JPS58169939A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS58169939A
JPS58169939A JP5141982A JP5141982A JPS58169939A JP S58169939 A JPS58169939 A JP S58169939A JP 5141982 A JP5141982 A JP 5141982A JP 5141982 A JP5141982 A JP 5141982A JP S58169939 A JPS58169939 A JP S58169939A
Authority
JP
Japan
Prior art keywords
film
insulating film
sio2
layer
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5141982A
Other languages
Japanese (ja)
Inventor
Akira Kurosawa
黒沢 景
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP5141982A priority Critical patent/JPS58169939A/en
Publication of JPS58169939A publication Critical patent/JPS58169939A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a flat surface and to install a fine upper wiring thereon by a method wherein a conductive layer pattern with masking material retained thereon is covered with a film of SiO2 produced by plasma CVD with its graded part to be etched rapidly in an etching process and the resultant groove surrounding the conductive layer is filled by another insulating film. CONSTITUTION:On an Si substrate 30, a resist mask 32 is used to form an Al layer 31, whereon an SiO2 layer 33 is laid down by means of plasma CVD. When etching is done with a buffer HF solution, the SiO2 layer 33 forming the graded part is selectively, rapidly removed together with SiO2 film 34. The Al layer 31 now finds itself buried in an SiO2 film as thick as the Al layer 31 and surrounded with an unburied groove 36. An SiO2 film 37 is deposited by CVD to fill up the groove 36. A PMAH resist 38 is applied to the SiO2 film 37 to fill the tiny recess remaining thereon.A perfectly flat surface is obtained by a process wherein the SiO2 film 37 and the resist 38 are etched at the same speed and the SiO2 film 37 is partially removed. Installation of an Al wiring 39 on a flat surface ensures a wiring finely finished with high reliability.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は半導体装置の製造方法pcかかわり、特に2層
以トの導電性膜を形成する際に下層の導電性膜と電気的
に絶縁分離するために形成する絶縁性膜の表面を平担に
して上層の導電性膜を形biすゐ技術に関する。
Detailed Description of the Invention [Technical field to which the invention pertains] The present invention relates to a method for manufacturing a semiconductor device, and in particular, when forming a conductive film of two or more layers, electrically insulating and separating the conductive film from the underlying conductive film. The present invention relates to a technique for forming an upper conductive film by flattening the surface of an insulating film formed for the purpose of forming a conductive film.

;従来技術とその問題点J 半導体装置の高密度,高集積化にと吃ない各素子を電気
的に接続する配線も多層で形成して高集積化をはかる事
が必要と々つてきた。また信号の伝達を高速化するため
VCは配線材料の低抵抗化が必要である。しかしながら
、上記配線Vこ用いる低抵抗材料、代表的には金属材料
を凹凸のある表面VC形成するvc #i次のような問
題がある6まず上記凹凸のある表面に形成した配線材料
はL配設差部で平担部に比べて薄くなり配線抵抗が−F
がったり配線が切れたりして配線の信頼性が著しく低下
する。
;Prior art and its problems J In order to increase the density and integration of semiconductor devices, it has become necessary to form multi-layer wiring for electrically connecting each element to achieve higher integration. Furthermore, in order to speed up signal transmission, it is necessary for VC wiring materials to have low resistance. However, when forming a low-resistance material, typically a metal material, on the uneven surface of the wiring V, there are the following problems.6 First, the wiring material formed on the uneven surface has the following problems. The difference part is thinner than the flat part, and the wiring resistance is -F.
The reliability of the wiring is significantly reduced due to cracks or breaks in the wiring.

次に、配線を通常のリングラフイー技術を用いて加工す
る場合、表面に凹凸があると、リソグラフィ一種変が低
下して配線の微細加工が出来ない。
Next, when wiring is processed using ordinary ring graphing technology, if the surface is uneven, the lithography quality deteriorates and fine processing of the wiring cannot be performed.

そこで、E配転線材料を加工する場合4・Cは下地とな
る絶縁膜の表面は彦だらか々平面にする事が好ましい。
Therefore, when processing the E wiring material, it is preferable in 4.C that the surface of the underlying insulating film be flat.

従来このような平担化技術とI7ては、次のような技術
が用いられてきた。
Conventionally, the following techniques have been used as the flattening technique and I7.

