JPS6313281A - Metal-hydrogen alkaline storage battery - Google Patents

Metal-hydrogen alkaline storage battery

Info

Publication number
JPS6313281A
JPS6313281A JP61158435A JP15843586A JPS6313281A JP S6313281 A JPS6313281 A JP S6313281A JP 61158435 A JP61158435 A JP 61158435A JP 15843586 A JP15843586 A JP 15843586A JP S6313281 A JPS6313281 A JP S6313281A
Authority
JP
Japan
Prior art keywords
electrode
hydrogen
negative electrode
metal
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61158435A
Other languages
Japanese (ja)
Other versions
JPH0752655B2 (en
Inventor
Takanao Matsumoto
松本 孝直
Seiji Kameoka
亀岡 誠司
Shuzo Murakami
修三 村上
Sanehiro Furukawa
古川 修弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP61158435A priority Critical patent/JPH0752655B2/en
Publication of JPS6313281A publication Critical patent/JPS6313281A/en
Publication of JPH0752655B2 publication Critical patent/JPH0752655B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase storage performance and cycle performance, and to retard capacity drop caused by powdering of a negative electrode and drying up of a separator of a metal-hydrogen alkaline storage battery by arranging a nega tive electrode using hydrogen storage alloy as main active material, a positive electrode, an alkaline electrolyte, a separator, and a compound having Si-O bond. CONSTITUTION:A hydrogen storage alloy of a negative active material such as LaNi5 is crushed in fine powder, and uniformly mixed with PTFE, and they are kneaded to obtain fibrous state. The mixture is formed in paste by adding water, and sticked on the side of a nickel plated punched metal current collector to obtain a negative electrode 1. Nickel hydroxide powder is kneaded with PTFE to form paste, and the paste is sticked to a nickel plated punched metal current collector to obtain a positive electrode. The positive electrode 3 and the negative electrode 1 are arranged so that a glass fiber 2 containing SiO2 is in contact with one side of hydrogen storage electrode of the negative electrode 1, and they are spirally wound with a separator 4 to obtain a spiral electrode. The spiral electrode is inserted into a metal can and alkaline electrolyte is poured, then the container is sealed.

Description

【発明の詳細な説明】 げ)産業上の利用分野 本発明は水At吸蔵及び放出することのでさる水素吸蔵
合金を主活物質とする負jを備、を北金属−水素アルカ
リ蓄4池(:関する。
DETAILED DESCRIPTION OF THE INVENTION G) Industrial Application Field The present invention is directed to a metal-hydrogen-alkali storage cell (4) comprising a hydrogen-absorbing alloy as a main active material capable of absorbing and releasing water At. :Related.

(ロ)従来の技術 従来からよく用いられている蓄成池としてμニッケルー
カドミウム蓄電池の如きアルカリ替電池、あるいは鉛蓄
電池などがあるが、近年、これらの電池よりa量且つ高
容量で高エネルギー6度となる可能性のある。水素吸蔵
合金を用いてなる水素吸R電原を負極に備え友金属−水
素アルカリ蓄電池が注目されている。
(b) Conventional technology Storage batteries that have been commonly used in the past include alkaline replacement batteries such as μ-nickel-cadmium storage batteries, and lead-acid batteries, but in recent years, batteries with a larger amount of a, higher capacity, and higher energy than these batteries have been developed. There is a possibility that it will be 6 degrees. Friendly metal-hydrogen alkaline storage batteries, which have a negative electrode equipped with a hydrogen-absorbing R electric source made of a hydrogen-absorbing alloy, are attracting attention.

この種電池の負極に用いられる水素吸蔵合金としては、
例えば特公昭59−49671号公報に開示されている
ように、LaN1aやその改良でアル三元素系のLaN
i 4 Co 、LaNi 4Cu及びLaNi18F
・α2などの合金が知られている。これらの合金粉末を
導電材粉末と共5二焼結してなる多孔体を水素吸蔵電極
とし九り(特公昭59−49669号公報]、あるいは
これら水素吸蔵合金粉末と導電材粉本との混合物を耐電
解液性の粒子状結看剤によって電極支持体に[1ii1
看させて水素吸蔵電極とする方法(%公昭57−302
73号公報]などが採られている。又、正極としては、
ニッケルーカドミウム蓄電池など(:用−られる焼結式
ニッケル極が用いられている。
Hydrogen storage alloys used in the negative electrode of this type of battery include:
For example, as disclosed in Japanese Patent Publication No. Sho 59-49671, LaN1a and its improved Al three-element LaN
i4Co, LaNi4Cu and LaNi18F
・Alloys such as α2 are known. A porous body made by sintering these alloy powders together with conductive material powder is used as a hydrogen storage electrode (Japanese Patent Publication No. 59-49669), or a mixture of these hydrogen storage alloy powders and conductive material powder is used. [1ii1
Method of using hydrogen as a hydrogen storage electrode (% Kosho 57-302
Publication No. 73] etc. are adopted. Also, as a positive electrode,
Sintered nickel electrodes are used, such as those used in nickel-cadmium storage batteries.

