JPS63131545A - Manufacture of semiconductor integrated circuit device - Google Patents

Manufacture of semiconductor integrated circuit device

Info

Publication number
JPS63131545A
JPS63131545A JP27641986A JP27641986A JPS63131545A JP S63131545 A JPS63131545 A JP S63131545A JP 27641986 A JP27641986 A JP 27641986A JP 27641986 A JP27641986 A JP 27641986A JP S63131545 A JPS63131545 A JP S63131545A
Authority
JP
Japan
Prior art keywords
film
excimer laser
psg film
silicon oxide
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27641986A
Other languages
Japanese (ja)
Inventor
Toshikazu Nakada
中田 俊和
Takashi Toida
戸井田 孝志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP27641986A priority Critical patent/JPS63131545A/en
Publication of JPS63131545A publication Critical patent/JPS63131545A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To flatten the stepped section of the surface of an silicon oxide film gently by irradiating the whole surface of the silicon oxide film, to which phosphorus is added, with excimer laser beams of a wavelength of 200nm or less and heating the whole surface of the silicon oxide film. CONSTITUTION:When heat treatment at a high temperature of approximately 1000 deg.C is executed, an inclination at the stepped section of a PSG film is made easy, but impurity atoms are further diffused and redistributed. When the PSG film 20 is irradiated with excimer laser beams 22 and heated as a method in which the impurity atoms are not redistributed, the PSG film 20 is made to reflorw, and the inclination of the stepped section is flattened gently. Since excimer laser beams 22 are absorbed to the PSG film 20, excimer laser beams 22 do not reach to a semiconductor substrate as the lower layer of the PSG film 20, and redistribution by the rediffusion of the impurity atoms is not generated, thus acquiring a semiconductor integrated circuit device having high reliability.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体集積回路装置の多層配線の眉間絶縁膜お
よび表面保護膜として用いるリンを添加した酸化シリコ
ン膜の表面段差を緩やかに平坦化を行なう方法に関する
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a method for gently flattening the surface steps of a phosphorus-doped silicon oxide film used as an insulating film between the eyebrows and a surface protective film of multilayer wiring of a semiconductor integrated circuit device. Concerning how to do it.

〔従来の技術〕[Conventional technology]

半導体集積回路装置の多層配線の層間絶縁膜および表面
保護膜としては、ナトリウムイオンに対してゲッタリン
グ効果を持つリンを添加した酸化シリコン膜(以下PS
G膜と記す)が用いられている。PSGKK上に形成す
る配線金属膜の被覆性を改善し段差部での配線金属の断
線を防止し、半導体集積回路装置の信頼性を向上させる
必要がある。このためPSG膜の急峻な段差部の傾斜を
緩やかに平坦化するため、いわゆるリフローと呼ばれる
1 000℃程度の高温熱処理を拡散炉で行なっている
As interlayer insulating films and surface protective films for multilayer wiring in semiconductor integrated circuit devices, silicon oxide films doped with phosphorus (hereinafter referred to as PS), which have a gettering effect on sodium ions, are used
G film) is used. It is necessary to improve the coverage of the wiring metal film formed on the PSGKK, to prevent disconnection of the wiring metal at the step portion, and to improve the reliability of the semiconductor integrated circuit device. Therefore, in order to gently flatten the steep slope of the PSG film, a high-temperature heat treatment of about 1000° C., called reflow, is performed in a diffusion furnace.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以下MO8)ランジスタを例に用いて説明する。 The following explanation will be given using MO8) transistor as an example.

1000℃程度の高温熱処理を行なうとPSG膜の段差
部での傾斜は緩やになるが、不純物原子がさらに拡散し
再分布するという問題点がある。不純物原子が再分布す
ることによる最も大きな問題点は、MOSトランジスタ
のソースおよびドレイン領域の不純物原子の横方向拡散
により実効チャネル長が短くなり、ゲートしきい値電圧
が低下する短チヤネル効果が発生することである。
When high-temperature heat treatment of about 1000° C. is performed, the slope of the PSG film at the step portion becomes gentle, but there is a problem that impurity atoms are further diffused and redistributed. The biggest problem caused by the redistribution of impurity atoms is that the lateral diffusion of impurity atoms in the source and drain regions of MOS transistors shortens the effective channel length, causing a short channel effect that lowers the gate threshold voltage. That's true.

