JPS63263402A - Film thickness measuring method - Google Patents

Film thickness measuring method

Info

Publication number
JPS63263402A
JPS63263402A JP9908387A JP9908387A JPS63263402A JP S63263402 A JPS63263402 A JP S63263402A JP 9908387 A JP9908387 A JP 9908387A JP 9908387 A JP9908387 A JP 9908387A JP S63263402 A JPS63263402 A JP S63263402A
Authority
JP
Japan
Prior art keywords
film
film thickness
electromagnetic wave
intensity
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9908387A
Other languages
Japanese (ja)
Inventor
Sumihiko Kawashima
川島 純彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP9908387A priority Critical patent/JPS63263402A/en
Publication of JPS63263402A publication Critical patent/JPS63263402A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure the thickness of a film with high accuracy by measuring the quantity of angle variation until the reflection intensity or transmission intensity of an electromagnetic wave reaches a certain extremal value while varying the angle between the irradiation direction of the electromagnetic wave and a light-transmissive film. CONSTITUTION:Homogeneous light from a laser oscillator 1 travels in the order of a rotary reflection mirror 2, the film (measuring object) 10, and a photodetector 5 and its reflection intensity is measured by the detector 5. The light quantity signal detected by the detector 5 is sent to a CPU 7. The CPU 7 measures continuously the quantity of variation in the incidence angle of the light when the quantity of light varies from a certain extremal value to another extremal value and the relations shown by equations I and II are applied to measure the film thickness (d) of the film 10. In the equations, (d) is the film thickness, lambda the wavelength of the electromagnetic wave (light), (n) the refractive index of the film 10, DELTAtheta1 and DELTAtheta2 variations in angle between the electromagnetic wave and film 10 from the time when the reflection intensity reaches a certain extremal value to the time when the intensity reach other two optional extremal values, and theta0 the incidence angle of the electromagnetic wave when the intensity reach the certain extremal values. Consequently,the film thickness is measured with high accuracy without finding the incidence angle directly.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電磁波の干渉を利用して膜厚を測定する方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method of measuring film thickness using electromagnetic wave interference.

[従来の技術] 膜厚を測定する装置としては、次に列挙するものが実用
化されている。
[Prior Art] The following devices have been put into practical use as devices for measuring film thickness.

(1)  電磁波を膜に照射したときの吸収を利用する
膜厚計 膜による電磁波の吸収量が膜厚との間に相関関係を示す
ことを応用したものであり、膜構成物質によって吸収係
数が異なるので測定対象となる物質毎に夫々特有の吸収
係数を選定する必要があるが、1〜10μm程度の精度
まで測定できる。具体的な装置としては、蛍光X線膜厚
計、γ線膜厚計、赤外線膜厚計、β線膜厚計等を挙げる
ことができる。
(1) Film thickness meter that uses absorption when electromagnetic waves are irradiated onto a film This is an application of the fact that the amount of electromagnetic waves absorbed by a film shows a correlation with the film thickness, and the absorption coefficient varies depending on the film constituent materials. Since the absorption coefficients are different, it is necessary to select a unique absorption coefficient for each substance to be measured, but it is possible to measure with an accuracy of about 1 to 10 μm. Specific examples include a fluorescent X-ray film thickness meter, a γ-ray film thickness meter, an infrared film thickness meter, a β-ray film thickness meter, and the like.

(2)超音波膜厚計 超音波の往復時間から膜厚を測定するものであり、精度
は0.1 am程度に過ぎない。
(2) Ultrasonic film thickness meter The film thickness is measured from the round trip time of ultrasonic waves, and the accuracy is only about 0.1 am.

(3)  静電容量式膜厚計 一対の電極板の間に測定対象を入れたときに、その厚み
の違いによる誘電率の変化を利用するものであり、10
μm程度の単位まで測定できる。
(3) A capacitive film thickness meter utilizes the change in dielectric constant due to the difference in thickness when the object to be measured is placed between a pair of electrode plates;
Measurements can be made down to the micrometer level.

(4)  機械式膜厚計 機械的に膜厚の変化を把握し、該変化を差動トランス等
で電気的に変換して膜厚を測定するものであり、同じく
10μm程度の単位まで測定できる。
(4) Mechanical film thickness meter Mechanically measures changes in film thickness and converts the changes electrically using a differential transformer, etc. to measure film thickness, and can also measure to the nearest 10 μm. .

この様に膜厚を測定する技術としては、電磁波の吸収を
利用したもの、静電容量の変化を利用したもの、超音波
の反射を利用したもの等種々実用化されているが、いず
れの技術も1〜100μm程度の精度でありA(オング
ストローム)単位の精度が要求される分野での測定には
適用できないという問題があった。
Various techniques have been put into practical use to measure film thickness in this way, such as those that utilize electromagnetic wave absorption, those that utilize changes in capacitance, and those that utilize ultrasound reflection, but none of these techniques However, the accuracy is on the order of 1 to 100 μm, and there is a problem in that it cannot be applied to measurements in fields where accuracy on the A (angstrom) scale is required.

そこで本発明者は、膜厚を測定する方法として、膜に対
する入射角度を変化させつつ電磁波を膜上の1点に照射
し、膜における干渉作用によって生じる反射強度又は透
過強度が極値をとる入射角度を測定することによって膜
厚を測定する技術を開発し、先に特許出願した(特願昭
60−259598号)。
Therefore, the present inventor proposed a method for measuring film thickness by irradiating electromagnetic waves to one point on the film while changing the angle of incidence on the film, and at an incident where the reflected or transmitted intensity caused by interference in the film takes an extreme value. We developed a technology to measure film thickness by measuring angles and filed a patent application (Japanese Patent Application No. 259598/1982).

