JPS63128210A - Measuring method for film thickness and refractive index - Google Patents
Measuring method for film thickness and refractive indexInfo
- Publication number
- JPS63128210A JPS63128210A JP27433486A JP27433486A JPS63128210A JP S63128210 A JPS63128210 A JP S63128210A JP 27433486 A JP27433486 A JP 27433486A JP 27433486 A JP27433486 A JP 27433486A JP S63128210 A JPS63128210 A JP S63128210A
- Authority
- JP
- Japan
- Prior art keywords
- film
- refractive index
- film thickness
- incident angle
- lens
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 13
- 230000001678 irradiating effect Effects 0.000 claims abstract description 4
- 230000005540 biological transmission Effects 0.000 claims abstract description 3
- 230000000694 effects Effects 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- 238000005259 measurement Methods 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 239000012528 membrane Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、電磁波の干渉を利用して膜厚及び屈折率の両
者を同時に測定する方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method of simultaneously measuring both film thickness and refractive index using electromagnetic wave interference.
[従来の技術]
膜厚や屈折率を測定する方法としては、偏光解析を利用
したエリプソメータや干渉作用を利用した分光分析手法
等が実用化されている。しかしながら、これらの従来技
術は、膜厚又は屈折率のどちらか一方が既知である場合
に限定され、両方が未知である場合には全く測定できな
いという欠点を有している。[Prior Art] As methods for measuring film thickness and refractive index, an ellipsometer that uses polarization analysis, a spectroscopic analysis method that uses interference, and the like have been put into practical use. However, these conventional techniques have the disadvantage that they are limited to cases where either the film thickness or the refractive index is known, and cannot be measured at all when both are unknown.
[発明が解決しようとする問題点]
本発明は上記の技術的制約を解決する為になされたもの
であって、その目的とするところは、膜厚及び屈折率が
いずれも未知である透光性膜における膜厚及び屈折率の
双方を測定し得る様な膜厚及び屈折率の測定方法を提供
することにある。[Problems to be Solved by the Invention] The present invention has been made to solve the above-mentioned technical constraints, and its purpose is to provide a light-transmitting material whose film thickness and refractive index are both unknown. It is an object of the present invention to provide a method for measuring film thickness and refractive index that can measure both the film thickness and refractive index in a transparent film.
[問題点を解決する為の手段]
上記目的を達成し得た本発明の構成とは、電磁波を透光
性膜に照射して膜厚及び屈折率を測定する方法において
、該電磁波の上記透光性膜に対する入射角度を変化させ
つつ電磁波を上記透光性膜に照射し、電磁波の上記透光
性膜における干渉作用によって生しる反射又は透過強度
が極値をとる少なくとも3つの入射角度を測定し、下記
(12) 、 (13)式の2元連立方程式を解いて膜
厚及び屈折率を求める点に要旨を有する膜厚及び屈折率
の測定方法である。[Means for Solving the Problems] The structure of the present invention that achieves the above object is a method for measuring film thickness and refractive index by irradiating electromagnetic waves onto a transparent film. irradiating the translucent film with electromagnetic waves while changing the angle of incidence on the translucent film, and detecting at least three incident angles at which the intensity of reflection or transmission caused by the interference effect of the electromagnetic waves on the translucent film takes an extreme value; This is a method for measuring film thickness and refractive index, the gist of which is to obtain the film thickness and refractive index by measuring and solving the two-dimensional simultaneous equations of equations (12) and (13) below.
・・・ (12)
・・・ (13)
但し
d:膜厚
λ:電磁波の波長
d’m+2r、θ″m+r、θ″I:入射角度を示し、
各角度のときに観測される反射又は透過強
度が異なる極大値又は極小値をとる
ときの入射角度で、?m + 2 rとθ”mar。... (12) ... (13) where d: Film thickness λ: Wavelength of electromagnetic wave d'm+2r, θ''m+r, θ''I: Indicates the incident angle,
At which angle of incidence does the reflected or transmitted intensity observed at each angle take a different maximum or minimum value? m + 2 r and θ”mar.