しかしながらこの種の金属−水素アルカリ蓄電aは、水
素吸蔵合金よりなる負極1;吸蔵されている活性な水素
が正極と反応して自己放電し、保存特性が悪いという問
題点がある。
However, this type of metal-hydrogen alkaline storage a has the problem that the negative electrode 1 is made of a hydrogen storage alloy; active hydrogen stored therein reacts with the positive electrode to cause self-discharge, resulting in poor storage characteristics.

又、負極にSいては前記問題点に加えて、負極の水素吸
蔵合金は上記電池:二組込まれた状態において、!池の
光放電!:よりて負極活物質である水素t−aRLある
−に放出するものであり1元放電サイクル(:伴う上記
吸蔵・放出の繰り返しく;よりて合金格子が変形して微
粉化を起こすという問題もあり、微粉化した水素吸蔵合
金が電極から脱落するので電池サイクル中にお(する電
極容量の低下が大きくなってサイクル特性が低下する。
Moreover, in addition to the above-mentioned problems when using S in the negative electrode, the hydrogen storage alloy in the negative electrode is used in the above-mentioned battery. Light discharge in the pond! :Therefore, the hydrogen t-aRL, which is the negative electrode active material, is released into the hydrogen t-aRL, and the single discharge cycle (:accompanied by the repetition of the above-mentioned occlusion and release; there is also the problem that the alloy lattice deforms and causes pulverization. However, since the pulverized hydrogen storage alloy falls off from the electrode, the electrode capacity decreases significantly during battery cycling, and the cycle characteristics deteriorate.

−万、正極においてはこの種電池の保存特性が悪いとい
う前記問題点にMJえて次のような問題点がある。この
種の蓄電池は充電する際負極から水素発生がおこり電池
缶内が加圧水素雰囲気となり。
In addition to the aforementioned problem of poor storage characteristics of this type of battery, MJ has the following problems with regard to the positive electrode. When this type of storage battery is charged, hydrogen is generated from the negative electrode, creating a pressurized hydrogen atmosphere inside the battery can.

正極の充電生成物が水素Cニエリ還元される次め正極の
主活物質である金属酸化物が充電生成物である高次の醗
化物に十分なり得す、光・シネ艮になり易く、さらにこ
の傾向はサイクル数が進行すれば著しくなり電池容量の
低下につながるという問題点かあり次。ま次頁に、正極
≦二おいてに金属酸化物を主活物質とする正極がサイク
ル数の進行とともに膨張し、電解at吸収するためセパ
レータ部のドライアウトが発生し電池容量が低′F′T
ると−りた問題点もある◎ (epラ  発明が解決しようとする問題点不発8Aは
、水素吸蔵合金を主活物質とする負極を備えた金属−水
素アルカリ蓄電池の保存特性を大幅5:改善すること金
主たる目的とする。また本発明はサイクル特性を向上さ
せることを目的とし%j!に本発明にこの種電池の負極
微粉化C二伴う容量低下、正極が膨張しfILIIiI
液を吸収することC二基づくセパレータ部のド2イアウ
)Iニー!る容量低下を抑制することを目的とするもの
である。
After the charged product of the positive electrode is reduced by hydrogen C, the metal oxide, which is the main active material of the positive electrode, can become a charged product of higher-order oxides, which is susceptible to light and cine emissions, and furthermore. This tendency becomes more noticeable as the number of cycles increases, leading to a decrease in battery capacity, which is a problem. On the next page, when the positive electrode is ≦2, the positive electrode whose main active material is a metal oxide expands as the number of cycles progresses and absorbs the electrolytic at. This causes dry-out of the separator, resulting in a low battery capacity. T
Problem 8A that the invention aims to solve is that the storage characteristics of a metal-hydrogen alkaline storage battery equipped with a negative electrode whose main active material is a hydrogen-absorbing alloy are significantly improved by 5: The main purpose of the present invention is to improve the cycle characteristics.In addition, the present invention aims to improve the cycle characteristics.
Separator part based on absorbing liquid C2) I knee! The purpose of this is to suppress the decrease in capacity due to

、組 に)問題を解決する丸めの手段 八 本宛BAは、水素吸蔵合金を主活物質とする負極と正極
と、アルカリ電解液と、セパレータと。
, group) Rounding means to solve the problem The eight BAs are a negative electrode and a positive electrode whose main active material is a hydrogen storage alloy, an alkaline electrolyte, and a separator.

前記アルカリ電解液に溶解しりる5i−0結合を有する
化合物より構成されることを特徴とする金属−水素アル
カリ蓄電池4−ある。
There is a metal-hydrogen alkaline storage battery 4 characterized in that it is composed of a compound having a 5i-0 bond that dissolves in the alkaline electrolyte.