本発明の目的は、半導体集積回路装置の眉間絶縁膜およ
び表面保護膜のりフローにおいて、不純物原子の再分布
が発生しない方法を提供することにある。
An object of the present invention is to provide a method in which redistribution of impurity atoms does not occur in the glabellar insulating film and surface protective film glue flow of a semiconductor integrated circuit device.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的のため本発明においては、PSG膜が波長20
0nm以下の光を吸収するという特性を利用する。すな
わち波長200nm以下のエキシマレーザ−光をPSG
膜に照射することにより加熱し、リフローを行ない急峻
な段差部の傾斜を緩やかに平坦化する。
For the above purpose, in the present invention, the PSG film has a wavelength of 20
It utilizes the property of absorbing light of 0 nm or less. In other words, excimer laser light with a wavelength of 200 nm or less is used as PSG.
The film is heated by irradiation, and reflow is performed to gently flatten the steep slope of the step.

〔実施例〕〔Example〕

以下図面を用いて本発明の詳細な説明する。 The present invention will be described in detail below using the drawings.

第1図(a) (b) (C)は本発明の実施例の各工
程におけるMOS)ランジスタの断面図を示したもので
ある。
FIGS. 1(a), 1(b), and 1(c) show cross-sectional views of a MOS transistor at each step in an embodiment of the present invention.

まず第1図(a)に示すように、第1導電型の半導体基
板10の表面に酸化性雰囲気中で厚さ4Qnm程度の、
二酸化シリコン膜からなるゲート絶縁膜12を形成する
。その後CVD法(Chemi ca l Vapo 
rDeposition)にて全面に多結晶シリコン膜
を500nm程度の厚さで堆積し、フォトエツチング技
術を用いてゲート電極14を形成する。さらにゲート電
極14をマスクとして4X10cm  程度のイオン注
入量で4オン注入することにより、第2導電型のソース
領域16およびドレイン領域18を形成する。次にリン
を3〜8wt%含有した厚さ500nm程度のPSG膜
2膜上0VD法で全面に堆積し層間絶縁膜とする。
First, as shown in FIG. 1(a), a film with a thickness of about 4 Qnm is deposited on the surface of a first conductivity type semiconductor substrate 10 in an oxidizing atmosphere.
A gate insulating film 12 made of a silicon dioxide film is formed. After that, CVD method (Chemical Vapo
A polycrystalline silicon film is deposited on the entire surface to a thickness of about 500 nm using a photoetching technique, and a gate electrode 14 is formed using a photoetching technique. Furthermore, a source region 16 and a drain region 18 of the second conductivity type are formed by implanting four ions at a dose of approximately 4×10 cm 2 using the gate electrode 14 as a mask. Next, it is deposited over the entire surface of two PSG films containing 3 to 8 wt % of phosphorus and having a thickness of about 500 nm by a 0VD method to form an interlayer insulating film.

次に第1図(b)に示すように、エキシマレーザ−光2
2として例えばアルゴンフロライド(ArF)エキシマ
レーザ−光(波長193nm)を、例えば光強度10〜
200 m J/CrAで全面に照射する。
Next, as shown in FIG. 1(b), the excimer laser beam 2
As 2, for example, argon fluoride (ArF) excimer laser light (wavelength 193 nm) is used, for example, with a light intensity of 10~
The entire surface is irradiated with 200 m J/CrA.

第2図にPSG膜における波長と透過率の関係のグラフ
を示す。第2図で明らかなように2001m以下の波長
は、PSG膜に吸収される。従ってPSG膜は加熱され
リフローが行なわれ段差部21の傾斜が緩やかになり平
坦化される。この時ル PSG膜2膜上0差部21は、平台部26に比較して、
PSG膜が厚いこと、およびPSG膜2℃の表面反射光
によりPSG膜20単位面積当りのエキシマレーザ−光
22吸収量が多いことにより。
FIG. 2 shows a graph of the relationship between wavelength and transmittance in a PSG film. As is clear from FIG. 2, wavelengths of 2001 m or less are absorbed by the PSG film. Therefore, the PSG film is heated and reflowed, and the slope of the stepped portion 21 is made gentler and flattened. At this time, the zero difference part 21 on the PSG film 2 is compared to the flat part 26,
This is because the PSG film is thick and the amount of excimer laser light 22 absorbed per unit area of the PSG film is large due to the light reflected from the surface of the PSG film at 2°C.