θ″m+「とθ“mの間には、極大値または、極小値を
とる角度が(r−1)個含まれている(90〉0m〉θ
mar >0m+2r> O) 。Between θ″m+″ and θ″m, there are (r−1) angles that take the maximum value or the minimum value (90〉0m〉θ
mar>0m+2r>O).
[作用コ
本発明の前記構成において重要な役割を果たす電磁波の
干渉について、その基本的原理を図面に従って説明する
。[Operations] The basic principle of electromagnetic wave interference, which plays an important role in the configuration of the present invention, will be explained with reference to the drawings.
まず第2図において、PQR5は物質I、II(媒体)
間に存在する両外面が平行な平面で構成される透明な膜
10である。First, in Figure 2, PQR5 is substance I, II (medium)
This is a transparent film 10 in which both outer surfaces existing between the two are parallel planes.
いま物質■、IIが空気であるとし、第2図に示す様に
、点Aから膜10の表面PQ上の1点Bに入射角θで電
磁波が入射した場合を考える。内膜10の膜厚をd、空
気中での電磁波の波長をλ、空気に対する膜の屈折率を
nとし、屈折角をψとする。Let us now assume that the substances (1) and (2) are air, and consider the case where an electromagnetic wave is incident from point A to one point B on the surface PQ of the film 10 at an incident angle θ, as shown in FIG. The thickness of the inner membrane 10 is d, the wavelength of electromagnetic waves in air is λ, the refractive index of the membrane with respect to air is n, and the refraction angle is ψ.
膜10に照射された電磁波の一部は点Bで反射して矢印
りの方向に進行し、他の電磁波は屈折角ψで膜10中に
入射して点Cに向い、その稜点Cで反射して面PQ上の
点りを介して矢印Mの方向に向かう。点Bで反射した電
磁波の経路BLは、点C,Dを介してMの方向に向う電
磁波の経路DMと平行である。A part of the electromagnetic waves irradiated to the film 10 is reflected at point B and travels in the direction indicated by the arrow, and the other electromagnetic waves enter the film 10 at a refraction angle ψ and head toward point C, and at the ridge point C. It is reflected and goes in the direction of arrow M via a dot on plane PQ. The path BL of the electromagnetic wave reflected at point B is parallel to the path DM of the electromagnetic wave going in the direction of M via points C and D.
これらの2つの経過BL、DMを進行する電磁波は、レ
ンズ11を通った後レンズ11の焦点Fo上で干渉する
。The electromagnetic waves traveling through these two paths BL and DM interfere on the focal point Fo of the lens 11 after passing through the lens 11.
ここで電磁波における2つの経路BL。Here, there are two paths BL in electromagnetic waves.
BCDMの光学的距離差Δは、点りから経路BLに下ろ
した垂線の足をKとすると、下記(1)式の様に表わせ
る。The optical distance difference Δ of BCDM can be expressed as in the following equation (1), where K is the foot of the perpendicular line drawn from the dot to the route BL.
θとψの間には
sinθ=nsinψ −(2)の関
係があるので、(2)式を(1)式に代入して整理する
と下記(3)式が得られる。Since there is a relationship between θ and ψ of sin θ=nsin ψ − (2), the following equation (3) is obtained by substituting equation (2) into equation (1) and rearranging.
Δ=2nd−cosψ ・(3)今、
入射角θを連続的に変化させながら電磁波を膜に入射さ
せたとする。そして入射角θが0mのときに反射波の干
渉によって強度が極大値(又は極小値)をとり、次に入
射角θが0m+1のときに再び極大値(又は極小値)を
とり、更に入射角θがθm+2のときに再度極大値(又
は極小値)に達したとする(90°〉0m〉0m+1〉
θm+2〉0)。このとぎ、順次測定された入射角θm
。Δ=2nd-cosψ ・(3) Now,
Assume that electromagnetic waves are made incident on a film while continuously changing the incident angle θ. When the incident angle θ is 0 m, the intensity takes a maximum value (or minimum value) due to the interference of the reflected waves, then when the incident angle θ is 0 m + 1, the intensity takes a maximum value (or minimum value) again, and then Suppose that θ reaches the maximum value (or minimum value) again when θm+2 (90°〉0m〉0m+1〉)
θm+2〉0). At this point, the incident angle θm measured sequentially
.
