JPS63131537A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS63131537A
JPS63131537A JP27659786A JP27659786A JPS63131537A JP S63131537 A JPS63131537 A JP S63131537A JP 27659786 A JP27659786 A JP 27659786A JP 27659786 A JP27659786 A JP 27659786A JP S63131537 A JPS63131537 A JP S63131537A
Authority
JP
Japan
Prior art keywords
film
etching
region
insulating film
insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27659786A
Other languages
Japanese (ja)
Inventor
Yasuo Sawahata
沢畠 保夫
Ryuichi Saito
隆一 斉藤
Sumio Kawakami
河上 澄夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27659786A priority Critical patent/JPS63131537A/en
Publication of JPS63131537A publication Critical patent/JPS63131537A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To etch to a desired position with good controllability by retaining a first buried film selectively only on a region having a wide groove width to easily flatten the surface with good distribution. CONSTITUTION:The film thickness of a first insulator 3 is formed substantially equally to a groove depth, the insulator 3 is retained selectively only on an element separating region having a wide groove width. Thus, when a second insulating film 5 is deposited, the element separating region having the wide groove width and the film 5 on the element forming region are substantially equal in height. When fluid substance 6 and the film 6 are etched under the conditions of the same etching speed, the etching area of the film 5 is abruptly reduced. Accordingly, the optical intensity of the specific wavelength is abruptly varied. Thus, the end point of etching can be easily detected to be etched uniformly with good control.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置の製造方法に係り、特に。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for manufacturing a semiconductor device.

半導体基板に溝を形成し、絶縁物を埋込むことによる素
子分離領域形成法において、素子分離領域を精度よく均
一に埋込み、平坦化するのに好適な半導体装置の製造方
法に関する。
The present invention relates to a method of manufacturing a semiconductor device suitable for uniformly filling and planarizing an element isolation region with high accuracy in a method of forming an element isolation region by forming a groove in a semiconductor substrate and burying an insulator.

〔従来の技術〕[Conventional technology]

従来、素子分離領域に設けた溝に絶縁物を平坦に埋込む
方法は、特開昭58−210634号公報に記載のよう
に、溝内及び素子領域全体に第1の絶縁物を堆積した後
、溝幅の広い素子分離領域に選択的に第2の絶縁膜を堆
積又は塗布する0次に、全面に流動性物質を塗布し平坦
化する6次に、流動性物質と第1の絶縁物及び第2の絶
縁物が同じエツチング速度となる条件で全面を反応性イ
オンエツチングによりエツチングし、絶縁物の埋込み平
坦化を行っていた。
Conventionally, the method of flatly embedding an insulator in a trench provided in an element isolation region is as described in Japanese Patent Laid-Open No. 58-210634, after depositing a first insulator in the trench and over the entire element region. , A second insulating film is selectively deposited or coated on the device isolation region with a wide groove width. 0th step, a fluid material is applied to the entire surface and flattened. 6th step, the fluid material and the first insulating film are deposited or coated. The entire surface is etched by reactive ion etching under the conditions that the second insulator and the second insulator have the same etching rate, and the insulator is buried and planarized.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術では、平坦化のため第2の絶縁物の膜厚を
溝の深さと同じにする必要がある。しかし、第2の絶縁
膜としてレジスト等流動性物質を用いた場合、素子形成
領域近くで膜厚が厚くなる等、膜厚の均一性と膜厚制御
が困難となる。また、第2の絶縁膜としてCV D S
 i Ozを用いると。
In the above-mentioned conventional technology, it is necessary to make the thickness of the second insulator the same as the depth of the groove for planarization. However, when a fluid material such as a resist is used as the second insulating film, it becomes difficult to maintain uniformity of the film thickness and control the film thickness, such as the film being thick near the element formation region. Furthermore, CVD S is used as the second insulating film.
Using iOz.

第1の絶縁膜と同質であるため、パターニングが困難と
なる。また、 S i llN4を用いると、流動性物
質とSisMailと第1の絶縁膜の3種類の膜質を同
じエツチング速度でエツチングしなければならず、エツ
チングが不安定である等の問題があった。
Since it is of the same quality as the first insulating film, patterning becomes difficult. Furthermore, when SillN4 is used, three types of film quality, ie, the fluid material, SisMail, and the first insulating film, must be etched at the same etching rate, resulting in problems such as unstable etching.