第11Δfa)に示すように半導体基体1Fに第1の導
電性膜2が形成されている。そのトに絶縁膜3と高温処
理で溶融する膜1代表的にはPSG′m又はBPSGl
ll[4を堆積する。次に(b)図に示すように高温処
理代表的には1000°0.30分を術うと溶融性膜4
は溶融1〜、流動性膜となるため表面の段差がなだらか
になる。その後、(C)図に示すようになだらかな表面
に第2の導電性膜5を形成するものである。
As shown in 11th Δfa), the first conductive film 2 is formed on the semiconductor substrate 1F. In addition, there is an insulating film 3 and a film 1 that melts during high temperature treatment, typically PSG'm or BPSGl.
Deposit ll[4. Next, as shown in figure (b), when high temperature treatment is typically performed at 1000° for 0.30 minutes, the melting film 4
When the film melts from 1 to 1, the film becomes a fluid film, so the steps on the surface become gentle. Thereafter, a second conductive film 5 is formed on the smooth surface as shown in FIG.

【7か12、この方法では高温処理を必要とするため第
1の導電性膜2と[7て、Aeや一部のシリサイド化合
物等の低融点配線材料が使えないという問題があった。
[7 or 12] Since this method requires high-temperature treatment, there is a problem in that low melting point wiring materials such as Ae and some silicide compounds cannot be used with the first conductive film 2.

またこのような、高温処理は半導体装酋の能動素子のべ
気的な特性の劣化も導びくため好まし、〈ない。
Furthermore, such high-temperature treatment is not preferred because it also leads to deterioration of the air characteristics of the active elements of the semiconductor device.

そこで次のような、室温で流動性の膜を塗布して平担化
する方法がある。即ち#L2図talに示すように半導
体基体10の上に第1の導電性pA12が形成されてお
りその上に絶縁膜12が堆積されている。さらに、流動
性膜代表的には高分子膜13を塗布すると表面はなだら
かか平担となる。
Therefore, there is a method of applying a fluid film at room temperature to flatten the surface, as described below. That is, as shown in FIG. #L2, a first conductive pA 12 is formed on the semiconductor substrate 10, and an insulating film 12 is deposited thereon. Further, when a fluid film, typically a polymer film 13, is applied, the surface becomes smooth or flat.

次にlb1図に示すように高分子膜13と絶縁膜12が
同じエツチング速度のエツチング条件で高分子膜13と
絶縁膜の少なくとも一部をエツチングする。
Next, as shown in FIG. lb1, at least a portion of the polymer film 13 and the insulating film are etched under etching conditions such that the polymer film 13 and the insulating film 12 have the same etching rate.

この場合エツチングとしては異方性のドライエツチング
技術を用いる事が、なだらかな表面を得るために好まし
い。次にtc1図に示すように所望の膜厚だけ絶縁膜1
4を追加し、そのFに第2の導電性膜15を形成する。
In this case, it is preferable to use an anisotropic dry etching technique in order to obtain a smooth surface. Next, as shown in figure tc1, the insulating film 1 is
4 is added, and a second conductive film 15 is formed on that F.

しかしながらこの方法では流動性膜のみによって表面を
平担にする事は困難である。1!11ち第3図に示すよ
うに下I―の第1の導電性材料21のパターン形状によ
って、なだらかではあるが表面の凹凸は残ってしまう。
However, with this method, it is difficult to make the surface flat using only the fluid film. 1!11 As shown in FIG. 3, due to the pattern shape of the first conductive material 21 on the lower side, surface irregularities remain, although they are gentle.

このような表面の凹凸はやはね、上層の@2の導電性膜
23の微細加ニーCは不向きであり、配線の信頼性も低
下する。
Such surface irregularities are not suitable for fine kneading C of the upper layer @2 conductive film 23, and the reliability of the wiring is also reduced.

〔発明の目的〕[Purpose of the invention]

本発明はかかる従来法の欠点に鑑みなされたもので、下
層の第1の導電性膜−Fの絶縁膜の表面を良好に平担化
し、上層の第2の導電性膜の微細加工を可能にし、配線
の信頼性を向上する事を目的とする。
The present invention was made in view of the drawbacks of the conventional method, and it is possible to flatten the surface of the insulating film of the first conductive film-F in the lower layer, and to perform microfabrication of the second conductive film in the upper layer. The purpose is to improve wiring reliability.