0m+1、θm+2の夫々に対する光学的距離差Δm、
Δm+1.Δm+2の間には、下記(4) 、 (5)
式の関係が成立する。Optical distance difference Δm for each of 0m+1 and θm+2,
Δm+1. Between Δm+2, the following (4) and (5)
The relationship of the formula holds true.
1 Δu++1 −Δml= λ
・・・ (4)1Δm+2−Δm+11
=λ ・・・(5)従って上記(3) 、
(4) 、 (5)式より、下記(6) 、 (7)式
を得ることができる。1 Δu++1 −Δml= λ
... (4) 1Δm+2−Δm+11
=λ...(5) Therefore, the above (3),
From equations (4) and (5), the following equations (6) and (7) can be obtained.
λ
d=−・
n
・・・ (6)
d=二
n
・・・ (7)
上記(8) 、 (7)式において、3つの入射角度θ
m。λ d=-・n... (6) d=2n... (7) In the above equations (8) and (7), the three incident angles θ
m.
θm+1.θm+2は測定値として得ることが可能であ
るので、(6) 、 (7)式を連立させることによっ
て、膜10の厚さd及び屈折率nを測定することができ
る。θm+1. Since θm+2 can be obtained as a measured value, the thickness d and refractive index n of the film 10 can be measured by combining equations (6) and (7).
一方上記(6) 、 (71式の関係からは、下記(8
)式が得られる。On the other hand, from the relationship of equations (6) and (71), the following (8
) formula is obtained.
ただしX = 2sin20m+1−5in2θm−5
in’θm+2
Y = X + 2sin20m+1
従ってθ、θm+1.θm+2の測定値を上記(8)式
に適用して屈折率nの値を求め、更にその後(6)式又
は(7)式から膜厚dを求める様にしてもよい。However, X = 2sin20m+1-5in2θm-5
in'θm+2 Y = X + 2sin20m+1 Therefore θ, θm+1. The measured value of θm+2 may be applied to the above equation (8) to obtain the value of the refractive index n, and then the film thickness d may be obtained from the equation (6) or (7).
尚(6) 、 (7)式を求めるに当たっては、第2図
に示した場合では反射波を利用したのであるが、本発明
は反射波を利用する場合に限らず、例えば第3図に示す
様に透過波を利用する場合であっても同様に前記(6)
、 (7)式を求めることができる6上記(8) 、
(7)式の連立方程式は、干渉による強度がいずれも
極大値(又は極小値)をとる場合の、3つの異なる入射
角度θ団、θm+1.θm+2における関係について求
めたものであるが、干渉による強度が極大値−極小値→
極大値或は極小値→極大値−極小値をとる場合の、順次
束められる3つの異なる入射角度θym、θ’ma1.
θ′m+2についても、同様にして連立方程式が得られ
る。In calculating equations (6) and (7), reflected waves were used in the case shown in Fig. 2, but the present invention is not limited to the case where reflected waves are used. Similarly, even when using transmitted waves, the above (6)
, (7) can be obtained from 6 above (8),
The simultaneous equations in equation (7) are based on three different incident angles θ groups, θm+1. The relationship at θm+2 was obtained, and the intensity due to interference is local maximum value - local minimum value →
Three different incident angles θym, θ'ma1, which are sequentially bundled when taking the local maximum value or local minimum value → local maximum value - local minimum value.
Simultaneous equations can be obtained similarly for θ'm+2.
この場合は、位相がλ/2ずつずれる関係にあるので(
前述の場合はλずつずれる)、下記(9)。In this case, the phase is shifted by λ/2, so (
In the above case, it is shifted by λ), and (9) below.
(lO)式の連立方程式が得られる。但し、90°〉θ
’m >θ’m+1 >θ’m+2>Oである。Simultaneous equations of (lO) are obtained. However, 90°〉θ
'm>θ'm+1>θ'm+2>O.
・・・ (9)
・・・(10)
上記(9) 、 (10)式において、入射角度θ1.
θ’m+1゜02m+2は測定されるので、(9) 、
(10)式の連立方程式を解くことによって膜厚d及
び屈折率nを求めることができる。またこの場合におい
ても、前述した場合と同様に、(9) 、 (10)式
から下記(11)式が求められ、この(11)式から屈
折率nを求め、その後(9) 、 (10)式のいずれ
か一方によって膜厚を求める様にしてもよい。... (9) ... (10) In the above equations (9) and (10), the incident angle θ1.