尚、5i−o結合を有する化合物としては、二酸化ケイ
素、ケイ酸塩、シラノール、オルトケイ酸エチル、オル
トケイ酸メチルなどが上げられ。
Incidentally, examples of the compound having a 5i-o bond include silicon dioxide, silicate, silanol, ethyl orthosilicate, methyl orthosilicate, and the like.

前記化合物の形態としては二酸化ケイ素(S102)t
″含むガラス繊維体、或いは液状のケイ酸ナトリウムな
どが好適する。
The form of the compound is silicon dioxide (S102)t
A glass fiber body containing ``3'' or liquid sodium silicate is suitable.

また、5t−O結合を有する化合物の形態としてガラス
繊維体を用いる時は、正負極間に介挿すれば良く、又液
体もしくは粉末として用する時C二は、アルカリ電解液
中1−添加したり、電極製造時の活物質ペースト中(=
混入すれば良い。
In addition, when a glass fiber body is used as a form of a compound having a 5t-O bond, it is sufficient to insert it between the positive and negative electrodes, and when used as a liquid or powder, C2 is added to the alkaline electrolyte. or in the active material paste during electrode manufacturing (=
Just mix it in.

(ホ)作 用 アルカリ゛tIL解液C;溶解しうるSl−〇結合を有
する化合物七蓄電池円(−組込むことζ:ぷり、アルカ
リ電解液と反応してケイ酸が生成し、これが縮合して高
分子化合物になり正負極表面勿後う。
(E) Action Alkaline solution C: A compound having a soluble Sl-〇 bond. A polymer compound forms on the surface of the positive and negative electrodes.

この高分子化合物は8104の基本構成単位よりなる化
合物であって、立体網目状構造となり、このn造中をこ
のf(を池の放電橿であるOH−は透過できるが、正愼
より発生する酸素ガスに0ff−より大きいため前記構
造中を通過できないので。
This polymer compound is a compound consisting of the basic structural unit of 8104, and has a three-dimensional network structure, and this f(OH), which is the discharge rod of the pond, can pass through this structure, but it is generated from the Since the oxygen gas is larger than 0ff-, it cannot pass through the structure.

保存*注の劣化つまり自己放電の原因である正極からの
酸素発生および酸系拡散を抑制することができる0尚、
前記高分子化合物中を放電種であるOH−が何ら影響を
受Cすず通過できるので放電特性C:例ら悪影!#金与
えるものではない。
It can suppress oxygen generation and acid diffusion from the positive electrode, which is the cause of storage *note deterioration or self-discharge.
Since OH-, which is a discharge species, can pass through C tin without any influence in the polymer compound, discharge characteristic C: For example, bad shadow! #It's not about giving money.

特セ負極(:接するようcsiozg含むガラス繊維体
を配置することにより、アルカリ電解液と反応して生成
したケイ酸が負極の主活物質である水素吸蔵合金の表面
(=吸着され、これが縮合し、高分子化合物となりて、
水素吸蔵合金の表面上部分的C:榎うことC:よりて、
アルカリ電解液C:よる腐食による水素吸蔵能力の低下
を抑えると共に。
By arranging the glass fiber body containing csiozg in contact with the special negative electrode, the silicic acid produced by reaction with the alkaline electrolyte is adsorbed on the surface of the hydrogen storage alloy, which is the main active material of the negative electrode, and this is condensed. , becomes a polymer compound,
Partial C on the surface of the hydrogen storage alloy: Enoki C: By,
Alkaline electrolyte C: suppresses the decline in hydrogen storage capacity due to corrosion.

粒子間の結着力も縮合により生じる高分子化合物4:よ
り向上するため負極活物質の微粉化、脱落及び8盪低下
を抑制することができる。
Since the binding force between particles is further improved by the polymer compound 4 produced by condensation, it is possible to suppress pulverization, shedding, and a decrease in the density of the negative electrode active material.

また特に、正極C:戻するよう1::5iOzを含むガ
ラス繊維体を配置することにより、アルカリ電解液と反
応して生成したケイ酸が正極の主活物質である金属酸化
物の表面ζ二吸着され、これが縮合し、高分子化合物と
な9て金属酸化物の表面を部分的に覆い、電池内の加圧
水素雰囲気(:よる還元を抑制すると同時に、前記高分
子化合物が正極の膨張をおさえ、正極の保液斂の増77
0を抑制することができ、tパレータ部のドライアラ)
t−抑制しりる。
In particular, by arranging the glass fiber body containing 1::5 iOz so as to return the positive electrode C, the silicic acid produced by reacting with the alkaline electrolyte is absorbed onto the surface of the metal oxide, which is the main active material of the positive electrode. This is adsorbed and condenses to form a polymer compound that partially covers the surface of the metal oxide, suppressing the reduction caused by the pressurized hydrogen atmosphere inside the battery, and at the same time, the polymer compound suppresses the expansion of the positive electrode. , increase in liquid retention of the positive electrode77
0 can be suppressed and the dryer of the t pallet part)
t-suppression.