この技術の開発によって、従来技術と比べて格段に高精
度に膜厚を測定できることになったのであるが、当該技
術においても若干の解決すべき問題が残されていた。
Although the development of this technique has made it possible to measure film thickness with much higher precision than conventional techniques, there are still some problems that remain with this technique.

[発明が解決しようとする問題点] この様な技術で膜厚を測定する場合には、膜に対する入
射角度を測定することが前提となる。しかし実際問題と
して入射角度を正確に求めることは次に述べる如く極め
て困難なことであった0例えばフィルムの膜厚をオンラ
インで測定するときには、走行フィルムの傾きや脈動・
振動等・によってフィルムの水平度を保つことが困難で
あり、従って入射角度を正確に求めることはできず、膜
厚測定値が不正確になるという問題があった。
[Problems to be Solved by the Invention] When measuring film thickness using such a technique, it is a premise that the angle of incidence on the film is measured. However, as a practical matter, it is extremely difficult to accurately determine the angle of incidence as described below.For example, when measuring film thickness online, it is difficult to accurately determine the angle of incidence due to
There was a problem in that it was difficult to maintain the horizontality of the film due to vibrations, etc., and therefore the angle of incidence could not be determined accurately, resulting in inaccurate film thickness measurements.

本発明はこの様な問題に鑑みてなされたものであって、
その目的とするところは入射角度を測定1      
しなくとも膜厚を高精度に測定できる様にした膜厚測定
方法を提供することにある。
The present invention was made in view of such problems, and
Its purpose is to measure the angle of incidence 1
It is an object of the present invention to provide a film thickness measuring method that allows film thickness to be measured with high precision even without the use of film thickness.

[問題点を解決するための手段] 上記目的を達成し得た本発明は、2つの発明を包含する
ものである。
[Means for Solving the Problems] The present invention that achieves the above object includes two inventions.

第1の発明は、電磁波を屈折率が既知の透光性膜の1点
に照射して膜厚を測定する方法において、該電磁波の照
射方向と上記透光性膜とのなす角度を変化させつつ、上
記透光性膜における干渉作用による電磁波の反射強度又
は透過強度の変化を追跡し、前記強度が或る極値を示す
ときまでの前記角度変化量を測定し、下記(4t) 、
 (12)式の2元連立方程式を解くことによって膜厚
を求める点に要旨を有する膜厚測定方法である。
A first invention is a method of measuring film thickness by irradiating electromagnetic waves to one point of a transparent film with a known refractive index, in which the angle between the irradiation direction of the electromagnetic waves and the transparent film is changed. At the same time, the changes in the reflected or transmitted intensity of the electromagnetic waves due to the interference effect in the transparent film are tracked, and the amount of angular change is measured until the intensity reaches a certain extreme value, and the following (4t) is carried out.
This film thickness measurement method has the gist of determining the film thickness by solving the two-dimensional simultaneous equations of equation (12).

・・・ (11) ・・−(12) 但し d:膜厚(未知) λ:電磁波の波長(既知) n:透光性膜の屈折率(既知) Δθ3.Δθ、二反射強度又は透過強度が或る極値を示
したときから他の任意の 2つの極値を示すまでの電磁波と 透光性膜のなす角度の変化(既 知)、Δθ1.Δθ2の夫々には反 射強度又は透過強度が極値をとる ときの角度が(rt−1) 、 (ra−2)個含まれ
ている。
... (11) ... - (12) where d: film thickness (unknown) λ: wavelength of electromagnetic wave (known) n: refractive index of the transparent film (known) Δθ3. Δθ, the change in the angle between the electromagnetic wave and the transparent film from when the reflection intensity or transmission intensity shows a certain extreme value to any other two extreme values (known), Δθ1. Each of Δθ2 includes (rt-1) and (ra-2) angles at which the reflected intensity or transmitted intensity takes an extreme value.

θ。:或る極値を示したときの電磁波の入射角(未知) 第2の発明は屈折率が未知の透光性膜を対象とする場合
であって、電磁波の照射方向と上記透光性膜とのなす角
度を変化させつつ、上記透光性膜における干渉作用によ
る電磁波の反射強度又は透過強度の変化を追跡し、前記
強度が或る極値を示したと虻から他の任意の3つの極値
を示すときまでの前記角度変化量を測定し、下記(ll
)〜(13)式の3元連立方程式を解くことによって屈
折率と共に膜厚を求める点に要旨を有する膜厚測定方法
である。
θ. : Incident angle of electromagnetic waves when it shows a certain extreme value (unknown) The second invention is a case where a translucent film with an unknown refractive index is targeted, and the irradiation direction of electromagnetic waves and the translucent film are While changing the angle formed with Measure the amount of change in the angle until it shows the value, and calculate the following (ll
) to (13), the gist of this film thickness measurement method lies in determining the film thickness as well as the refractive index.

・・・ (11) ・・・ (12) ・−(13) 但し d:膜厚(未知) λ:電磁波の波長(既知) n:透光性膜の屈折率(既知) ΔθhΔθ2.Δθ3 :反射強度又は透過強度が或る
極値を示したときから他の 任意の3つの極値を示すまでの電 磁波と透光性膜のなす角度の変化 (既知)。Δθ1.Δθ2.Δθ、の 夫々には反射強度又は透過強度 が極値をとるときの角度が(rl− 1) 、 (rz−2) 、 (rs−1)個含まれて
いる。
... (11) ... (12) ・-(13) where d: film thickness (unknown) λ: wavelength of electromagnetic wave (known) n: refractive index of translucent film (known) ΔθhΔθ2. Δθ3: Change in the angle between the electromagnetic wave and the transparent film from when the reflected intensity or transmitted intensity shows a certain extreme value until it shows any other three extreme values (known). Δθ1. Δθ2. Each of Δθ includes (rl-1), (rz-2), and (rs-1) angles at which the reflected intensity or transmitted intensity takes an extreme value.