段差部21は平坦部26と比べるとより一層加熱され、
より一層リフローが進行する。またエキシマレーザ−光
はほとんどPSG膜に吸収されるためPSG膜の下層ま
でエキシマレーザ−光は到達しない。
The stepped portion 21 is heated more than the flat portion 26,
Reflow progresses further. Furthermore, since most of the excimer laser light is absorbed by the PSG film, the excimer laser light does not reach the lower layer of the PSG film.

次に第1図(C)に示すように、フォトエツチング技術
を用いてコンタクト窓2゛4を形成し、真空蒸着法・ス
パッタリング法等を用いて全面にアルミ ′ニウム膜を
形成し、フォトエツチング技術を用いて配線金属膜26
を形成する。
Next, as shown in FIG. 1(C), a contact window 2-4 is formed using a photo-etching technique, an aluminum film is formed on the entire surface using a vacuum evaporation method, a sputtering method, etc., and then a photo-etching process is performed. Wiring metal film 26 using technology
form.

以上MO8)ランジスタの眉間絶縁膜を例として説明し
てきたが、表面保護膜・バイポーラトランジスタ等にも
エキシマレーザ−光を用いるPSG膜のりフローは応用
可能である。。
Although the explanation has been given above using the glabella insulating film of MO8) transistor as an example, the PSG film bonding flow using excimer laser light can also be applied to surface protection films, bipolar transistors, etc. .

またリフロ一温度を100〜200℃下げる目的でポロ
ンを添加したBPSG膜が用いられるが、とのBPSG
膜を層間絶縁膜や表面保護膜として用いた場合でも、エ
キシマレーザ−光の照射によるリフローを行なうことが
できる。
In addition, a BPSG film doped with poron is used to lower the reflow temperature by 100 to 200°C.
Even when the film is used as an interlayer insulating film or a surface protection film, reflow can be performed by irradiation with excimer laser light.

キシマレーザー光がPSG膜に吸収されPSG膜下層の
半導体集積回路装置まで透過しないためPSG膜下層に
作製された半導体集積回路装置の特性変化を最小限に押
える方法として応用可能である。
Since the Kisima laser light is absorbed by the PSG film and does not pass through to the semiconductor integrated circuit device below the PSG film, this method can be applied as a method for minimizing changes in the characteristics of the semiconductor integrated circuit device fabricated below the PSG film.

以上ArFエキシマレーザ−を用いた例で説明してきた
が波長200nm以下のエキシマレーザ−光であればP
SG膜に吸収されるのでsF2エキシマレーザ−(波長
157 nm)、Xe2−1−1+−シマレーザー(波
長172nm)、ArClエキシマレーザ−(波長17
5nm)等でもPSG膜のりフローを行なうことができ
る。
The above has been explained using an example using an ArF excimer laser, but if the excimer laser light has a wavelength of 200 nm or less, P
Because it is absorbed by the SG film, sF2 excimer laser (wavelength 157 nm), Xe2-1-1+-simmer laser (wavelength 172 nm), ArCl excimer laser (wavelength 17 nm)
5 nm) etc., PSG film deposition flow can be performed.