一万、ケイ酸ナトリウムを用いた場合には前記作用効果
(:加え、ケイ酸ナトリウムが水溶性であることから、
電池構成を変更することなく添加できるので、工程上き
わめて何利である。
10,000, when using sodium silicate, the above-mentioned effects (: In addition, since sodium silicate is water-soluble,
Since it can be added without changing the battery structure, it is extremely advantageous in terms of the process.

更にペースト混線時にケイ酸ナトリウムを添刀口すると
、負極全体が前記高分子化合物にょつて結着されるので
負極の強度が向上し、−万電解液にケイ酸ナトリウム金
添加した時はケイ酸ナトリウムの浸透により前e高分子
化合物が負極全面?覆うので保存特性が向上する。
Furthermore, if sodium silicate is added when paste is mixed, the entire negative electrode will be bound by the polymer compound, improving the strength of the negative electrode. Does the pre-e polymer compound cover the entire surface of the negative electrode due to penetration? Covering improves storage properties.

(へ)実 施 例 実施例1 負極活物質としてLaN15i粉砕して微粉化したもの
を96重量部、PTFE(フッ素樹脂]粉末に6mff
1部添加し均一に混合しPTF’Et−繊維化させる。
(F) Examples Example 1 96 parts by weight of LaN15i crushed and pulverized as a negative electrode active material, 6 mff of PTFE (fluororesin) powder
Add 1 part and mix uniformly to form PTF'Et-fiber.

これに水k 710 、tてペースト状とじニッケルメ
ツキラ施したパンチングメタル集電体の両面C二貼り付
は負極を得る。同様(:水酸化ニッケル粉末にPTF’
Et−加え1練し、ペースト状とした後ニッケルメッキ
tsしたパンチングメタル集電体に砧り付Cす、ニッケ
ル正極を得た。このよう(−シて傅らnた正極(3八負
極(IJtg1図に示すように5102を含むガラス繊
維体(2)が負極(1)の水素吸蔵電極の片面に便する
ように配置し、ポリプロピレン製のセパレータ(4〕と
共に巻回し渦巻ta体を得、電池外装缶にこの電極体を
挿入した後アルカリ電解液を注入し、封口全行い公称8
濾1200mAHの本宛舅電池へ金作裂した。
A negative electrode is obtained by pasting a punched metal current collector on both sides of the punched metal current collector coated with water and coated with nickel. Similar (: PTF' to nickel hydroxide powder)
Et was added and kneaded once to form a paste, which was then ground onto a nickel-plated punched metal current collector to obtain a nickel positive electrode. In this way, the positive electrode (38 negative electrode (IJtg1) as shown in the figure, the glass fiber body (2) containing 5102 is placed on one side of the hydrogen storage electrode of the negative electrode (1), After winding together with a polypropylene separator (4) to obtain a spiral ta body, and inserting this electrode body into a battery outer can, an alkaline electrolyte was injected, and the seal was completely sealed to a nominal 8.
I used a 1200mAH battery for this purpose.

実施例2 第2図に示す如(,5in2を含むガラスa維体(2)
が負極(1)の両面と便して9る渦巻電極体を用いるこ
とを除いては、実施例1と同様(=シて不発F!A電池
(B) ’に得た。
Example 2 As shown in FIG.
A non-exploding F!A battery (B)' was obtained in the same manner as in Example 1, except that a spiral electrode body was used in which the electrode body was connected to both sides of the negative electrode (1).

実施例3 第3図に示す如<、5iO22含むガラス繊維体(2)
が正極(3)片面と戻して−る渦巻電極体を用いること
金除いてに、実施例1と同様C;シて本発明電池0を得
た。
Example 3 As shown in FIG. 3, a glass fiber body (2) containing 5iO22
A battery 0 of the present invention was obtained in the same manner as in Example 1, except that a spiral electrode body was used in which the positive electrode (3) was placed on one side and the other was placed on one side.

実施例4 第4図に示す如(、S i 02を含むガラス繊維体(
2)が正極(3)の両面と接している渦巻電極体を用い
ることを除いてri、実施例1と同様C;して本発明電
池〇を得た〇 実施例5 前述の実施例1と同様にして得た負極ペースト(:ケイ
酸ナトリウム(水ガラス)lOffijt%添加し、混
線後、負極を得九。この負極を用−810zi含む繊維
体?用いない他は、実施例1と同様の本発明電池■を作
表した。
Example 4 As shown in FIG.
2) was the same as in Example 1 except that a spiral electrode body in contact with both surfaces of the positive electrode (3) was used to obtain the present invention battery 〇 Example 5 The above-mentioned Example 1 and A negative electrode paste obtained in the same manner (1Offijt% of sodium silicate (water glass) was added, and after crosstalk, a negative electrode was obtained. This negative electrode was used in the same manner as in Example 1, except that a fibrous body containing -810zi was not used. The battery of the present invention (■) was tabulated.