また、従来技術では、平坦化を行った後、第1の絶縁膜
、第2の絶縁膜及び流動性物質を同じエツチング速度と
なる条件でエツチングする際、エツチング条件のばらつ
きがそのままエツチング終1時まで反映され、全面にわ
たって平坦な構造を得にくく、所望の位置で制御良くエ
ツチングを止めることが困難であるという問題があった
Furthermore, in the conventional technology, after planarization, when etching the first insulating film, the second insulating film, and the fluid material at the same etching rate, the variations in the etching conditions remain unchanged until the end of etching. There were problems in that it was difficult to obtain a flat structure over the entire surface, and it was difficult to stop etching at a desired position with good control.

本発明の目的は、゛表面を分布良く容易に平坦にし、所
望の位置まで制御良くエツチングを行うことにより、絶
縁物が平坦に埋込まれた素子分離構造を再現性良く、容
易に得ることを可能にする、半導体装置の製造方法を提
供することにある。
The purpose of the present invention is to easily obtain an element isolation structure in which an insulating material is embedded flatly with good reproducibility by easily flattening the surface with good distribution and etching to a desired position with good control. An object of the present invention is to provide a method for manufacturing a semiconductor device that makes it possible to manufacture a semiconductor device.

〔問題点を解決するための壬段〕[Steps to solve problems]

上記目的を達成するには、まず、半導体基板の素子形成
領域に耐半導体基板エツチングマスクを形成し、素子分
離領域の半導体基板を選択的にエツチングして溝を形成
する0次に、基板全面に第1の絶縁膜を堆積する。この
時、第1の絶縁膜の膜厚が溝深さとほぼ同じになるよう
にする6次に、必要ならば全面を平坦にエツチングする
際の終点検出用の膜を堆積する0次に、溝幅が広い領域
、例えば、溝幅が溝深さよりも広い領域に第1の絶縁膜
と終点検出用の膜が残るように、選択的に工 。
To achieve the above objective, first, a semiconductor substrate resistant etching mask is formed in the element formation region of the semiconductor substrate, and the semiconductor substrate in the element isolation region is selectively etched to form a groove. Depositing a first insulating film. At this time, the film thickness of the first insulating film is made to be almost the same as the groove depth. 6. Next, if necessary, a film is deposited to detect the end point when etching the entire surface flat. 0. It is selectively processed so that the first insulating film and the end point detection film remain in a wide region, for example, in a region where the trench width is wider than the trench depth.

ツチングを行う0次に、第2の絶縁膜を堆積し、溝を埋
込む6次に、全面に流動性物質を塗布又は堆積し1表面
の平坦化を行う0次に、第2の絶縁膜と流動性物質のエ
ツチング速度が同じになる条件で全面をエツチングする
。この時、第1の絶縁膜上の第2の絶縁膜と、素子形成
領域上の第2の絶縁膜のエツチング終了時にエツチング
を止める。
Next, a second insulating film is deposited and the trench is filled. Next, a fluid material is applied or deposited on the entire surface. The surface is flattened. Next, the second insulating film is The entire surface is etched under conditions such that the etching speed of the fluid material and the etching rate of the fluid material are the same. At this time, the etching is stopped when the etching of the second insulating film on the first insulating film and the second insulating film on the element formation region is completed.

すると、第1の絶縁膜の膜厚が溝の深さとほぼ同じであ
るため、全面が平坦な素子分離構造が得られる0次に、
広い素子分離領域上の第1の絶縁膜上の終点検出用膜と
素子形成領域上のエツチングマスクとして用いた膜を除
去する。必要ならば、ウェットエツチングにより絶縁膜
を薄くエツチングし、さらに表面を滑らかにする。
Then, since the thickness of the first insulating film is almost the same as the depth of the trench, an element isolation structure with a flat surface can be obtained.
The end point detection film on the first insulating film on the wide element isolation region and the film used as an etching mask on the element formation region are removed. If necessary, the insulating film is etched thinly by wet etching to further smooth the surface.

〔作用〕[Effect]

第1の絶縁物の膜厚を溝深さとほぼ等しくシ。 The film thickness of the first insulator is made approximately equal to the groove depth.

