同程度の光吸収係数になる4
500人のa−8iSnにしたものを比較した。
At this time, the composition of 3i and 3n is S i (L711 S
It was set as flLLs. Next, the first n layer 4 of the microcrystal 3i is
The pin layer was formed to have a thickness of 0.0 mm, and the above pin layer was used as a first photovoltaic element. Next, the second p layer 5t-300 people of a-3i,
21st layer 6 of a-3i 1500 people, microcrystalline StO 2nd
An n layer was formed to a thickness of 7t-10OA, and the above pin layer constituted a second photovoltaic element. Finally, as transparent electrode 8,
T O (Indium 'l'in Qxide)
t-200OA, formed by vacuum evaporation method. With this structure, the 11th layer 3 has a light absorption coefficient similar to that of the present invention.
A comparison was made between 500 people using A-8iSn.

太陽光下での光電変換効率は、a−8ngnのみのもの
では4.9%であったのに対し本特許構造では7.1−
と飛躍的な向上が見られた。
The photoelectric conversion efficiency under sunlight was 4.9% with only a-8ngn, but with this patented structure, it was 7.1-
A dramatic improvement was seen.

実施例2 ガラス基板上に3bドープのS n Ox透明電極を形
成し、この上にpinm太陽電池を形成した。
Example 2 A 3b-doped SnOx transparent electrode was formed on a glass substrate, and a pinm solar cell was formed thereon.

ガラス基板、透明電極は省略し、この上に形成し九pi
n層のバンド構造を第2図に示した。透明電極上にa−
3iCのp層91に:l O0人形成した。
The glass substrate and transparent electrode are omitted, and a 9-pi
The band structure of the n-layer is shown in FIG. a- on the transparent electrode
3iC p layer 91 was formed with: lO0.

次にa−8iの超薄膜i層10とa−3i()eの超薄
膜i層11〜16を交互に80人ずつ全体で5000人
になるように形成した。このときa−3iは同一形成条
件で作製した。a−3iGeは11から順に161でG
eの比率を増加させ、バンドギャップにして1.65e
Vから1.4eVまで変化させた。次に微結晶3iの1
層17を形成し、最後に、図では省略したが、A/、の
電極を真空蒸着法で形成した。この素子の光電変換効率
は7.6−で、a−8iGeのみでif@を形成した場
合の光電変換効率5.5 ’14に比べて非常に良い特
性でめった。
Next, the ultra-thin film i-layer 10 of a-8i and the ultra-thin film i-layers 11 to 16 of a-3i()e were alternately formed by 80 people each for a total of 5000 people. At this time, a-3i was produced under the same formation conditions. a-3iGe is 161 in order from 11 to G
Increase the ratio of e and make the band gap 1.65e
The voltage was varied from V to 1.4 eV. Next, 1 of microcrystal 3i
A layer 17 was formed, and finally, although not shown in the figure, electrodes A/ and 2 were formed by vacuum evaporation. The photoelectric conversion efficiency of this device was 7.6-, which was very good compared to the photoelectric conversion efficiency of 5.5'14 when if@ was formed only with a-8iGe.

なお、上記の実施例では超薄膜材料として、一方はa−
8i、もう一方はa−3i3n又はa−3iQeの例を
示したが、a−3iの替りにa−8n合金、:1−3i
3n又はa−3iQeの替りに■−■もしくは■−■化
合物を用いても、同様なメリットが得られることは明ら
かである。
In addition, in the above example, one of the ultra-thin film materials was a-
8i, the other is a-3i3n or a-3iQe, but instead of a-3i, a-8n alloy: 1-3i
It is clear that similar advantages can be obtained by using a ■-■ or ■-■ compound in place of 3n or a-3iQe.

〔発明の効果〕〔Effect of the invention〕

本発明に:れば光導電特性が良く、かつ光吸収波長範囲
の広い光電変換装置を得ることができ、これによって、
たとえば光電変換効率を飛躍的に高めることができる。
According to the present invention, it is possible to obtain a photoelectric conversion device with good photoconductive properties and a wide light absorption wavelength range.
For example, photoelectric conversion efficiency can be dramatically increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例を説明するための図、第
2因は第2の実施例のバンド構造を示す図である。 1・・・SUS基板、2・・・第1p層、3・・・第1
1層、4・・・第1n層、5・・・第2p層、6・・・
第21層、7・・・第2n層、8・・・透明電極、9・
・・p層、10・・・a−8iの超薄膜i層、11〜1
6−a−8iGeの超薄膜i層、17・・・n層、31
・・・a−8iの超薄■ 1 図 J/ t 蔦 2 品
FIG. 1 is a diagram for explaining the first embodiment of the present invention, and the second factor is a diagram showing the band structure of the second embodiment. DESCRIPTION OF SYMBOLS 1... SUS board, 2... 1st p layer, 3... 1st
1st layer, 4... 1st n layer, 5... 2nd p layer, 6...
21st layer, 7... 2nd n layer, 8... transparent electrode, 9...
...p layer, 10...a-8i ultra-thin film i layer, 11-1
6-a-8iGe ultra-thin i-layer, 17...n-layer, 31
...a-8i ultra-thin ■ 1 Figure J/t Ivy 2 items

Claims (1)