実施例6 前述の実施例1(:おいて5iOzi含む繊維体金円い
ず、ケイ酸ナトリウム全10憲濾%溶解させfc!解液
金用い次他ぼ、実施列1と同様の本発明1!池Dケ作製
した。
Example 6 The present invention 1, which is similar to Example 1, was prepared using the above-mentioned Example 1. !Pond Dke was created.

比較例 第5図に示すy口(Si02を含むガラス繊維体を用い
ない以外に、実施例1と同様にして比較電池Ot得次。
Comparative Example A comparative battery was prepared in the same manner as in Example 1, except that the glass fiber body containing Si02 was not used as shown in FIG.

こルらの本発明4池囚、(均、 0. (DJ、(ハ)
、(0及び、比較電池(ロ)i12QmAで16時間元
光電。
These four inventors of the present invention, (Hitoshi, 0. (DJ, (c)
, (0 and comparison battery (b) i12QmA for 16 hours.

次いで240 mAr’i!am圧がl0VI:q゛る
迄放電しサイクル特性の比較を行りた。その結果を第6
図に示す。
Then 240 mAr'i! The batteries were discharged until the am pressure reached 10VI:q, and the cycle characteristics were compared. The result is the 6th
As shown in the figure.

次に第7因C二、電池光電後の放置日数と電池残存容量
との関係を深存特性比較図として示す。保存考性につい
ていえば、本発明電池^、(BハC)。
Next, the seventh factor C2, the relationship between the number of days the battery is left after photovoltaic charging and the remaining battery capacity, is shown as a deep characteristic comparison diagram. In terms of storage properties, the battery of the present invention^, (Bc).

@、 @、 (F)が比較電池O)(:比へ、大幅に向
上している。こればアルカリ電屏液区二ft!4解し生
成されるケイ酸が縮合してできた高分子化合物#−1:
5IO4t−基本構底単位とし立体綱目状構造tとり、
この網目簿造中を正極から発生する酸素及び拡散する酸
素が通過で@ないので、負極の活性な水素と反応し、消
費さnないので、保存特注が向上したと考えらnる。
@, @, (F) is a comparative battery O) (: The ratio has been significantly improved. This is a polymer made by condensation of silicic acid produced when an alkaline electric folding liquid is 2ft!4 dissolved. Compound #-1:
5IO4t-Basic basic unit with three-dimensional mesh structure t,
Since the oxygen generated from the positive electrode and the oxygen that diffuses do not pass through this mesh structure, they react with the active hydrogen of the negative electrode and are not consumed, which is thought to improve the storage customization.

一万更(:、第6図より明らかなよう(=1本発明1池
四、 CIIQ、 (Q、 りJ、(ハ)、Dに比較電
池qに比ベサイクル特性がよい。これに電池内csi−
0結合を有する化合物が、アルカリ電解液と反応しケイ
酸を生じ、これが縮合し、高分子化合物を生じたためと
考えられる。サイクル試験後S i O22含むガラス
繊維体を組込んだ本発明4池囚、但)。
As is clear from Figure 6, CIIQ, (Q, RiJ, (c), D has better cycle characteristics than comparative battery q. csi-
It is thought that this is because a compound having a 0 bond reacts with an alkaline electrolyte to produce silicic acid, which condenses to produce a polymer compound. After the cycle test, the present invention incorporated a glass fiber body containing S i O22.

0.0.及び前記繊維体を用いない比較電池At分解し
、検討した。
0.0. A comparative battery using no fibrous body was disassembled and examined.

特C:負極1:り一てみると比較電池O】は8102を
含むガラス繊維体を組込んでいないので、水素吸蔵合金
の微粉化が著しく進行しており、分析の結果LaN1a
が減少し、アルカリ電解液の影響により生成したと筒先
られるLa(OH)3が多量に形成されていた0これ5
二対し1本発明4池囚、(P9の負極は5iOz2含む
ガラス繊維体と戻してするので水素吸蔵合金の微粉化の
進行が遅くムa(OH)sの生成量も少ない。−万、挿
入したガラス繊維体を観察すると、ガラス繊維体が薄く
なって4九。ここで本発明電池0の負極(:おいてSl
の分布2EPMA分析にて検討してみると、@9図C;
示す如く、主1:slは負極の表面部分に分布し、負極
活物質を保持していると同時に、酸素ガスの拡散、侵入
を抑制していると考えられる。
Special C: Negative electrode 1: Comparative battery O] did not incorporate a glass fiber body containing 8102, so the hydrogen storage alloy was significantly pulverized, and analysis revealed that LaN1a
decreased, and a large amount of La(OH)3, which was thought to have been generated due to the influence of the alkaline electrolyte, was formed.
2 vs. 1 Invention 4 (The negative electrode of P9 is made back with the glass fiber body containing 5iOz2, so the progress of pulverization of the hydrogen storage alloy is slow and the amount of mu(OH)s produced is small. - 10,000, Insert When the glass fiber body was observed, it was found that the glass fiber body became thinner.
When considering the distribution of 2 EPMA analysis, @9 Figure C;
As shown, the main 1:sl is distributed on the surface of the negative electrode, and is thought to hold the negative electrode active material and at the same time suppress the diffusion and intrusion of oxygen gas.