溝幅の広い素子分離領域にのみ選択的に第1の絶縁物を
残すことにより、第2の絶縁膜を堆積した時、溝幅の広
い素子分離領域と素子形成領域上の第2の絶縁膜表面の
高さがほぼ等しくなる。これにより表面を分布良く均一
に平坦にすることができる。
By selectively leaving the first insulating material only in the device isolation region with the wide groove width, when the second insulating film is deposited, the second insulating film on the device isolation region with the wide trench width and the device formation region is separated. The surface heights are approximately equal. This makes it possible to flatten the surface uniformly and with good distribution.

また、流動性物質と第2の絶縁膜が同じエツチング速度
となる条件で終点検出用の膜及び素子形成領域上の耐基
板エツチングマスクとして用いた膜が露出するまでエツ
チングをすると、第2の絶縁膜のエツチング面積が急激
に減少するため、特定の波長の光強度も急激に変化する
。これにより。
In addition, if etching is performed under conditions such that the fluid material and the second insulating film have the same etching rate until the end point detection film and the film used as a substrate-resistant etching mask on the element formation region are exposed, the second insulating film is etched at the same etching rate. Since the etched area of the film is rapidly reduced, the light intensity of a particular wavelength also changes rapidly. Due to this.

第2の絶縁膜のエツチングの終点検出が容易となり、制
御良く均一にエツチングを行うことができる。また、第
2の絶縁物及び流動性物質のエツチング速度に対して終
点検出用の膜及び素子形成領域上の耐基板エツチングマ
スクとして用いた膜のエツチング速度がおそくなるエツ
チング条件を選ぶことにより、エツチング条件のばらつ
きによるエツチング量のばらつきを小さくおさえること
ができる。
It becomes easy to detect the end point of etching the second insulating film, and etching can be performed uniformly and with good control. In addition, etching conditions can be selected such that the etching speed of the end point detection film and the film used as a substrate-resistant etching mask on the element formation region is slower than the etching speed of the second insulator and fluid material. Variations in the amount of etching due to variations in conditions can be suppressed.

〔実施例〕〔Example〕

以下、本発明の方法を実現する一実施例を第1図により
説明する。まず、第1図(a)に示すように、半導体基
板1例えば、面方位(100)。
An embodiment for implementing the method of the present invention will be described below with reference to FIG. First, as shown in FIG. 1(a), a semiconductor substrate 1, for example, has a surface orientation (100).

比抵抗100個のP型シリコン基板1を用意する。A P-type silicon substrate 1 having a specific resistance of 100 is prepared.

次に、基板上にシリコンエツチングのマスクとなる膜1
例えば、CVD5i8N42を1500人、堆積する。
Next, a film 1 that will serve as a mask for silicon etching is placed on the substrate.
For example, 1500 CVD5i8N42 are deposited.

次に、素子形成領域となる部分のCVD5iaN番2を
残し、エツチング除去する。その後、シリコン基板1を
例えば1μmエツチングする。
Next, the CVD 5iaN No. 2 is removed by etching, leaving a portion that will become the element forming region. Thereafter, the silicon substrate 1 is etched by, for example, 1 μm.

次に、第1図(b)に示すように、絶縁膜、例えば、C
V D S i Oz3を1μm堆積する。こコテ。
Next, as shown in FIG. 1(b), an insulating film, for example, C
V D S i Oz3 is deposited to a thickness of 1 μm. Here it is.

この絶縁膜の膜厚がフィールド上の絶縁膜の膜厚となる
。従って、この膜厚を変えることにより、必要な絶縁膜
厚が得られる。次に絶縁膜3と異種の膜、例えば、ポリ
シリコン4を1500人堆積する。
The thickness of this insulating film becomes the thickness of the insulating film on the field. Therefore, by changing this film thickness, the required insulation film thickness can be obtained. Next, 1500 layers of a film different from the insulating film 3, such as polysilicon 4, are deposited.