Since θ'm+1°02m+2 is measured, (9),
The film thickness d and the refractive index n can be determined by solving the simultaneous equations (10). Also in this case, as in the case described above, the following equation (11) is obtained from equations (9) and (10), the refractive index n is obtained from this equation (11), and then (9) and (10 ) The film thickness may be determined using either one of the following equations.
ただしX = 2sin2θ’m+1−5in20′m
−5in”&’m+2
Y = X + 2sin2 0′m+1さて、次に(
6)〜 (8)式又は(9)〜(11)式の一般式につ
いて考える。However, X = 2sin2θ'm+1-5in20'm
-5in”&'m+2 Y = X + 2sin2 0'm+1 Now, next (
Consider the general formulas 6) to (8) or (9) to (11).
いま第4図に示す様に、入射角度を変化させていったと
きに、ある角度θmで極値をとり、次に更に変化させて
いたとぎに、極大、極小の点をr回通りθmarで再び
極値をとり、更に変化させていたときに、極大、極小の
点を再びr回通り、0m+2rで再び極値をとったとす
る。As shown in Figure 4, when the incident angle is changed, it reaches an extreme value at a certain angle θm, and then as it continues to change further, it passes through the maximum and minimum points r times and reaches θmar. Suppose that it takes the extreme value again and, while changing it further, passes through the maximum and minimum points again r times and takes the extreme value again at 0m+2r.
そのときd’m >θ”mar >θ−+2rとすると
、(6)〜(8)式又は(9)〜(11)式の関係は一
般的に下記(12)〜(14)式の関係に表わすことが
できる。At that time, if d'm >θ"mar> θ-+2r, then the relationship between equations (6) to (8) or equations (9) to (11) is generally the relationship between equations (12) to (14) below. can be expressed as
・・・ (12)
・・・ (13)
、?7
ただしX = 2s+n2θmar −5in2θ″m
−5in2d′m+2r
Y = X + 2sin’ θ”m + r上記(1
2)〜(14)式において、r=1とすると前記(9)
〜(11)式が得られ、r=2とすると前記(6)〜
(8)式が得られる。... (12) ... (13) ,? 7 However, X = 2s+n2θmar -5in2θ″m
-5in2d'm+2r Y = X + 2sin' θ”m + r Above (1
In equations 2) to (14), if r=1, the above (9)
~ (11) formula is obtained, and if r = 2, the above (6) ~
Equation (8) is obtained.
本発明者が実験によって確認したところによると、rを
できるだけ大きくとった方が極値をとる角度の測定誤差
の影響を少なくすることができ、屈折率、膜厚の測定精
度は高くなった。According to the inventor's experimental results, setting r as large as possible can reduce the influence of measurement errors in angles that take extreme values, and improves the measurement accuracy of refractive index and film thickness.
尚本発明は基本的には、膜厚d及び屈折率nが未知の膜
10について、既知の波長の電磁波を用いて前記膜厚d
及び屈折率nを求める為のものであるが、屈折率n又は
膜厚dのどちらか一方が既知であって且つ使用する電磁
波の波長が未知である場合には、前記(12) 、 (
13)式の関係を適用して電磁波の波長を求める様な技
術的応用が可能であることは言う迄もない。Basically, the present invention uses electromagnetic waves of a known wavelength to determine the film thickness d for a film 10 whose film thickness d and refractive index n are unknown.
and the refractive index n, but if either the refractive index n or the film thickness d is known and the wavelength of the electromagnetic wave to be used is unknown, the above (12), (
It goes without saying that technical applications such as finding the wavelength of electromagnetic waves by applying the relationship in equation 13) are possible.
[実施例]
第1図は本発明方法を実施する為に構成される膜厚・屈
折率測定装置の概略説明図である。[Example] FIG. 1 is a schematic explanatory diagram of a film thickness/refractive index measuring device configured to carry out the method of the present invention.