負極と接する工うに1PrCガラス繊維体を配置するこ
とにより、アルカリを解液に#紀ガラス繊維体が溶解し
、ケイ酸が生じ、これが縮合し高分子化合物が生成され
、水素吸蔵合金負極の表面を覆い、腐蝕による水素吸蔵
能力の低下金おさえると共に、前記高分子化合物C:よ
りて水素吸蔵合金粒子が強力(:結着保持されるので、
負極の微粉化。
By placing the 1PrC glass fiber body in contact with the negative electrode, the glass fiber body dissolves in the alkali solution, producing silicic acid, which condenses to produce a polymer compound, which causes the surface of the hydrogen storage alloy negative electrode to dissolve. In addition to suppressing the decrease in hydrogen storage capacity due to corrosion, the hydrogen storage alloy particles are strongly bound and retained by the polymer compound C.
Micronization of negative electrode.

脱落、容量低下を抑制したと考えられる。This is thought to have suppressed shedding and capacity reduction.

また特に正極と戻する工うに前記ガラス繊維体を配置し
た本発明電池0,0は比較電池0に比べ。
In particular, batteries 0 and 0 of the present invention in which the glass fiber body was disposed between the positive electrode and the return port were compared with comparative battery 0.

第6図かられかるように初期容量が大きい。この種の金
属−水素アルカリ蓄toの容tは正極支配であることか
ら、正極容量が増大したため初期容量が大きくなったと
考えられる。初期容量について(Di > (C) >
 (Qの関係はサイクル数が進行しても変らず、電池8
董に光電生成物である高次の酸化物Ni0OHの址全示
している。このNi00Hは高次の酸化物であるため、
不安定で刀口圧水素雰囲気下に置かれると容易1:N1
(OH)2に変化し放電生成物となる。本発明電池0.
(qぽ5lozを含むガラス繊維体が正極と接するよう
に配置されており、アルカリ電解液と反応してケイ収が
生成し、これが縮合し、高分子化合物が生じ正極活物質
を部分的(:4うため、光電生成物であるN100Hと
、を池缶内の加圧水素との反応が伸側され、N1(OH
)zt二遷元される量が減少し、光電効率が向上し、そ
れに伴い電池容量が増加したと考えられる。また5ot
イクルを経過した;池を分解すると比較電池0の正極は
膨張し多量の電解液を含んでい九が2本発明5a(c入
0の前Cガラス繊維体と接していた部分の正極は膨張が
小さく適度の電解液を含んでいた。
As can be seen from FIG. 6, the initial capacity is large. Since the capacity t of this type of metal-hydrogen alkali storage to is dominated by the positive electrode, it is thought that the initial capacity increased because the positive electrode capacity increased. Regarding initial capacity (Di > (C) >
(The relationship between Q does not change as the number of cycles progresses, and the relationship between
The entire history of the higher-order oxide Ni0OH, which is a photoelectric product, is shown here. Since this Ni00H is a high-order oxide,
It is unstable and easily becomes 1:N1 when placed in a sword-pressure hydrogen atmosphere.
It changes to (OH)2 and becomes a discharge product. Battery of the present invention 0.
(The glass fiber body containing qpo5loz is arranged so as to be in contact with the positive electrode, and it reacts with the alkaline electrolyte to generate silicon yield, which condenses to form a polymer compound that partially removes the positive electrode active material (: 4, the reaction between the photoelectric product N100H and the pressurized hydrogen in the tank is extended, and N1(OH
) It is thought that the amount of zt two-transition elements decreased, the photoelectric efficiency improved, and the battery capacity increased accordingly. Also 5ot
When the battery was disassembled, the positive electrode of comparative battery 0 expanded and contained a large amount of electrolyte. was small and contained a moderate amount of electrolyte.

尚、実施例において負極に水素吸蔵合金としてLaNi
 s、正極としてニッケル極を示したが何らこれらに限
定されず、水素吸蔵合金としてT1−Ni系合金、Tl
−Mn系合金、正極として酸化銀1X極などt用いるこ
とが可屈である。
In addition, in the examples, LaNi was used as a hydrogen storage alloy in the negative electrode.
s, a nickel electrode is shown as a positive electrode, but it is not limited to these in any way, and hydrogen storage alloys such as T1-Ni alloy, Tl
- It is flexible to use a Mn-based alloy and a silver oxide 1X electrode as the positive electrode.