次に、第1図(c)に示すように、溝幅が溝深さより広
い領域にCVD S i Ox 3とポリシリコン4が
残るように、選択的にエツチングを行う。ここで、素子
形成領域の溝の側面にはCVD5iO23が残るため、
サイドエツチングやエツチングによるダメージ等を発生
させず、エツチングを行うことができる。次に、第1図
(d)に示すように絶縁膜、例えば、CVD S i 
Ox 5を基板表面が′Iはぼ平坦となるよう堆積する
。その後、CVD5iOzS上が平坦となるよう流動性
物質、例えば、レジスト6を塗布する。次に、第1図(
e)に示すように、レジスト6とCVD S i Ox
 5が同じ速度でエツチングされる条件でCVD51g
Na2およびポリシリコン4が露出するまでエツチング
を行う。この時、エツチングには通常行われているプラ
ズマエツチング、反応性イオンエツチング等を用いる。
Next, as shown in FIG. 1(c), selective etching is performed so that the CVD SiOx 3 and polysilicon 4 remain in a region where the groove width is wider than the groove depth. Here, since CVD5iO23 remains on the side surfaces of the trench in the element formation region,
Etching can be performed without side etching or damage caused by etching. Next, as shown in FIG. 1(d), an insulating film, for example, CVD Si
Ox 5 is deposited so that the surface of the substrate is almost flat. Thereafter, a fluid substance such as resist 6 is applied so as to make the CVD5iOzS surface flat. Next, Figure 1 (
As shown in e), resist 6 and CVD S i Ox
CVD51g under the condition that 5 is etched at the same speed.
Etching is performed until Na2 and polysilicon 4 are exposed. At this time, commonly used plasma etching, reactive ion etching, etc. are used for etching.

また、CVD51gNi2およびポリシリコン4が露出
すると、特定の波長の光強度が変化するため、エツチン
グ終点の検出が容易かつ精度良く行える。次に、第1図
(f)に示すように、ポリシリコン4.Si♂N42を
除去すると、素子分離領域に絶縁膜が埋込まれた平坦な
構造を得る。
Further, when the CVD 51gNi2 and the polysilicon 4 are exposed, the light intensity of a specific wavelength changes, so that the etching end point can be easily and accurately detected. Next, as shown in FIG. 1(f), polysilicon 4. When Si♂N42 is removed, a flat structure in which an insulating film is buried in the element isolation region is obtained.

本実施例において、シリコンエツチングのマスクとして
、CVD5iaNa膜を用いたが、熱酸化膜、CVD5
iOz膜、ポリシリコン膜または上記膜の多層膜なども
用いることができる。また、CV D S i Oz 
a上の終点検出用の膜としてポリシリコンを用いたが、
CVD5iaNa等も用いることができる。
In this example, a CVD5iaNa film was used as a mask for silicon etching, but a thermal oxide film, a CVD5
An iOz film, a polysilicon film, or a multilayer film of the above films can also be used. Also, CVD SiOz
Polysilicon was used as a film for detecting the end point on a.
CVD5iaNa etc. can also be used.

本実施例によれば、容易に表面を平坦化でき。According to this embodiment, the surface can be easily flattened.

必要な高さで絶縁膜のエツチングを制御良く止めること
ができるため、絶縁物が平坦に埋込まれた素子分離構造
を再現性良く容易に得ることができる。また、本実施例
によれば、5isN+膜2を設けておくことにより、素
子形成領域よりも素子分離領域の方を盛り上げることが
でき、洗浄などによる基板の露出を防ぐことができる。
Since the etching of the insulating film can be stopped at a required height with good control, an element isolation structure in which the insulating material is flatly embedded can be easily obtained with good reproducibility. Further, according to this embodiment, by providing the 5isN+ film 2, the element isolation region can be raised more than the element formation region, and the substrate can be prevented from being exposed due to cleaning or the like.