レーザ発振器1から発振される単色光は、回転反射鏡2
−レンズ3a、3b→膜10(測定対象)→集光レンズ
4の順序で進行し、光量検出器5によって反射強度(光
量)が測定される。そして前記回転反射鏡2はガルバノ
メータ8によって揺動される様な構成であり、該回転反
射鏡2で反射する単色光はその進行方向が任意に変えら
れる。The monochromatic light emitted from the laser oscillator 1 is transmitted to the rotating reflector 2.
- The light progresses in the order of lenses 3a, 3b→film 10 (measurement target)→condensing lens 4, and the reflection intensity (light amount) is measured by the light amount detector 5. The rotating reflecting mirror 2 is configured to be swung by a galvanometer 8, and the traveling direction of the monochromatic light reflected by the rotating reflecting mirror 2 can be arbitrarily changed.
一方回転反射鏡2で反射される単色光の反射点Gは、レ
ンズ3aの焦点と一致する様に構成されており、反射点
Gで反射された単色光はレンズ3aを通過することによ
り全てレンズ3aの光軸と平行となる。又レンズ3a及
びレンズ3bは夫々の光軸が一致する様に配置され、レ
ンズ3aを通過した後の平行光線は、レンズ3bを通過
した後金てレンズ3bの焦点を通る。そしてレンズ3b
の焦点上に膜10の表面が位置する様にされ、従って回
転反射鏡2で反射された単色光は全てl1U10の表面
における同一点Hに到達することとなり、測定位置がず
れることはない。On the other hand, the reflection point G of the monochromatic light reflected by the rotating reflector 2 is configured to coincide with the focal point of the lens 3a, and the monochromatic light reflected at the reflection point G passes through the lens 3a, so that all of the monochromatic light is reflected by the lens 3a. It becomes parallel to the optical axis of 3a. Further, the lenses 3a and 3b are arranged so that their respective optical axes coincide with each other, and the parallel rays after passing through the lens 3a pass through the focal point of the lens 3b after passing through the lens 3b. and lens 3b
The surface of the film 10 is positioned on the focal point of the mirror 2, so that all the monochromatic light reflected by the rotating mirror 2 reaches the same point H on the surface of l1U10, and the measurement position does not shift.
前記ガルバノメータ8には中央処理回路(CPU)7か
ら入射角度指令信号が送られ、その指令信号に応じてガ
ルバノメータ8が回転反射鏡2を揺動し、回転反射鏡2
によって反射される単色光は入射角度を変化させつつ点
Hに到達する。An incident angle command signal is sent to the galvanometer 8 from the central processing circuit (CPU) 7, and the galvanometer 8 swings the rotary reflecting mirror 2 in accordance with the command signal.
The monochromatic light reflected by reaches point H while changing the angle of incidence.
尚光量検出器5における単色光の反射強度が測定される
点Fを焦光レンズ4の焦点に一致させているのは、第2
図に関連して述べた通りである。Note that the point F at which the reflection intensity of the monochromatic light in the light amount detector 5 is measured coincides with the focal point of the focusing lens 4 due to the second
As stated in relation to the figure.
光量検出器5で検出された光量信号は、その後増幅器6
に送られて増幅され、更にCPU7に送られる。CPU
7では、入射角度による光量の変化を分析し、光量が極
値をとる入射角度を連続的に測定し、前記(12)〜(
14)式の関係を適用して、1I110の膜厚d及び屈
折率が測定される。The light amount signal detected by the light amount detector 5 is then sent to the amplifier 6.
The signal is sent to the CPU 7, amplified, and further sent to the CPU 7. CPU
In step 7, the changes in the amount of light depending on the angle of incidence are analyzed, and the angle of incidence at which the amount of light takes an extreme value is continuously measured.
14) The film thickness d and refractive index of 1I110 are measured by applying the relationship of formula.
また第1図に示した光学系を第5図(概略説明図)に示
す様な構成とすることもできる。尚第5図において12
は反射鏡である。Furthermore, the optical system shown in FIG. 1 can be configured as shown in FIG. 5 (schematic explanatory diagram). In addition, 12 in Figure 5
is a reflector.