(ト)発明の効果 水素吸蔵合金よりなる負極?備える輩4−水素アルカリ
蓄を池(:おいてアルカリ電解液に溶解しうる5i−0
結合を有する化合物1:t#起起電同円C二組むことC
二より、保存特性の向上が計れ rKL池容址の低下全
抑制しティクル特性(:優れた金属−水素アルカリ蓄電
池が得られる。ま九特C二、負極と戻するよう1ニー5
iOzt−含むガラス繊維体を配置した時は水素吸蔵合
金の脱落及び腐食が抑制され、−万、正極と便するよう
≦:5iOz=2含むガラス穢維体t−配置した時には
ティクル特注の向上シニ加え、!池初期容量が大幅!−
南向上る。また更(;、ケイ酸ナトリウムを用い九時は
何ら電池簿成金変えることなく、添加でき前記効果が得
られるのでその工業的価値はきわめて大きい。
(G) Effect of the invention Negative electrode made of hydrogen storage alloy? Preparation 4 - Hydrogen alkaline storage in a pond (: 5i-0 that can be dissolved in alkaline electrolyte)
Compound 1 with bond: t# electromotive same circle C pairing C
From the second point, it is possible to improve the storage characteristics, completely suppress the decrease in the KL pond capacity, and obtain an excellent metal-hydrogen alkaline storage battery.
When a glass fiber body containing iOzt is placed, the falling off and corrosion of the hydrogen storage alloy is suppressed, and when a glass fiber body containing 5iOz=2 is placed to be convenient for use with the positive electrode, Tickle's custom-made improvement sink is placed. In addition! The initial capacity of the pond is significantly increased! −
The south improves. Furthermore, when sodium silicate is used, it can be added without changing the battery structure in any way and the above effects can be obtained, so its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

M1図rj S I 02 ′f:含むガラス繊維体が
負極の片面のみと接している本発明電池(8)の渦巻電
極体の図S第2図は5IOz2含むガラス繊維体が負極
の両面と僅している本発明゛電池(均の渦巻電極体の図
、第3図は5iOzi含むガラス繊維体が正極の片面の
みと接している本発明’Ha(C)の渦巻電極体の図、
第4図ぼSiO+全含むガラス繊維体が正極の両面と接
している本発明を池0の渦巻電極体の図、第5図は比較
電池qの渦巻電極体の図。 第6図にサイクル神注比較図、第7図は保存特注比較図
、248図は比較電池q負極のStのEMPA分析図、
第9図は本発明′電池(均負極のSlのEMF’A分析
図である。 (1)・・・負為(水素吸蔵合金′1極)、(2J・・
・5102を含むガラス繊維体、(3)・・・正極にッ
ケル極へ(4)・・・セパレータ。 囚、じね(CJ、 (DJ、■、0・・・本発明電池0
・・・比較電池
Fig. M1 rj SI 02 'f: Fig. S of the spiral electrode body of the present invention battery (8) in which the glass fiber body containing the glass fiber body is in contact with only one side of the negative electrode. Figure 3 is a diagram of the spiral electrode body of the present invention'Ha(C) in which the glass fiber body containing 5iOzi is in contact with only one side of the positive electrode.
FIG. 4 is a diagram of a spiral electrode body of cell 0 according to the present invention in which a glass fiber body containing all SiO+ is in contact with both surfaces of the positive electrode, and FIG. 5 is a diagram of a spiral electrode body of comparative cell q. Figure 6 is a cycle comparison diagram, Figure 7 is a preservation custom comparison diagram, Figure 248 is an EMPA analysis diagram of St of comparative battery q negative electrode,
Figure 9 is an EMF'A analysis diagram of Sl of the present invention's battery (equalized negative electrode).
-Glass fiber body containing 5102, (3)...to the positive electrode to the Kkel electrode (4)...separator. Prisoner, Jine (CJ, (DJ, ■, 0...Battery of the present invention 0)
・・・Comparison battery

Claims (6)

【特許請求の範囲】[Claims] (1)水素吸蔵合金を主活物質とする負極と、正極と、
アルカリ電解液と、セパレータと、前記アルカリ電解液
に溶解しうるSi−O結合を有する化合物よりなること
を特徴とする金属−水素アルカリ蓄電池。
(1) A negative electrode whose main active material is a hydrogen storage alloy, and a positive electrode,
A metal-hydrogen alkaline storage battery comprising an alkaline electrolyte, a separator, and a compound having an Si-O bond that can be dissolved in the alkaline electrolyte.
(2)前記アルカリ電解液に溶解しうる化合物として二
酸化ケイ素、ケイ酸ナトリウムを用いることを特徴とす
る特許請求の範囲第(1)項記載の金属−水素アルカリ
蓄電池。
(2) The metal-hydrogen alkaline storage battery according to claim (1), characterized in that silicon dioxide or sodium silicate is used as the compound that can be dissolved in the alkaline electrolyte.
(3)前記二酸化ケイ素を含むガラス繊維体を、負極に
接するように配置したことを特徴とする特許請求の範囲
第(2)項記載の金属−水素アルカリ蓄電池。
(3) The metal-hydrogen alkaline storage battery according to claim (2), wherein the glass fiber body containing silicon dioxide is arranged so as to be in contact with a negative electrode.
(4)前記二酸化ケイ素を含むガラス繊維体を、正極に
接するように配置したことを特徴とする特許請求の範囲
第(2)項記載の金属−水素アルカリ蓄電池。
(4) The metal-hydrogen alkaline storage battery according to claim (2), wherein the glass fiber body containing silicon dioxide is arranged so as to be in contact with a positive electrode.
(5)前記ケイ酸ナトリウムを、前記アルカリ電解液中
に添加したことを特徴とする特許請求の範囲第(2)項
記載の金属−水素アルカリ蓄電池。
(5) The metal-hydrogen alkaline storage battery according to claim (2), wherein the sodium silicate is added to the alkaline electrolyte.
(6)前記ケイ酸ナトリウムを、前記水素吸蔵合金を主
活物質とする負極中に添加したことを特徴とする特許請
求の範囲第(2)項記載の金属−水素アルカリ蓄電池。
(6) The metal-hydrogen alkaline storage battery according to claim (2), wherein the sodium silicate is added to a negative electrode whose main active material is the hydrogen storage alloy.
JP61158435A 1986-07-04 1986-07-04 Metal-hydrogen alkaline storage battery Expired - Lifetime JPH0752655B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61158435A JPH0752655B2 (en) 1986-07-04 1986-07-04 Metal-hydrogen alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61158435A JPH0752655B2 (en) 1986-07-04 1986-07-04 Metal-hydrogen alkaline storage battery