〔発明の概要〕[Summary of the invention]

本発明においては、第1の導電性膜を形成後。 In the present invention, after forming the first conductive film.

次のような2段階の手法により、第1の4電性膜をll
!、縁膜で覆いかつ絶縁膜表面がほぼ平担になるように
しkものである。
The first tetraelectric film is prepared using a two-step method as follows.
! , and the insulating film surface is covered with a marginal film so that the surface of the insulating film is almost flat.

即ち、第1の導電性膜をパターニングするために用いた
マスク材を第1の導電性膜上に残したま撞全面に夕ず第
1の絶縁膜を第1の導電性膜の1厚と同程度かそれ以上
の謹厚分だけ堆積する。上記第10給縁膜としては段差
側壁部に堆積17た部分が平担部に比べてはやくエンチ
ングされる性質を持つ膜を用いる。このような喚として
けスパン  ゛ター5in2Th プラズマSin、 
Qが知られている。その後、第1の絶縁膜の1記性質を
用いてマスク材および@1導電性膜によって成子段差部
に堆積した上記絶縁膜をエツチング除去する。その後、
マスク材を除去すれは上記第1の導電性膜の周辺に一定
のV字型の断面形状を持つ空溝を残して、第1導電+l
114Iの間が第1の絶縁膜で埋め込まれる。
That is, the mask material used for patterning the first conductive film is left on the first conductive film, and then the first insulating film is immediately coated on the entire surface with the same thickness as the first conductive film. It accumulates to a certain extent or more. As the tenth edge supply film, a film is used which has a property that the portion deposited on the stepped side wall portion is etched more quickly than the flat portion. Such a summons span 5 in 2 Th plasma sin,
Q is known. Thereafter, the insulating film deposited on the step portion by the mask material and the @1 conductive film is removed by etching using the first property of the first insulating film. after that,
When the mask material is removed, an empty groove having a constant V-shaped cross section is left around the first conductive film, and the first conductive film is removed.
The space between 114I and 114I is filled with the first insulating film.

次に、上記V字型空溝を埋めるように第20絶縁膜を堆
積し表面を平担にする。
Next, a 20th insulating film is deposited so as to fill the V-shaped trench to make the surface flat.

この場合第2の絶縁膜を堆積する表面は、一定の上記V
字型空溝による小さ々凹部が存在rるDみであるから絶
縁膜の堆積により表面の平([1作は容易である。もち
ろん、第2の絶縁膜を堆積l−だ後、流動性膜を塗布し
て表面を完全番で平担に1〜、異方性ドライエツチング
技術を用いて流動性膜と第2の絶縁膜の一部を同じエツ
チング庫朋でエツチングして1表面を平担化するように
して本構わない。
In this case, the surface on which the second insulating film is deposited has a constant V
Since there are small depressions due to the shape of the groove, the surface is flattened by the deposition of the insulating film. After applying the film, the surface is completely flattened using anisotropic dry etching technology, and a part of the fluid film and the second insulating film are etched in the same etching chamber to flatten the first surface. I don't mind if you try to make it your own.

〔発明の効果〕 4、 本発明の方法による2段階の絶縁膜形成法を用いる事に
より高温熱処理工稈を用いる・裏なく実質的にほぼ平担
な絶縁膜表面を第1の導電性*、hに形成する事ができ
る。しかも第1の導電性膜の間隔の広狭にかかわらず均
一りで平担化できるように々る。このため、下1−の第
1導曜性膜すてAgや一部のシリサイド化合物などの低
融点、低低抗材料を用いる事が可能となり、−!た上記
高温熱工程による素子の電気的特性の劣化も抑える$が
できるようになった。
[Effects of the invention] 4. By using the two-step insulating film forming method according to the method of the present invention, a high temperature heat treatment process is used.・The substantially flat insulating film surface without backing is made into a first conductive layer*, It can be formed into h. In addition, uniform flattening can be achieved regardless of the distance between the first conductive films. For this reason, it becomes possible to use materials with low melting points and low resistance, such as Ag and some silicide compounds, for the first conductive film in lower part 1-! It has also become possible to suppress the deterioration of the electrical characteristics of the device due to the above-mentioned high-temperature thermal process.