第5図に示した構成において、レーザ発振器1から発振
された光は回転反射鏡で角度を変えられ、その後レンズ
3a、3bを通り膜10に入射する。膜10から反射光
は再びレンズ3bを通り、反射鏡12で角度を変えられ
、集光レンズ4を通り、光量検出器5で光量が検出され
る。In the configuration shown in FIG. 5, the angle of the light emitted from the laser oscillator 1 is changed by a rotating reflector, and then it passes through lenses 3a and 3b and enters the film 10. The reflected light from the film 10 passes through the lens 3b again, its angle is changed by the reflecting mirror 12, passes through the condensing lens 4, and the amount of light is detected by the light amount detector 5.
この様な構成においても本発明方法を実施することがで
きる。尚第5図に示した構成においても、前記第1図に
示した光学系と同様に、レンズ3a、3b及びレンズ4
の焦点は、夫々回転反射鏡2の回転中心(レーザ光の照
射点に一致)、膜10の測定点H1及び光量検出器5に
一致する様に配置される。The method of the present invention can also be implemented in such a configuration. Note that in the configuration shown in FIG. 5 as well, lenses 3a, 3b and lens 4 are used similarly to the optical system shown in FIG.
The focal points are arranged so as to coincide with the center of rotation of the rotating reflecting mirror 2 (coinciding with the irradiation point of the laser beam), the measurement point H1 of the film 10, and the light amount detector 5, respectively.
[発明の効果]
以上述べた如く本発明によれば、既述の構成を採用する
ことによって、膜厚及び屈折率が未知な膜における膜厚
及び屈折率を高精度に測定することが可能になった。[Effects of the Invention] As described above, according to the present invention, by employing the above-described configuration, it is possible to measure with high accuracy the film thickness and refractive index of a film whose film thickness and refractive index are unknown. became.
第1図は本発明方法を実施する為に構成される膜厚・屈
折率測定装置の概略説明図、第2図及び第3図は本発明
の原理を示す概略説明図、第4図は一般式の(12)〜
(工4)式を求める為の波形を示すグラフ、第5図は本
発明方法を実施する為に構成される膜厚・屈折率測定装
置の他の例を示す概略説明図である。
1・・・レーザ発振器 2・・・回転反射鏡5・・・
光量検出器 6・・・増幅器7・・・中央処理回路
8・・・ガルバノメータ10・・・膜(測定対象)
第3図
A L
11間8U63−128210(6)
第4図
入射角度Fig. 1 is a schematic explanatory diagram of a film thickness/refractive index measuring device configured to carry out the method of the present invention, Figs. 2 and 3 are schematic explanatory diagrams showing the principle of the present invention, and Fig. 4 is a general illustration. Equation (12) ~
FIG. 5 is a graph showing waveforms for determining equation (4), and is a schematic explanatory diagram showing another example of a film thickness/refractive index measuring device configured to carry out the method of the present invention. 1... Laser oscillator 2... Rotating reflector 5...
Light amount detector 6...Amplifier 7...Central processing circuit 8...Galvanometer 10...Membrane (measurement target) Fig. 3 Between A and L 11 8U63-128210 (6) Fig. 4 Incident angle
Claims (1)
方法において、該電磁波の上記透光性膜に対する入射角
度を変化させつつ電磁波を上記透光性膜に照射し、電磁
波の上記透光性膜における干渉作用によって生じる反射
又は透過強度が極値をとる少なくとも3つの入射角度を
測定し、下記(12)、(13)式の2元連立方程式を
解いて膜厚及び屈折率を求めることを特徴とする膜厚及
び屈折率の測定方法。 ▲数式、化学式、表等があります▼・・・(12) 但し d:膜厚 λ:電磁波の波長 θ″m+2r、θ″m+r、θ″m:入射角度を示し、
各角度のときに観測される反射又は透過 強度が異なる極大値又は極小値をとる ときの入射角度で、θ″m+2rとθ″m+r、θ″m
+rとθ″mの間には、極大値また は、極小値をとる角度が(r−1)個含 まれている(90°>θ″m>θ″m+r>θ″m+2
r>0)。[Claims] A method for measuring film thickness and refractive index by irradiating electromagnetic waves onto a transparent film, the electromagnetic waves are applied to the transparent film while changing the angle of incidence of the electromagnetic waves on the transparent film. irradiate, measure at least three incident angles at which the reflection or transmission intensity caused by the interference effect of electromagnetic waves on the transparent film takes an extreme value, and solve the two-dimensional simultaneous equations of equations (12) and (13) below. A method for measuring film thickness and refractive index, characterized by determining film thickness and refractive index. ▲There are mathematical formulas, chemical formulas, tables, etc.▼...(12) However, d: Film thickness λ: Wavelength of electromagnetic wave θ″m+2r, θ″m+r, θ″m: Indicates the angle of incidence,