〔発明の効果〕〔Effect of the invention〕

以上の説明で明らかなように、PSG膜にエキシマレー
ザー光を照射することにより加熱されPSG膜がリフロ
ーされ段差部の傾斜が緩やかに平坦化される。エキシマ
レーザ−光はPSG膜−に吸収されるため、エキシマレ
ーザ−光はPSG膜下層の半導体基板に到達せず不純物
原子の再拡散による再分布は発生せず信頼性の高い半導
体集積回路装置を得ることができる。
As is clear from the above description, the PSG film is heated by being irradiated with excimer laser light, the PSG film is reflowed, and the slope of the stepped portion is gently flattened. Since the excimer laser light is absorbed by the PSG film, the excimer laser light does not reach the semiconductor substrate underlying the PSG film, and redistribution due to re-diffusion of impurity atoms does not occur, resulting in a highly reliable semiconductor integrated circuit device. Obtainable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) (b) (C)は本発明の詳細な説明す
るためのMOS)う/ジスタの各工程における断面図、
第2図はPSG膜における波長と透過率の関係を示すグ
ラフである。 20・・・・・・PSG膜、 22・・・・・・エキシマレーザ−光。 第1図
FIGS. 1(a), 1(b), and 1(C) are cross-sectional views at each step of the MOS transistor for detailed explanation of the present invention;
FIG. 2 is a graph showing the relationship between wavelength and transmittance in a PSG film. 20...PSG film, 22...Excimer laser light. Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)層間絶縁膜および保護膜として用いるリンを添加
した酸化シリコン膜の表面段差を緩やかに平坦化を行な
う方法において、波長200nm以下のエキシマレーザ
ー光を前記リンを添加した酸化シリコン膜の全面に照射
することにより加熱し、このリンを添加した酸化シリコ
ン膜の表面段差を緩やかに平坦化を行なうことを特徴と
する半導体集積回路装置の製造方法。
(1) In a method of gently flattening the surface steps of a phosphorus-doped silicon oxide film used as an interlayer insulating film and a protective film, excimer laser light with a wavelength of 200 nm or less is applied to the entire surface of the phosphorus-doped silicon oxide film. 1. A method of manufacturing a semiconductor integrated circuit device, which comprises heating by irradiation to gently flatten surface steps of a silicon oxide film doped with phosphorus.
(2)エキシマレーザー光としてアルゴンフロライドエ
キシマレーザー光を用いたことを特徴とする特許請求の
範囲第1項記載の半導体集積回路装置の製造方法。
(2) The method for manufacturing a semiconductor integrated circuit device according to claim 1, characterized in that argon fluoride excimer laser light is used as the excimer laser light.
JP27641986A 1986-11-21 1986-11-21 Manufacture of semiconductor integrated circuit device Pending JPS63131545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27641986A JPS63131545A (en) 1986-11-21 1986-11-21 Manufacture of semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27641986A JPS63131545A (en) 1986-11-21 1986-11-21 Manufacture of semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS63131545A true JPS63131545A (en) 1988-06-03

Family

ID=17569145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27641986A Pending JPS63131545A (en) 1986-11-21 1986-11-21 Manufacture of semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS63131545A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1139404A1 (en) * 2000-03-31 2001-10-04 Applied Materials, Inc. Low thermal budget solution for PMD application using SACVD layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1139404A1 (en) * 2000-03-31 2001-10-04 Applied Materials, Inc. Low thermal budget solution for PMD application using SACVD layer
US6703321B2 (en) 2000-03-31 2004-03-09 Applied Materials Inc. Low thermal budget solution for PMD application using sacvd layer

Similar Documents

Publication Publication Date Title
JPS6259896B2 (en)
JPS63314868A (en) Manufacture of mos semiconductor device
JPS5946107B2 (en) Manufacturing method of MIS type semiconductor device
EP0045593B1 (en) Process for producing semiconductor device
JPS60235474A (en) Method of producing high density integrated mosfet
JPS5921067A (en) Semiconductor device and manufacture thereof
JPH0716000B2 (en) Method for manufacturing semiconductor integrated circuit device
JPS63131545A (en) Manufacture of semiconductor integrated circuit device
JPH0719759B2 (en) Method for manufacturing semiconductor device
JPS605065B2 (en) Manufacturing method of MIS type semiconductor device
JPH0336312B2 (en)
JPS6182456A (en) Manufacture of semiconductor device
JPS6011473B2 (en) MIS type semiconductor device
JPH0481327B2 (en)
JPS63155764A (en) Manufacture of mos transistor
JPS6010717A (en) Fabrication of contact for semiconductor device
JPH022633A (en) Manufacture of mis field effect semiconductor device
JP2853143B2 (en) Method for manufacturing semiconductor device
JPS643343B2 (en)
JPH0810681B2 (en) Method for manufacturing semiconductor device
JPH02237073A (en) Manufacture of semiconductor device
JPH0414260A (en) Manufacture of semiconductor device
JPS63142681A (en) Manufacture of field-effect transistor
JPH05868B2 (en)
JPS63173367A (en) Manufacture of mos transistor