また、実質的にほぼ平担な表面を得る事ができるため、
その後形成する東第2導電性膜の加工のためのリソグラ
フィー精度が著しく向上し微細加工が容゛易となった。
In addition, since it is possible to obtain a substantially flat surface,
The lithography precision for processing the second east conductive film to be formed thereafter was significantly improved, and microfabrication became easier.

tた1段差がないため、従来の配線の段切れ等の心配が
なくなり、第2導電性膜より成る配線の信頼性が著しく
向上した。
Since there is no step difference, there is no need to worry about step breaks in conventional wiring, and the reliability of the wiring made of the second conductive film is significantly improved.

〔発明の実1例〕 以下この発明を第1の導電性膜と第2の導電性膜にAJ
膜を用いた場合について実施例を説明する。
[Example 1 of the invention] Hereinafter, this invention will be applied to a first conductive film and a second conductive film.
An example will be explained regarding the case where a membrane is used.

第4図(a)[示すように通常の写真食刻工程を用いて
半導体基体30上にレジスト膜32をマスクとして用い
てAj膜31を形成する0次に(b)図に示すように全
面に絶縁膜1例えばプラズマCVD8i01膜を堆積す
る。絶縁膜lは段差部に堆樟した部分が平担部に比べて
早くエツチングされる性質を持つ膜ならどれで屯良い。
FIG. 4(a) [As shown in FIG. An insulating film 1, such as a plasma CVD 8i01 film, is deposited on. The insulating film 1 may be any film as long as the part deposited on the stepped part is etched more quickly than the flat part.

プラズマCVD8i0゜膜、スパッターsto、−の他
、プラズマCVD 8輸N4LPCVDPEG l[−
t’4Jlい。
Plasma CVD 8i0° film, sputter sto, -, plasma CVD 8x N4LPCVDPEG l[-
t'4Jl.

次に、(C)図に示すように絶縁膜1の上記性質を用い
てレジストマスク32とkl膜31からなる段差部の絶
縁膜1をエツチング除去する。全面をエツチングすると
段差側壁部が迅速にエツチングされるから(C1図の様
な形状になる0例えば緩衝フッ酸l液で1仕種度エツチ
ングすると上配段差部のプラズマCVD8i0.膜は完
全に除去される0次に+dJ図に示すように例えば酸素
プラズマ処理によりレジストマスク32をエツチング除
去すると、その上に堆積していた電プラズマCvDSi
O,膜34も同時に除去され、 AJ膜31の周辺は境
界に一定のV字型の断面形状を持った空溝36を残して
、はぼ同じ膜厚のプラズマCVD8i0.膜で埋め込ま
れる。次に(511図に示すように全面に再び絶縁膜2
代表的にはCVD5iO,膜3〕を堆積すると、上記V
字型の空溝は埋め込まれ、 CVD8i0.膜37の表
面には小さな凹部が残る。そこで表面を流動性AHレジ
ストと絶縁膜2のエツチング速庸が等しくhる条件でP
MAHレジストと絶縁膜2の少なくとも一部をエツチン
グ除去すると絶縁膜2の表面は完全に平担になる。また
CVD8i0.膜37を十分厚く形成するとcvnst
o、膜37の表面は実質的にほぼ平担にがり、この場合
はその後のレジスト塗布とドライエッチングエ糧は不要
である。tたCVD8i0.膜37の表面を上記方法で
平担化した後さらに酸化膜を堆積して所望の絶縁膜厚を
得る事もできる。
Next, as shown in FIG. 3C, the insulating film 1 at the stepped portion consisting of the resist mask 32 and the KL film 31 is etched away using the above properties of the insulating film 1. If the entire surface is etched, the side walls of the step will be quickly etched (the shape will be as shown in Figure C1). For example, if one grade of etching is performed with a buffered hydrofluoric acid solution, the plasma CVD 8i0 film on the upper step will be completely removed. As shown in the zero-order +dJ diagram, when the resist mask 32 is etched away by, for example, oxygen plasma treatment, the electric plasma CvDSi deposited on it is removed.
The O, film 34 was also removed at the same time, and a plasma CVD 8i0. embedded in the membrane. Next (as shown in Figure 511, an insulating film 2 is again deposited on the entire surface).
Typically, when CVD5iO, film 3] is deposited, the above V
The letter-shaped groove is filled in and CVD8i0. A small recess remains on the surface of the membrane 37. Therefore, the surface was etched under conditions that the etching speed of the fluid AH resist and the insulating film 2 were equal.
When the MAH resist and at least a portion of the insulating film 2 are removed by etching, the surface of the insulating film 2 becomes completely flat. Also CVD8i0. If the film 37 is formed sufficiently thick, cvnst
o. The surface of the film 37 is substantially flat, and in this case, subsequent resist application and dry etching are unnecessary. CVD8i0. After the surface of the film 37 is flattened by the above method, an oxide film can be further deposited to obtain a desired insulating film thickness.