θ。:或る極値を□示したときの電磁波の入射角(未知
) [作用] 本発明の前記構成において重要な役割を果たす電磁波の
干渉について、その基本的原理を図面に従って説明する
θ. : Incident angle of electromagnetic waves (unknown) when a certain extreme value is indicated by □ [Operation] The basic principle of electromagnetic wave interference, which plays an important role in the above configuration of the present invention, will be explained with reference to the drawings.

まず第2図において、PQR3は物質11!!(媒体)
間に存在する両外面が平行な平面で構成される透明な[
10(透光性膜)である。
First, in Figure 2, PQR3 is substance 11! ! (media)
A transparent [
10 (transparent film).

第2図に示す様に、点Aから膜1oの表面PQ上の1点
Bに入射角θで電磁波が入射した場合を考える。尚膜1
0の膜厚をd1真空中での電磁波の波長をλ、膜の屈折
率をn1物質!の屈折率をnoとし、屈折角ψとする。
As shown in FIG. 2, consider the case where an electromagnetic wave is incident from point A to point B on surface PQ of film 1o at an incident angle θ. Sho membrane 1
The film thickness of 0 is d1, the wavelength of electromagnetic waves in vacuum is λ, and the refractive index of the film is n1 material! The refractive index of is set to no, and the refraction angle is set to ψ.

膜10に照射された電磁波の一部は点Bで反射して矢印
りの方向に進行し、他の電磁波は屈折角ψで膜10中に
入射して点Cに向い、その稜点Cで反射して面PQ上の
点りを介して矢印Mの方向に向う0点Bで反射した電磁
波の経路BLは、点C,Dを介してMの方向に向う電磁
波の経路DMと平行である。
A part of the electromagnetic waves irradiated to the film 10 is reflected at point B and travels in the direction indicated by the arrow, and the other electromagnetic waves enter the film 10 at a refraction angle ψ and head toward point C, and at the ridge point C. The path BL of the electromagnetic wave reflected at point 0 B, which is reflected and goes in the direction of arrow M via points on plane PQ, is parallel to the path DM of the electromagnetic wave, which goes in the direction of M via points C and D. .

これらの2つの経過BL、DMを進行する電磁波は、レ
ンズ11を通った後レンズ11の焦点Fo上で干渉する
The electromagnetic waves traveling through these two paths BL and DM interfere on the focal point Fo of the lens 11 after passing through the lens 11.

ここで電磁波における2つの経路BL。Here, there are two paths BL in electromagnetic waves.

BCDMの光学的距離差Δは、点りから経路BLに下ろ
した垂線の足をKとすると、下記(1)式の様に表わせ
る。
The optical distance difference Δ of BCDM can be expressed as in the following equation (1), where K is the foot of the perpendicular line drawn from the dot to the route BL.

・・・(1) θとψの間には sinθ= −−s l nψ          −
(2)n。
...(1) Between θ and ψ, sin θ= −−s l nψ −
(2) n.

の関係があるので、(2)式を(1)式に代入して整理
すると下記(3)式が得られる。
Since there is a relationship, the following equation (3) can be obtained by substituting equation (2) into equation (1) and rearranging.

Δx 2ndφcosψ          −(3)
今、第4図に示す様に電磁波の照射方向と上記透光性膜
とのなす角度θ(入射角)を連続的に変化させていった
ときに、或る入射角θ。で極値をとり、更に変化させて
い゛ったときに極値(極大値、極小値を含む)の点を何
回か通り入射角θ1でr3回目の極値をとったとする。
Δx 2ndφcosψ −(3)
Now, as shown in FIG. 4, when the angle θ (incident angle) between the electromagnetic wave irradiation direction and the transparent film is continuously changed, a certain incident angle θ is reached. Assume that the extreme value is taken at the angle of incidence θ1, and as the value is further changed, the point of the extreme value (including the maximum value and the minimum value) is passed through several times, and the r3th extreme value is taken at the incident angle θ1.

このとき、入射角θ。、θ、に対する光学的距離差Δ。At this time, the incident angle θ. , θ, the optical distance difference Δ.

、Δ1の間には下記(4)式の関係が成立する。, Δ1, the following relationship (4) holds true.

Δ。−Δ、=λ・rl/2(但しθ、〉θ。)従って上
記(2) 、 (3) 、 (4)式より、下記(5)
式を得ることができる。
Δ. −Δ, = λ・rl/2 (however, θ, 〉θ.) Therefore, from the above equations (2), (3), and (4), the following (5) is obtained.
We can obtain the formula.

・・・ (5) 同様にして或る入射角θ0から極値の点を夫々何回か通
り、入射角θ2.θ、でr2+r3回目の極値をとる場
合を想定すると下記(6) 、 (7)式が得られる。
(5) In the same way, pass through the extreme points several times from a certain incident angle θ0, and then set the incident angle θ2. Assuming that θ takes the third extreme value of r2+r, the following equations (6) and (7) are obtained.

・・・(6) ・・・ (7) ここで90@〉θ、〉θ2〉θ1〉θ。とじ、入射角θ
0と他の入射角θ1.θ2.θ、との差(即ち角度変化
量)−を下記(a) 、 (9) 、 (lo)式に示
す様に夫々Δθ1.Δθ3.Δθ、とすると、前記(5
)〜(7)式は下記(11)〜(13)式の様に表わす
ことができる。
...(6) ... (7) Here, 90@〉θ, 〉θ2〉θ1〉θ. Binding, incident angle θ
0 and other incident angles θ1. θ2. θ, (i.e., the amount of angular change) − as shown in the following equations (a), (9), and (lo), respectively. Δθ3. If Δθ, then the above (5
) to (7) can be expressed as the following equations (11) to (13).