【特許請求の範囲】 1、シリコンを含む非単結晶薄膜を用いる光電変換装置
において、非単結晶シリコンもしくはシリコン合金層と
、周期律表上のIV族合金、もしくはIII−V族化合物、
もしくはII−VI族化合物が積層され、該積層物が少くと
も二層以上に重ねられた構造を有することを特徴とする
光電変換装置。 2、上記積層物を構成する薄膜のいずれか、もしくは両
方で、バンドギャップが積層順に変化していることを特
徴とする特許請求の範囲第1項記載の光電変換装置。 3、上記積層物が、一方は非単結晶シリコンもしくはシ
リコン合金、もう一方もシリコンを含有するIV族合金で
あることを特徴とする特許請求の範囲第1項もしくは第
2項記載の光電変換装置。
[Claims] 1. In a photoelectric conversion device using a non-single crystal thin film containing silicon, a non-single crystal silicon or silicon alloy layer, a group IV alloy or a group III-V compound on the periodic table,
Alternatively, a photoelectric conversion device characterized in that it has a structure in which group II-VI compounds are laminated, and the laminated product is stacked in at least two layers. 2. The photoelectric conversion device according to claim 1, wherein the band gap of one or both of the thin films constituting the laminate changes in the order of lamination. 3. The photoelectric conversion device according to claim 1 or 2, wherein one of the laminates is non-single crystal silicon or a silicon alloy, and the other is a group IV alloy containing silicon. .
JP59240649A 1984-11-16 1984-11-16 Photoelectric converter Pending JPS61120480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59240649A JPS61120480A (en) 1984-11-16 1984-11-16 Photoelectric converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59240649A JPS61120480A (en) 1984-11-16 1984-11-16 Photoelectric converter

Publications (1)

Publication Number Publication Date
JPS61120480A true JPS61120480A (en) 1986-06-07

Family

ID=17062631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59240649A Pending JPS61120480A (en) 1984-11-16 1984-11-16 Photoelectric converter

Country Status (1)

Country Link
JP (1) JPS61120480A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4926229A (en) * 1987-11-20 1990-05-15 Canon Kabushiki Kaisha Pin junction photovoltaic element with P or N-type semiconductor layer comprising non-single crystal material containing Zn, Se, H in an amount of 1 to 4 atomic % and a dopant and I-type semiconductor layer comprising non-single crystal Si(H,F) material
US5008726A (en) * 1987-11-20 1991-04-16 Canon Kabushiki Kaisha PIN junction photovoltaic element containing Zn, Se, Te, H in an amount of 1 to 4 atomic %
JP2011018884A (en) * 2009-07-07 2011-01-27 Korea Iron & Steel Co Ltd Photovoltaic device and manufacturing method thereof
JP2012094588A (en) * 2010-10-25 2012-05-17 Sharp Corp Solar cell
KR20140066219A (en) * 2011-09-23 2014-05-30 갈리움 엔터프라이지즈 피티와이 엘티디 Varying bandgap solar cell
JP2014209651A (en) * 2014-06-24 2014-11-06 セイコーエプソン株式会社 Photoelectric conversion device, electronic apparatus, photoelectric conversion device manufacturing method and electronic apparatus manufacturing method
JP2016066825A (en) * 2016-02-03 2016-04-28 セイコーエプソン株式会社 Photoelectric conversion device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4926229A (en) * 1987-11-20 1990-05-15 Canon Kabushiki Kaisha Pin junction photovoltaic element with P or N-type semiconductor layer comprising non-single crystal material containing Zn, Se, H in an amount of 1 to 4 atomic % and a dopant and I-type semiconductor layer comprising non-single crystal Si(H,F) material
US5008726A (en) * 1987-11-20 1991-04-16 Canon Kabushiki Kaisha PIN junction photovoltaic element containing Zn, Se, Te, H in an amount of 1 to 4 atomic %
JP2011018884A (en) * 2009-07-07 2011-01-27 Korea Iron & Steel Co Ltd Photovoltaic device and manufacturing method thereof
JP2012094588A (en) * 2010-10-25 2012-05-17 Sharp Corp Solar cell
KR20140066219A (en) * 2011-09-23 2014-05-30 갈리움 엔터프라이지즈 피티와이 엘티디 Varying bandgap solar cell
JP2014531758A (en) * 2011-09-23 2014-11-27 ガリウム エンタープライジズ ピーティーワイ リミテッド Variable band gap solar cell
JP2014209651A (en) * 2014-06-24 2014-11-06 セイコーエプソン株式会社 Photoelectric conversion device, electronic apparatus, photoelectric conversion device manufacturing method and electronic apparatus manufacturing method
JP2016066825A (en) * 2016-02-03 2016-04-28 セイコーエプソン株式会社 Photoelectric conversion device

Similar Documents

Publication Publication Date Title
Hamakawa et al. New types of high efficiency solar cells based on a‐Si
JPS6249672A (en) Amorphous photovoltaic element
JPH0370183A (en) Photovoltaic element
JPH0322709B2 (en)
JP2989923B2 (en) Solar cell element
CN101237000A (en) Nano crystal silicon and non crystal germanium mixed absorption layer for multi-node light voltage part based on film silicon
US4479028A (en) Amorphous solar cell
JPS6233479A (en) Solar cell
EP0137291B1 (en) Amorphous silicon solar cells
US5853498A (en) Thin film solar cell
JPS61120480A (en) Photoelectric converter
WO2001057933A1 (en) Hybrid thin-film photoelectric transducer and transparent laminate for the transducer
JPH09139515A (en) Transparent conducting film electrode
JPH0693519B2 (en) Amorphous photoelectric conversion device
JPH0595126A (en) Thin film solar battery and manufacturing method thereof
JPS59224183A (en) Photoelectric converter device
JPS61141185A (en) Manufacture of photovoltaic element
JPH05275725A (en) Photovoltaic device and its manufacture
JPS6074685A (en) Photovoltaic device
JPS59161081A (en) Thin-film solar cell
JP2946214B2 (en) Thin film solar cell
JPS62165374A (en) Amorphous photovoltaic element
JP3143392B2 (en) Stacked solar cell
Bittkau et al. Geometrical light trapping in thin c-Si solar cells beyond lambertian limit
JPS60102773A (en) Amorphous base solar battery