その後、tf1図に示すよ・うに平担な絶縁膜の表面に
上層′の入l膜39を形成する。本実施例によれば下層
の入l膜上を表面がほぼ完全に平担絶縁膜で覆う事がで
きるため、上層のAJ膜の微細加工が可能になり、tた
配線の信頼性も著しく向上した。
Thereafter, as shown in FIG. tf1, an upper film 39 is formed on the surface of the flat insulating film. According to this example, since the surface of the lower layer film can be almost completely covered with a flat insulating film, fine processing of the upper layer AJ film is possible, and the reliability of the interconnection is significantly improved. did.

なお本実施例は配線材料として、 kl膜の2層構造を
記述したがその他の配線材料例えばシリサイド化合物、
不純物添加poly−8i、高融点金属を第1の導電性
膜としても曳いし、第2の導電性膜に適用してもよい、
又、第1.第2の導電性膜共にAJ 又はAI化合物膜
でもよく更に本発明は3層以上の構造においても適用で
きる。
Although this example describes a two-layer structure of KL film as the wiring material, other wiring materials such as silicide compounds,
The impurity-doped poly-8i and high melting point metal may be used as the first conductive film, and may be applied to the second conductive film.
Also, 1st. Both the second conductive film may be an AJ or AI compound film, and the present invention can also be applied to a structure of three or more layers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) 〜(cl、第2図(a) 〜’ (c)
及び第3図は従来法による層間絶縁膜表面の平担化技術
を説明するための製造工程断面図、第4図葎)〜(f)
は本発明の詳細な説明するための製造工程断面図である
。 図において、 1.10,20.30・・・・半導体基体2.5,11
,15,21.23.31.39・・・・導電性膜3.
12,14,22.37・・・・層間絶縁膜4・・・・
高温で溶融する絶縁膜 13 、38・・・・ 流動性膜 32・・・・マスク材 33.34.35” 7’ 5 スマCVD 5ins
 9%36・・・・V字型の空溝 代理人 弁理士 則 近;憲 佑 (他1名)第  1
  図 第3図 第4図−
Figure 1 (a) - (cl), Figure 2 (a) -' (c)
and Fig. 3 is a cross-sectional view of the manufacturing process for explaining the technique of flattening the surface of the interlayer insulating film by the conventional method, and Fig. 4) to (f)
FIG. 2 is a manufacturing process sectional view for explaining the present invention in detail. In the figure, 1.10, 20.30... semiconductor substrate 2.5, 11
, 15, 21.23.31.39... Conductive film 3.
12, 14, 22. 37... Interlayer insulating film 4...
Insulating films 13, 38 that melt at high temperatures Fluid film 32... Mask material 33.34.35"7' 5 Sma CVD 5ins
9% 36...V-shaped empty ditch agent Patent attorney Chika Nori; Kensuke (1 other person) 1st
Figure 3 Figure 4-

Claims (1)