θ寡−θ0冨Δθ凰      ・・・(8)θ2−θ
0=Δθ2      ・・・(9)θ、−θ。=Δθ
3      ・・・(10)・・・ (11) ・−(12) ・・−(13,) 上記(11)〜(!3)式において、角度変化量Δθ1
.Δθ2.Δθ3は測定によって求めることができ、波
長λ、極値をとる回数rl+r2+r、も求めることが
できる。従って屈折率nが既知の場合は、(11) 、
 (12)式を方程式として連立させることによフて、
入射角θ0が未知であっても、膜厚dを求めることがで
きる。又屈折率nが未知の場合は、(11) 、 (1
2) 、 (j3)式を方程式として連立させることに
よって、入射角θ0が未知であっても、前記屈折率nと
共に膜厚dを求めることができる。
θ amount - θ0 amount Δθ - (8) θ2 - θ
0=Δθ2...(9) θ, -θ. =Δθ
3 ... (10) ... (11) ... - (12) ... - (13,) In the above equations (11) to (!3), the angle change amount Δθ1
.. Δθ2. Δθ3 can be determined by measurement, and the wavelength λ and the number of extreme values rl+r2+r can also be determined. Therefore, if the refractive index n is known, (11),
By combining equations (12) as simultaneous equations,
Even if the incident angle θ0 is unknown, the film thickness d can be determined. Also, if the refractive index n is unknown, (11), (1
2) By combining Equations (j3) as simultaneous equations, the film thickness d can be determined together with the refractive index n even if the incident angle θ0 is unknown.

この様にして、入射角θ。を直接求めずとも膜厚dを求
めることができるので、測°定対象(膜10)の傾き等
によって測定結果に誤差が生じるという様な問題を回避
できる。
In this way, the incident angle θ. Since the film thickness d can be determined without directly determining the thickness d, it is possible to avoid problems such as errors in measurement results caused by the inclination of the object to be measured (film 10).

上記(11)〜(13)式を求めるに当たっては、′s
2図に示した様に反射波を利用したのであるが、本発明
は反射波を利用する場合に限らず、例えば第3図に示す
様に透過波を利用する場合であフても同様に上記(11
)〜(13)式を求めることができる。
In calculating the above equations (11) to (13), 's
Although reflected waves were used as shown in Figure 2, the present invention is not limited to the use of reflected waves, but can also be applied to cases where transmitted waves are used, for example, as shown in Figure 3. Above (11
) to (13) can be obtained.

次に実際に(11)〜(13)式を用いて膜厚dを求め
る場合の具体的計算方法について説明する。
Next, a specific calculation method for actually determining the film thickness d using equations (11) to (13) will be described.

(1)屈折率nが既知のときには下記の手順に従う。(1) When the refractive index n is known, follow the procedure below.

上記(11) 、 (12)式の関係から下記(14)
式が求められる。
From the relationship between equations (11) and (12) above, the following equation (14) is obtained.
A formula is required.

・・・(14) 上記(14)式における未知の入射角度θGは、区間縮
小法やニュートン・ラフジン法等の数値計算によって容
易に求めることができる。
(14) The unknown angle of incidence θG in the above equation (14) can be easily determined by numerical calculation such as the interval reduction method or the Newton-Roughsin method.

ここでは区間縮小法について説明する。Here, the interval reduction method will be explained.

上記(14)式の左辺をf(θ0 (nl)とおき[下
記(15)式]、更に下記(16)式の様に設定する。
The left side of the above equation (14) is set as f(θ0 (nl) [the following equation (15)], and further set as shown in the following equation (16).

・・・(15) ・f(θ0い))    ・・・(16)上記(16)
式において、初期値θ。(。)、θ。、1.。
...(15) ・f(θ0)) ...(16) Above (16)
In the formula, the initial value θ. (.), θ. , 1. .

を適当にとり、θ(1(n)が収束するまで繰り返す。is set appropriately and repeated until θ(1(n)) converges.

θ。、rl、が収束すると、θ。、n)=θ。とじ、そ
の収束値を上記(11)式又は(12)式に代入して膜
厚dを求める。
θ. , rl, converges, θ. , n)=θ. The film thickness d is obtained by substituting the convergence value into the above equation (11) or (12).

(1■)屈折率nが未知のときには下記の手順に従う。(1) When the refractive index n is unknown, follow the procedure below.

上記t12) 、 (13)式の関係から下記(17)
式が求められる。
From the relationship between the above t12) and equation (13), the following (17) is obtained.
A formula is required.

・・−(17) 但し 十−・sin’ (θ。◆Δθ3) 「3 「2°r3 上記(17) 、 (18)式において、θ。ツθ。い
)と置き、(I)の場合と同様にして区間縮小法によっ
てθ。を求めることができる。θ。が求められると、上
記(17) 、 (18)式によって屈折率nが求めら
れ、屈折率が求められると更に(11)〜(13)式の
いずれかによって膜厚dを求めることができる。
...-(17) However, 10-・sin' (θ.◆Δθ3) "3 "2°r3 In the above equations (17) and (18), put θ.tsuθ.i), and in the case of (I) θ can be obtained by the interval reduction method in the same manner as θ. Once θ is obtained, the refractive index n is obtained using the above equations (17) and (18), and when the refractive index is obtained, further (11) The film thickness d can be determined using any of the equations (13).