Publications (2)

Publication Number Publication Date
JPS6313281A true JPS6313281A (en) 1988-01-20
JPH0752655B2 JPH0752655B2 (en) 1995-06-05

Family

ID=15671701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61158435A Expired - Lifetime JPH0752655B2 (en) 1986-07-04 1986-07-04 Metal-hydrogen alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH0752655B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02276172A (en) * 1989-04-18 1990-11-13 Sanyo Electric Co Ltd Metal-hydrogen alkaline battery
EP0419221A2 (en) * 1989-09-18 1991-03-27 Toshiba Battery Co., Ltd. Nickel-metal hydride secondary cell
JP2002367669A (en) * 2001-06-04 2002-12-20 Matsushita Electric Ind Co Ltd Alkaline battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4925135A (en) * 1972-06-29 1974-03-06
JPS60109183A (en) * 1983-11-17 1985-06-14 Matsushita Electric Ind Co Ltd Sealed type nickel-hydrogen storage battery
JPS62234876A (en) * 1986-04-04 1987-10-15 Sharp Corp Manufacture of battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4925135A (en) * 1972-06-29 1974-03-06
JPS60109183A (en) * 1983-11-17 1985-06-14 Matsushita Electric Ind Co Ltd Sealed type nickel-hydrogen storage battery
JPS62234876A (en) * 1986-04-04 1987-10-15 Sharp Corp Manufacture of battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02276172A (en) * 1989-04-18 1990-11-13 Sanyo Electric Co Ltd Metal-hydrogen alkaline battery
EP0419221A2 (en) * 1989-09-18 1991-03-27 Toshiba Battery Co., Ltd. Nickel-metal hydride secondary cell
JP2002367669A (en) * 2001-06-04 2002-12-20 Matsushita Electric Ind Co Ltd Alkaline battery

Also Published As

Publication number Publication date
JPH0752655B2 (en) 1995-06-05

Similar Documents

Publication Publication Date Title
JPH04137368A (en) Nickel-hydrogen storage battery and its manufacture
JP3358702B2 (en) Nickel electrode for alkaline storage battery
JPS6313281A (en) Metal-hydrogen alkaline storage battery
JP2001093526A (en) Alkaline storage battery and its manufacturing method
JP2001266867A (en) Alkaline battery and positive electrode for use in alkaline battery
JPH1173957A (en) Alkaline storage battery and manufacture of nickel positive pole plate thereof
JP2858862B2 (en) Metal-hydrogen alkaline storage battery
JPH05258748A (en) Hydride secondary battery
JPH08138658A (en) Hydrogen storage alloy-based electrode
JP3144879B2 (en) Metal-hydrogen alkaline storage battery
KR100405016B1 (en) Hydrogen Absorbing Alloy Electrode and Method of Producing the Same
JP2566912B2 (en) Nickel oxide / hydrogen battery
JP2008300216A (en) Lead-acid battery having low-gelation electrolyte
JP2568967B2 (en) Manufacturing method of sealed nickel-hydrogen secondary battery
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JP2994704B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2001035526A (en) Nickel hydrogen storage battery
JP3619703B2 (en) Method for producing nickel electrode for alkaline storage battery
JP2846707B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JPH06283170A (en) Nickel-hydrogen battery
JP3863703B2 (en) Hydrogen storage alloy electrode and alkaline storage battery
JPH103940A (en) Nickel-metal hydride storage battery and its manufacture
JP2003187804A (en) Nickel/hydrogen storage battery
JPH0883623A (en) Nickel-hydrogen secondary battery
JPH03274676A (en) Nickel-hydrogen battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term