第2図は、深い溝による素子分離構造に本発明を適用し
たものである。まず、第2図(a)に示すように、CV
 D S i aNa膜2をエツチングマスクとして、
シリコン基板を例えば4μmエツチングする1次に、基
板表面を熱酸化し、例えば、500人の5iOz膜7を
付ける0次に、CVD5iaN4を例えば、500人堆
積し、異方性のドライエツチングにより溝側面にのみ5
iaNa膜8を残す0次に、第2図(b)に示すように
基板全面に第1の埋込み材料として、比較的容易に厚く
膜を堆積でき、割れなどが生じないポリシリコン)9を
。□堆積5、さら、ユ、。VDSi。2膜−10を堆積
する。次に、第2図(c)に示すように′、溝幅が溝深
さよりも広い領域にポリシリコン9とCVD5iOz 
10が残るように選択的にエツチングを行う。
FIG. 2 shows the present invention applied to an element isolation structure using deep grooves. First, as shown in FIG. 2(a), CV
Using the DSiNa film 2 as an etching mask,
First, the silicon substrate is etched by, for example, 4 μm.The substrate surface is thermally oxidized, and a 5iOz film 7 of, for example, 500 is deposited.Next, CVD 5iaN4 is deposited, for example, by 500, and the groove side surfaces are etched by anisotropic dry etching. Only in 5
Next, as shown in FIG. 2(b), polysilicon (polysilicon) 9, which allows a thick film to be deposited relatively easily and does not cause cracks, is used as a first embedding material to leave the iaNa film 8. □Deposition 5, Sara, Yu. VDSi. 2 film-10 is deposited. Next, as shown in FIG. 2(c), polysilicon 9 and CVD 5iOz are applied to the region where the groove width is wider than the groove depth.
Selective etching is performed so that 10 remains.

次に、第2の埋込み材料として埋込み形状の良いポリシ
リコン11を堆積し、溝を埋込みレジスト6を塗布して
表面を平坦となるようにする0次に、レジスト6とポリ
シリコン11のエツチング速度が等しくなる条件でCV
D5iOzloが露出するまでエツチングを行う。この
時、CVD5iOzlOが終点検出用の膜となるため、
容易に第2図(d)に示す構造を得ることができる。
Next, as a second filling material, polysilicon 11 with a good filling shape is deposited, and the trench is filled with a resist 6 applied to make the surface flat. Next, the etching speed of the resist 6 and the polysilicon 11 is CV under the condition that is equal to
Etching is performed until D5iOzlo is exposed. At this time, since CVD5iOzlO becomes a film for end point detection,
The structure shown in FIG. 2(d) can be easily obtained.

次に、ポリシリコン10とポリシリコン11を例えば1
μm酸化する。この時、5iaNa膜8及び5iaNa
膜2がマスクとなるため、素子形成領域は酸化されない
0次に、5iaNa膜2が除去し、第2図(e)の構造
を得る。
Next, for example, polysilicon 10 and polysilicon 11 are
μm oxidizes. At this time, the 5iaNa film 8 and the 5iaNa
Since the film 2 serves as a mask, the element formation region is not oxidized and the 5iaNa film 2 is removed to obtain the structure shown in FIG. 2(e).

本実施例によれば、バイポーラトランジスタ間との素子
分離等に必要となる深い素子分離層による素子分離構造
が容易に実現できる。
According to this embodiment, an element isolation structure using a deep element isolation layer, which is necessary for element isolation between bipolar transistors, etc., can be easily realized.

本実施例において、第1の埋込み材料としてポリシリコ
ンを用いたが、第3図に示すように溝幅の広い領域に絶
縁膜、例えば、PSG13を埋込み、溝幅の狭い領域に
埋込み形状の良いポリシリコン11を埋込んだ構造も容
易に実現でき、配線容量の低減をはかることができる。
In this example, polysilicon was used as the first filling material, but as shown in FIG. A structure in which polysilicon 11 is buried can be easily realized, and the wiring capacitance can be reduced.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、分布良く容易に平坦化を行うことがで
きる。また、終点検出用の膜を広い素子分離領域の第1
の絶縁物上に堆積することにより、必要な位置で絶縁膜
のエツチングを制御良く止めることができるため、素子
形成領域と素子分離領域を容易に精度良く平坦にするこ
とができ、絶縁物が平坦に埋込まれた素子分離構造を再
現性良く容易に得ることができる。
According to the present invention, planarization can be easily performed with good distribution. In addition, the film for end point detection is placed in the first part of the wide element isolation area.
By depositing it on the insulator, it is possible to stop the etching of the insulating film at the required position in a well-controlled manner, making it possible to easily and precisely flatten the element formation region and the element isolation region, and to ensure that the insulator is flat. The device isolation structure embedded in the device can be easily obtained with good reproducibility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(f)は本発明の方法を実現する一実施
例を示す断面構造図、第2図(a)〜(e)及び第3図
は本発明の方法になる他の実施例を示す断面構造図であ
る。 1・・・シリコン基板、2・・・CV D S i a
Na[、3・・・CVDSiOx膜、4・・・ポリシリ
コン膜、5・・・CVD5iOz膜、6−・・レジスト
、7−8iO2膜、8・・・5isNa膜、9・・・ポ
リシリコン膜、10・・・CVD5iOz膜、11・・
・ポリシリコン膜、12−3iOz膜、13 ・P S
 G膜。
FIGS. 1(a) to (f) are cross-sectional structural diagrams showing one embodiment of the method of the present invention, and FIGS. 2(a) to (e) and 3 are diagrams showing other embodiments of the method of the present invention. FIG. 2 is a cross-sectional structural diagram showing an example. 1...Silicon substrate, 2...CVD Sia
Na[, 3...CVDSiOx film, 4...polysilicon film, 5...CVD5iOz film, 6-...resist, 7-8iO2 film, 8...5isNa film, 9...polysilicon film , 10...CVD5iOz film, 11...
・Polysilicon film, 12-3iOz film, 13 ・P S
G membrane.