尚本発明者が実験によって確認したところによると、本
発明によって膜厚を求める際にはr、〜r、の値をでき
るだけ大きくとった方が角度変化量Δθ1.Δθ3.Δ
θ3の測定誤差の影響を少なくすることができ、膜厚d
の測定精度は高くなった。
The inventor has confirmed through experiments that when determining the film thickness according to the present invention, it is better to take the value of r, ~r, as large as possible to reduce the angle change amount Δθ1. Δθ3. Δ
The influence of measurement error of θ3 can be reduced, and the film thickness d
The measurement accuracy has increased.

一方本発明方法は電磁波の干渉作用を原理的に利用した
ものであるので、本発明の効果を最大限に発揮させる為
には、電磁波によや干渉がきれいに得られれば好都合で
ある0本発明者が種々実験したところによると、本発明
で使用する電磁波としては、単一波長の可干渉性のもの
であって入射面に対して垂直な振動成分のもの゛(S偏
光)であれば、干渉がきれいに得られ、前記角度変化量
がより正確に求められるという結果が得られた。これは
S偏光の電磁波では膜10からの反射強度が、入射角の
変化に対応して単調に増減し、全ての入射角に対して干
渉がうまく生じる為であると考えられる。S偏光の電磁
波を用いた場合に比べ、入射面に対して平行な振動成分
(P偏光)の電磁波を用いた場合には、膜10からの電
磁波の反射強度がブルースター角度θ6までは減少し、
ブルースター角度θ、を超えると急激に増加してしまい
、この付近では希望する干渉が得られなかった。
On the other hand, since the method of the present invention makes use of the interference effect of electromagnetic waves in principle, in order to maximize the effects of the present invention, it is advantageous if interference with electromagnetic waves can be clearly obtained. According to various experiments carried out by the authors, if the electromagnetic wave used in the present invention is coherent with a single wavelength and has a vibration component perpendicular to the plane of incidence (S-polarized light), The result was that interference was obtained clearly and the amount of change in angle could be determined more accurately. This is thought to be because the intensity of reflection from the film 10 of S-polarized electromagnetic waves increases and decreases monotonically in response to changes in the angle of incidence, and interference occurs successfully for all angles of incidence. Compared to the case where S-polarized electromagnetic waves are used, when an electromagnetic wave with a vibration component (P-polarized light) parallel to the plane of incidence is used, the reflection intensity of the electromagnetic waves from the film 10 decreases up to the Brewster angle θ6. ,
It increases rapidly when the Brewster angle θ is exceeded, and the desired interference could not be obtained in this vicinity.

尚前記P偏光の電磁波を用いた場合には、前記ブルース
ターの角度θ島となる入射角度θ。を求め、下記(19
)式によって屈折率nが求められるのは周知であるが(
ブルースターの法則)、本発明の目的が入射角度θ。を
直接求めることなく膜厚d及び屈折率nを求めるもので
あるので(19)式の関係は本発明の趣旨にそぐわない
In addition, when the P-polarized electromagnetic wave is used, the incident angle θ is the angle θ of the Brewster. Find the following (19
) It is well known that the refractive index n can be determined by the formula (
Brewster's law), the purpose of the present invention is to determine the angle of incidence θ. Since the film thickness d and the refractive index n are determined without directly determining the relationship d and the refractive index n, the relationship expressed by equation (19) does not meet the purpose of the present invention.

nmtanθm        ・・・(19)[実施
例] 第1図は本発明方法を実施する為に構成される膜厚測定
装置の概略説明図である。
nmtanθm (19) [Example] FIG. 1 is a schematic explanatory diagram of a film thickness measuring device configured to carry out the method of the present invention.

レーザ発振器1から発振される単色光は、回転反射鏡2
→レンズ3a、3b→膜10(測定対象)−集光レンズ
4の順序で進行し、光量検出器5によって反射強度(光
量)が測定される。そして前記回転反射ut2はガルバ
ノメータ8によって揺動される様な構成であり、該回転
反射鏡2で反射する単色光はその進行方向が任意に変え
られる。
The monochromatic light emitted from the laser oscillator 1 is transmitted to the rotating reflector 2.
The process progresses in the order of -> lenses 3a, 3b -> film 10 (measurement object) - condensing lens 4, and the reflection intensity (light amount) is measured by the light amount detector 5. The rotating reflector ut2 is configured to be swung by a galvanometer 8, and the traveling direction of the monochromatic light reflected by the rotating reflector 2 can be arbitrarily changed.

一方回転反射!i2で反射される単色光の反射点Gは、
レンズ3aの焦点と一致する様に構成されており、反射
点Gで反射された単色光はレンズ3aを通過することに
より全てレンズ3aの光軸と平行となる。又レンズ3a
及びレンズ3bは夫々の光軸が一致する様に配置され、
し、ンズ3aを通過した後の平行光線は、レンズ3bを
通過した後金てレンズ3bの焦点を通る。そしてレンズ
3bの焦点上に膜10の表面が位置する様にされ、従っ
て回転反射鏡2で反射された単色光は全て膜10の表面
における同一点Hに到達することとなり、測定位置がず
れることはない。
On the other hand, rotation reflex! The reflection point G of the monochromatic light reflected by i2 is
It is configured to coincide with the focal point of the lens 3a, and all the monochromatic light reflected at the reflection point G becomes parallel to the optical axis of the lens 3a by passing through the lens 3a. Also lens 3a
and lenses 3b are arranged so that their respective optical axes coincide,
However, after passing through the lens 3a, the parallel ray passes through the lens 3b and then passes through the focal point of the lens 3b. The surface of the film 10 is positioned on the focal point of the lens 3b, so that all the monochromatic light reflected by the rotating mirror 2 reaches the same point H on the surface of the film 10, which causes the measurement position to shift. There isn't.