The angle of incidence when the reflected or transmitted intensity observed at each angle takes a different maximum or minimum value, θ″m+2r, θ″m+r, θ″m
There are (r-1) angles between +r and θ″m that take the maximum value or the minimum value (90°>θ″m>θ″m+r>θ″m+2
r>0).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27433486A JPS63128210A (en) | 1986-11-18 | 1986-11-18 | Measuring method for film thickness and refractive index |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27433486A JPS63128210A (en) | 1986-11-18 | 1986-11-18 | Measuring method for film thickness and refractive index |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63128210A true JPS63128210A (en) | 1988-05-31 |
Family
ID=17540209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27433486A Pending JPS63128210A (en) | 1986-11-18 | 1986-11-18 | Measuring method for film thickness and refractive index |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63128210A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19733890C2 (en) * | 1996-08-04 | 2000-03-16 | Matsushita Electric Ind Co Ltd | Method for measuring a medium and device therefor |
CN106197297A (en) * | 2010-11-30 | 2016-12-07 | 庄臣及庄臣视力保护公司 | For the method measuring unhydrated ophthalmic lens |
-
1986
- 1986-11-18 JP JP27433486A patent/JPS63128210A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19733890C2 (en) * | 1996-08-04 | 2000-03-16 | Matsushita Electric Ind Co Ltd | Method for measuring a medium and device therefor |
US6172752B1 (en) | 1996-08-04 | 2001-01-09 | Matsushita Electric Industrial Co., Ltd. | Method and apparatus for simultaneously interferometrically measuring optical characteristics in a noncontact manner |
CN106197297A (en) * | 2010-11-30 | 2016-12-07 | 庄臣及庄臣视力保护公司 | For the method measuring unhydrated ophthalmic lens |
CN106197297B (en) * | 2010-11-30 | 2019-04-09 | 庄臣及庄臣视力保护公司 | Method for measuring unhydrated ophthalmic lens |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4999014A (en) | Method and apparatus for measuring thickness of thin films | |
US6856384B1 (en) | Optical metrology system with combined interferometer and ellipsometer | |
US5502567A (en) | Micropolarimeter, microsensor system and method of characterizing thin films | |
CA2849502A1 (en) | Apparatus for detecting a 3d structure of an object | |
JPH01313736A (en) | Method and apparatus for measuring refractive index n of material | |
US3734626A (en) | Light apparatus for testing surfaces | |
JPH06103252B2 (en) | High resolution ellipsometer apparatus and method | |
US3635552A (en) | Optical interferometer | |
US4847512A (en) | Method of measuring humidity by determining refractive index using dual optical paths | |
JPS5863836A (en) | Optical device | |
JPS5979104A (en) | Optical device | |
JPS63128210A (en) | Measuring method for film thickness and refractive index | |
US5325172A (en) | Optical system for analyzing samples separated by a centrifugal separator | |
JPH08152307A (en) | Method and apparatus for measuring optical constants | |
RU2660764C2 (en) | Sensor based on surface plasmonic resonance with element of plane optics | |
JPS5887447A (en) | High-precise measuring method for group refractive index | |
JPH11101739A (en) | Ellipsometry apparatus | |
JPS63263402A (en) | Film thickness measuring method | |
JP2654366B2 (en) | Micro polarimeter and micro polarimeter system | |
RU2075727C1 (en) | Method of measurement of angles of turn of several objects and device for its implementation | |
RU2025656C1 (en) | Device for non-destructive measuring of thickness of dielectric and semiconductor films in predetermined point | |
JPS60249007A (en) | Instrument for measuring film thickness | |
JP2591143B2 (en) | 3D shape measuring device | |
JPS6326763Y2 (en) | ||
JP3309537B2 (en) | Fourier transform spectrophotometer |