Claims (1)

【特許請求の範囲】[Claims] 1、半導体基板の素子分離領域を選択的にエッチングし
て溝を設け、溝に絶縁物を平坦に埋込むことによる素子
分離方法において、溝を形成した後、溝に第1の埋込み
膜を堆積する工程と、溝幅が広い領域にのみ選択的に第
1の埋込み膜を残す工程と、第2の埋込み膜を堆積する
工程と、流動性物質を塗布し表面を平坦化する工程と、
流動性物質と第2の埋込み膜を等しいエッチング速度で
第1の埋込み膜上の第2の埋込み膜と素子形成領域上の
第2の埋込み膜のエッチングが終了するまで全面を平坦
にエッチングする工程を備えたことを特徴とする半導体
装置の製造方法。
1. In an element isolation method that involves selectively etching an element isolation region of a semiconductor substrate to form a groove, and filling the groove flat with an insulator, after forming the groove, a first buried film is deposited in the groove. a step of selectively leaving the first buried film only in the region where the groove width is wide; a step of depositing a second buried film; a step of applying a fluid substance to flatten the surface;
A process of etching the fluid material and the second buried film at the same etching rate until the entire surface is flattened until the second buried film on the first buried film and the second buried film on the element formation region are etched. A method for manufacturing a semiconductor device, comprising:
JP27659786A 1986-11-21 1986-11-21 Manufacture of semiconductor device Pending JPS63131537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27659786A JPS63131537A (en) 1986-11-21 1986-11-21 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27659786A JPS63131537A (en) 1986-11-21 1986-11-21 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS63131537A true JPS63131537A (en) 1988-06-03

Family

ID=17571663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27659786A Pending JPS63131537A (en) 1986-11-21 1986-11-21 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS63131537A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5227325A (en) * 1992-04-02 1993-07-13 Micron Technology, Incl Method of forming a capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5227325A (en) * 1992-04-02 1993-07-13 Micron Technology, Incl Method of forming a capacitor

Similar Documents

Publication Publication Date Title
JPS58210634A (en) Preparation of semiconductor device
JPH0779133B2 (en) Method for manufacturing semiconductor device
JPS5837987B2 (en) Method for forming buried oxide isolation regions
JPH0526337B2 (en)
US4980311A (en) Method of fabricating a semiconductor device
JPS58143548A (en) Manufacture of semiconductor device
JPS6377122A (en) Manufacture of semiconductor device
JPS63131537A (en) Manufacture of semiconductor device
JPH05267448A (en) Method of isolating element of semiconductor device
JPH04209534A (en) Manufacture of semiconductor device
JPH0744174B2 (en) Etching method
KR100244250B1 (en) Method for forming isolation layer of semiconductor device
JPH0249017B2 (en)
JPS60235436A (en) Manufacture of semiconductor device
JPH03149826A (en) Manufacture of semiconductor device
KR920007356B1 (en) Method of fabricating isolation using a trench
JPH03165050A (en) Manufacture of semiconductor device
JPS61112343A (en) Manufacture of semiconductor device
JPS62217629A (en) Semiconductor device
JPS58169939A (en) Manufacture of semiconductor device
JPS6265437A (en) Manufacture of semiconductor device
JPH0215650A (en) Semiconductor device and manufacture thereof
JPH0220141B2 (en)
JPS59117233A (en) Manufacture of semiconductor device
JPS63292645A (en) Formation of trench isolation in semiconductor device