前記回転反射鏡2にはロータリーエンコーダ13が接続
されており、このロータリーエンコーダ13によって回
転反射鏡2の回転角度が測定できる様にされている。
A rotary encoder 13 is connected to the rotary reflector 2, and the rotation angle of the rotary reflector 2 can be measured by the rotary encoder 13.

尚光量検出器5における単色光の反射強度が測定される
点Foを焦光レンズ4の焦点に一致させているのは、第
2図に関連して述べた通りである。
Note that the point Fo at which the reflection intensity of the monochromatic light on the light amount detector 5 is measured is made to coincide with the focal point of the focusing lens 4, as described in connection with FIG. 2.

光量検出器5で検出された光量信号は、その後増幅器6
に送られて増幅され、更にCPU7に送られる。CPU
7では、光量が或る極値から他の極値をとるときにおけ
る回転反射鏡2の回転角度変化量(即ち入射角の角度変
化量)が連続的に測定され、前記(11)〜(13)式
[詳細には(11)〜(18)式]の関係を適用して、
膜10の膜厚d(屈折率nが未知の場合は屈折率nも合
わせて)が測定される。
The light amount signal detected by the light amount detector 5 is then sent to the amplifier 6.
The signal is sent to the CPU 7, amplified, and further sent to the CPU 7. CPU
In 7, the amount of change in the rotation angle of the rotary reflecting mirror 2 (i.e., the amount of angular change in the angle of incidence) when the amount of light changes from one extreme value to another is continuously measured, ) formula [more specifically, formulas (11) to (18)],
The thickness d of the film 10 (including the refractive index n if the refractive index n is unknown) is measured.

また第1図に示した光学系を第5図(概略説明図)に示
す様な構成とすることもできる。尚第5図において12
は反射鏡であり、その他第1図と対応する部分には同一
の参照符合が付しである。
Furthermore, the optical system shown in FIG. 1 can be configured as shown in FIG. 5 (schematic explanatory diagram). In addition, 12 in Figure 5
1 is a reflecting mirror, and other parts corresponding to those in FIG. 1 are given the same reference numerals.

第5図に示した構成において、レーザ発振器1から発振
された単色光は回転反射鏡2で進行方向を変えられ、そ
の後レンズ3a、3bを通り膜10に入射する。膜10
からの反射光は再びレンズ3bを通り、反射!i12で
進行方向が変えられ、集光レンズ4を通り、その後光量
検出器5で光量が検出される。
In the configuration shown in FIG. 5, monochromatic light emitted from a laser oscillator 1 has its traveling direction changed by a rotating reflector 2, and then passes through lenses 3a and 3b and enters a film 10. membrane 10
The reflected light passes through lens 3b again and is reflected! The traveling direction is changed at i12, the light passes through the condenser lens 4, and then the light amount is detected by the light amount detector 5.

この様な構成においても本発明方法を実施することがで
きる。尚第5図に示した構成においても、前記第1図に
示した光学系と同様に、レンズ3a、3b及びレンズ4
の焦点は、夫々回転反射鏡2の回転中心(レーザ光の照
射点に一致)、膜1     10の測定点H5及び光
量検出器5に一致する様に配置される。
The method of the present invention can also be implemented in such a configuration. Note that in the configuration shown in FIG. 5 as well, lenses 3a, 3b and lens 4 are used similarly to the optical system shown in FIG.
The focal points are arranged to coincide with the center of rotation of the rotating reflecting mirror 2 (coinciding with the irradiation point of the laser beam), the measurement point H5 of the film 110, and the light amount detector 5, respectively.

第6図は本発明の他の実施例を示す概略説明図である。FIG. 6 is a schematic explanatory diagram showing another embodiment of the present invention.

この実施例における基本的構成は第5図に示した構成と
ほぼ同様であり、対応する部分には同一の参照符号を付
すことによって重複説明を避ける。
The basic configuration of this embodiment is almost the same as the configuration shown in FIG. 5, and corresponding parts are given the same reference numerals to avoid redundant explanation.

この実施例においては、レーザ発振器1と回転反射鏡2
の間に偏光板15が介在される構成をなっている。そし
てこの偏光板15は軸受16によって回転自在に支持さ
れており、又歯車17゜18を介してステッピングモー
タ19によって光軸回りに回転される構成とされる。
In this embodiment, a laser oscillator 1 and a rotating reflector 2 are used.
A polarizing plate 15 is interposed between the two. The polarizing plate 15 is rotatably supported by a bearing 16 and rotated around the optical axis by a stepping motor 19 via gears 17 and 18.

前記偏光板15はレーザ発振器1からの円偏光単色光を
直線偏光単色光に変換する機能を有しており、該偏光板
15を回転させることによって膜10の入射面に対して
垂直な振動成分(P偏光)又は平行な振動成分(S偏光
)に切換えつつ単色光を膜に照射することができる。P
偏光及びS偏光への偏光板15による切換えは、C20
フからの指令信号に従ってステッピングモータ19が駆
動されることによって行なわれる。
The polarizing plate 15 has a function of converting circularly polarized monochromatic light from the laser oscillator 1 into linearly polarized monochromatic light, and by rotating the polarizing plate 15, vibration components perpendicular to the incident plane of the film 10 are converted. The film can be irradiated with monochromatic light while switching to (P-polarized light) or a parallel vibration component (S-polarized light). P
Switching between polarized light and S-polarized light using the polarizing plate 15 is performed using C20.
This is done by driving the stepping motor 19 in accordance with a command signal from the driver.

第6図に示した構成を採用することによフて、@10に
S偏光の単色光を任意に照射できる様になり、従って干
渉がきれいに得られ、本発明の効果がより一層顕著とな
る。
By adopting the configuration shown in FIG. 6, it becomes possible to arbitrarily irradiate @10 with S-polarized monochromatic light, thereby achieving clear interference and making the effects of the present invention even more remarkable. .