【特許請求の範囲】 (11半導体基体上に第1の導電性膜を被着する工程と
、この第1の導電性膜上にマスクパターンを形成し、こ
のマスクを用いて前記第1の導電性膜をエツチングする
工程と、段差側壁部が速くエツチングされる性質を有す
る第1の絶mlll1t堆積し、全面をエツチングして
段差側壁部び5絶−膜を除去する工程と、前記マスクを
その一トの第1の絶縁膜と共に除去し、全面い2の絶縁
膜を被着しその上に更に第2の導電性膜を形成する「程
とを備えた事を特徴とする半導体装置の製造方法。 (2)第1の絶縁膜はプラズマCVI)Sin、膜、ス
ハツタ5i0111[、7’ y スフ CVl) S
i3N4 膜又はLPGVDPEG膜である事を特徴と
する特許請求の範囲第1項記載の半導体装置の製造方法
。 (3)第1の導電性膜は,不純物が導入された   1
poly8i Ill.シリサイド膜又は高融漬金属膜
であり,第2の導電性膜はAg又はAl化合物から彦る
膜である事を特徴と,する前記特許請求の範囲第1項記
載の半導体装置の製造方法。 (4)第1の導電性膜,および第2の導電性膜がAl膜
はAl化合物からなる膜である事を特徴とする前記特許
請求の範囲第1項記載の半導体装置の[漬方法。 (5)第2の絶縁膜表面をエツチング1,た後その表面
に第3の絶縁膜を被着して所望の絶縁膜厚を得る事を特
徴とtる前記特許請求の範囲第1項記載の半導体装置の
製造方法。
Scope of Claims (11) A step of depositing a first conductive film on a semiconductor substrate, forming a mask pattern on the first conductive film, and using this mask to apply the first conductive film to the semiconductor substrate. a step of etching the step sidewall, a step of depositing a first insulating film having a property of quickly etching the step sidewall, and etching the entire surface to remove the step sidewall and the barrier film; Manufacture of a semiconductor device characterized by the step of removing a first insulating film together with a first insulating film, depositing a second insulating film on the entire surface, and further forming a second conductive film thereon. Method. (2) The first insulating film is a plasma CVI)Sin film,
2. The method of manufacturing a semiconductor device according to claim 1, wherein the film is an i3N4 film or an LPGVDPEG film. (3) The first conductive film has impurities introduced into it.
poly8i Ill. 2. The method of manufacturing a semiconductor device according to claim 1, wherein the second conductive film is a silicide film or a high melting metal film, and the second conductive film is a film made of Ag or Al compound. (4) A dipping method for a semiconductor device according to claim 1, wherein the first conductive film and the second conductive film are Al films made of an Al compound. (5) After etching the surface of the second insulating film, a third insulating film is deposited on the surface to obtain a desired thickness of the insulating film. A method for manufacturing a semiconductor device.
JP5141982A 1982-03-31 1982-03-31 Manufacture of semiconductor device Pending JPS58169939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5141982A JPS58169939A (en) 1982-03-31 1982-03-31 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5141982A JPS58169939A (en) 1982-03-31 1982-03-31 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS58169939A true JPS58169939A (en) 1983-10-06

Family

ID=12886400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5141982A Pending JPS58169939A (en) 1982-03-31 1982-03-31 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS58169939A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61187348A (en) * 1985-02-15 1986-08-21 Nippon Telegr & Teleph Corp <Ntt> Manufacture of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61187348A (en) * 1985-02-15 1986-08-21 Nippon Telegr & Teleph Corp <Ntt> Manufacture of semiconductor device
JPH0544181B2 (en) * 1985-02-15 1993-07-05 Nippon Telegraph & Telephone

Similar Documents

Publication Publication Date Title
JPS58210634A (en) Preparation of semiconductor device
JPH0722160B2 (en) Insulating structure on integrated circuit and manufacturing method thereof
JPS58169939A (en) Manufacture of semiconductor device
JPS6377122A (en) Manufacture of semiconductor device
JP2001519097A (en) Manufacturing method of planar trench
JPS59158534A (en) Manufacture of semiconductor device
JPS59227118A (en) Manufacture of semiconductor device
JPS6376351A (en) Formation of multilayer interconnection
JPH0427703B2 (en)
JPS59144151A (en) Manufacture of semiconductor device
JPH0273652A (en) Manufacture of semiconductor device
JPS63161645A (en) Manufacture of semiconductor device
JPS63131537A (en) Manufacture of semiconductor device
JPS59175124A (en) Manufacture of semiconductor device
JPH0212827A (en) Manufacture of semiconductor device
JPS63240042A (en) Manufacture of semiconductor device
JPS61256743A (en) Manufacture of semiconductor device
JPH03149826A (en) Manufacture of semiconductor device
JPS6167934A (en) Method for isolation by separation and burying in groove
JPH04123432A (en) Manufacture of semiconductor device
JPS6149437A (en) Semiconductor device
JPH0472728A (en) Etching process
JPS59215747A (en) Manufacture of semiconductor device
JPS62268130A (en) Manufacture of semiconductor device
JPS63111644A (en) Manufacture of semiconductor device