尚第6図に示した構成ではS偏光に限らすP偏光の単色
光も膜10に照射することもできるが、これは場合によ
っては(膜10が水平であり入射角度θ。が正確に求め
られる場合等)P偏光の単色光を膜10に照射し、膜1
0の屈折率nを前記(19)式に従って予め求めること
ができる様にした為である。
In the configuration shown in FIG. 6, it is also possible to irradiate the film 10 with P-polarized monochromatic light, which is limited to S-polarized light; (e.g., when the film 10 is irradiated with P-polarized monochromatic light)
This is because the refractive index n of 0 can be determined in advance according to the above equation (19).

[発明の効果] 以上述べた如く本発明によれば、既述の構成を採用する
ことによって、入射角度を直接求めずども膜厚を高精度
に測定することが可能になった。
[Effects of the Invention] As described above, according to the present invention, by employing the above-described configuration, it has become possible to measure the film thickness with high precision without directly determining the incident angle.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施する為に構成される膜厚・屈
折率測定装置の概略説明図、第2図及び第3図は本発明
の原理を示す概略説明図、第4図は(lり〜(13)式
を求める為の波形を示すグラフ、第5図及び第6図は本
発明方法を実施する為に構成される膜厚測定装置の他の
例を示す概略説明図である。 1・・・レーザ発振器  2・・・回転反射鏡5・・・
光量検出器   6・・・増幅器7・・・中央処理回路
  8・・・ガルバノメータ10−・・膜(測定対象) 13・・・ロータリーエンコーダ 15−・・偏光板 第1図 第2図 第3図 手糸売ネ甫正()(自発) 1.事件の表示 昭和62年特許願第99083号 2、発明の名称 膜厚測定方法 3、補正をする者 事件との関係  特許出願人 大阪市北区堂島浜二丁目2番8号 (316)東洋紡績株式会社 代表者  瀧 澤 三 部 4、代理人〒530 大阪市北区堂島2丁目3番7号 シンコービル 明細書の「発明の詳細な説明」の欄 6、補正の内容
Fig. 1 is a schematic explanatory diagram of a film thickness/refractive index measuring device configured to carry out the method of the present invention, Figs. 2 and 3 are schematic explanatory diagrams showing the principle of the present invention, and Fig. 4 is a ( Graphs showing waveforms for determining equation (13), and FIGS. 5 and 6 are schematic explanatory diagrams showing other examples of film thickness measuring devices configured to carry out the method of the present invention. 1... Laser oscillator 2... Rotating reflector 5...
Light amount detector 6...Amplifier 7...Central processing circuit 8...Galvanometer 10--Membrane (measurement target) 13...Rotary encoder 15--Polarizing plate Fig. 1 Fig. 2 Fig. 3 Hand thread seller Hosei () (spontaneous) 1. Display of the case 1986 Patent Application No. 99083 2 Name of the invention Film thickness measurement method 3 Person making the amendment Relationship to the case Patent applicant Toyobo Co., Ltd., 2-2-8 Dojimahama, Kita-ku, Osaka (316) Company Representative: 3 Takizawa, Department 4, Agent: Shinko Building, 2-3-7 Dojima, Kita-ku, Osaka 530 Column 6 of “Detailed Description of the Invention” of the Specification, Contents of Amendment

Claims (4)

【特許請求の範囲】[Claims] (1)電磁波を屈折率が既知の透光性膜の1点に照射し
て膜厚を測定する方法において、該電磁波の照射方向と
上記透光性膜とのなす角度を変化させつつ、上記透光性
膜における干渉作用による電磁波の反射強度又は透過強
度の変化を追跡し、前記強度が或る極値を示すときまで
の前記角度変化量を測定し、下記(11)、(12)式
の2元連立方程式を解くことによって膜厚を求めること
を特徴とする膜厚測定方法。 ▲数式、化学式、表等があります▼ ・・・(11) ▲数式、化学式、表等があります▼ ・・・(12) 但し d:膜厚(未知) λ:電磁波の波長(既知) n:透光性膜の屈折率(既知) Δθ_1、Δθ_2:反射強度又は透過強度が或る極値
を示したときから他の任意の 2つの極値を示すまでの電磁波と 透光性膜のなす角度の変化(既 知)。Δθ_1、Δθ_2の夫々には反 射強度又は透過強度が極値をとる ときの角度が(r_1−1)、(r_2−2)個含まれ
ている。 θ_0:或る極値を示したときの電磁波の入射角(未知
(1) In a method of measuring film thickness by irradiating an electromagnetic wave to one point of a transparent film with a known refractive index, while changing the angle between the irradiation direction of the electromagnetic wave and the transparent film, Track changes in reflected or transmitted intensity of electromagnetic waves due to interference in the transparent film, measure the amount of angular change until the intensity reaches a certain extreme value, and calculate the following equations (11) and (12). A film thickness measurement method characterized by determining film thickness by solving two-dimensional simultaneous equations. ▲There are mathematical formulas, chemical formulas, tables, etc.▼ ・・・(11) ▲There are mathematical formulas, chemical formulas, tables, etc.▼ ・・・(12) However, d: Film thickness (unknown) λ: Wavelength of electromagnetic wave (known) n: Refractive index of translucent film (known) Δθ_1, Δθ_2: The angle between the electromagnetic wave and the translucent film from when the reflected intensity or transmitted intensity shows a certain extreme value to when it shows any other two extreme values. change (known). Δθ_1 and Δθ_2 include (r_1-1) and (r_2-2) angles at which the reflected intensity or transmitted intensity takes an extreme value, respectively. θ_0: Incident angle of electromagnetic wave when it shows a certain extreme value (unknown)
(2)前記電磁波が単一波長であり、入射面に対して垂
直な振動成分からなる特許請求の範囲第1項に記載の膜
厚測定方法。
(2) The film thickness measuring method according to claim 1, wherein the electromagnetic wave has a single wavelength and consists of a vibration component perpendicular to the plane of incidence.
(3)電磁波を屈折率が未知の透光性膜の1点に照射し
て膜厚を測定する方法において、該電磁波の照射方向と
上記透光性膜とのなす角度を変化させつつ、上記透光性
膜における干渉作用による電磁波の反射強度又は透過強
度の変化を追跡し、前記強度が或る極値を示したときか
ら他の任意の3つの極値を示すときまでの前記角度変化
量を測定し、下記(11)〜(13)式の3元連立方程
式を解くことによつて屈折率と共に膜厚を求めることを
特徴とする膜厚測定方法。 ▲数式、化学式、表等があります▼ ・・・(11) ▲数式、化学式、表等があります▼ ・・・(12) ▲数式、化学式、表等があります▼ ・・・(13) 但し d:膜厚(未知) λ:電磁波の波長(既知) n:透光性膜の屈折率(既知) Δθ_1、Δθ_2、Δθ_3:反射強度又は透過強度
が或る極値を示したときから他の 任意の3つの極値を示すまでの電 磁波と透光性膜のなす角度の変化 (既知)。Δθ_1、Δθ_2、Δθ_3の夫々には反
射強度又は透過強度 が極値をとるときの角度が(r_1− 1)、(r_2−2)、(r_3−1)個含まれている
。 θ_0:或る極値を示したときの電磁波の入射角(未知
(3) In a method of measuring film thickness by irradiating electromagnetic waves to one point of a transparent film with an unknown refractive index, the angle between the irradiation direction of the electromagnetic waves and the transparent film is changed, and the Tracking changes in reflected or transmitted intensity of electromagnetic waves due to interference in a transparent film, and determining the amount of angular change from when the intensity shows a certain extreme value to when it shows any other three extreme values. A film thickness measuring method characterized in that the film thickness is determined together with the refractive index by measuring and solving three-dimensional simultaneous equations of the following equations (11) to (13). ▲There are mathematical formulas, chemical formulas, tables, etc.▼ ...(11) ▲There are mathematical formulas, chemical formulas, tables, etc.▼ ...(12) ▲There are mathematical formulas, chemical formulas, tables, etc.▼ ...(13) However, d : Film thickness (unknown) λ: Wavelength of electromagnetic wave (known) n: Refractive index of translucent film (known) Δθ_1, Δθ_2, Δθ_3: From when the reflection intensity or transmission intensity shows a certain extreme value, any other arbitrary value The change in the angle between the electromagnetic wave and the transparent film until it reaches three extreme values (known). Δθ_1, Δθ_2, and Δθ_3 each include (r_1-1), (r_2-2), and (r_3-1) angles at which the reflected intensity or transmitted intensity takes an extreme value. θ_0: Incident angle of electromagnetic wave when it shows a certain extreme value (unknown)
(4)前記電磁波が単一波長であり、且つ入射面に対し
て垂直な振動成分からなる特許請求の範囲第3項に記載
の膜厚測定方法。
(4) The film thickness measuring method according to claim 3, wherein the electromagnetic wave has a single wavelength and consists of a vibration component perpendicular to the plane of incidence.
JP9908387A 1987-04-21 1987-04-21 Film thickness measuring method Pending JPS63263402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9908387A JPS63263402A (en) 1987-04-21 1987-04-21 Film thickness measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9908387A JPS63263402A (en) 1987-04-21 1987-04-21 Film thickness measuring method

Publications (1)

Publication Number Publication Date
JPS63263402A true JPS63263402A (en) 1988-10-31

Family

ID=14238014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9908387A Pending JPS63263402A (en) 1987-04-21 1987-04-21 Film thickness measuring method

Country Status (1)

Country Link
JP (1) JPS63263402A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222937A (en) * 2001-01-29 2002-08-09 Sony Corp Semiconductor device, and manufacturing method and manufacturing device therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222937A (en) * 2001-01-29 2002-08-09 Sony Corp Semiconductor device, and manufacturing method and manufacturing device therefor

Similar Documents

Publication Publication Date Title
US3847485A (en) Optical noncontacting surface sensor for measuring distance and angle of a test surface
US5502567A (en) Micropolarimeter, microsensor system and method of characterizing thin films
JPH01313736A (en) Method and apparatus for measuring refractive index n of material
US3768910A (en) Detecting the position of a surface by focus modulating the illuminating beam
JPS5885103A (en) Surface profile interferometer
JPH0432704A (en) Gap measuring instrument and surface shape measuring instrument
JPS61259127A (en) Static interference type elliptic polarimeter
JPS629211A (en) Optical measuring instrument
JPH0640071B2 (en) Highly accurate humidity measurement method using the second derivative curve of water vapor absorption line
JPH0256604B2 (en)
JPS63263402A (en) Film thickness measuring method
JPH0612333B2 (en) Automatic birefringence measuring device
CN108693247B (en) Laser surface acoustic wave detection system based on double measuring beams and use method thereof
JP2787809B2 (en) Method and apparatus for measuring the refractive index of a wafer made of glass material
JPH06194125A (en) Method and apparatus for detecting deviation of object from focal point of objective lens or change in position
JPS62119403A (en) Film thickness measurement
JPS63128210A (en) Measuring method for film thickness and refractive index
JP2592254B2 (en) Measuring device for displacement and displacement speed
JPH0754802Y2 (en) Contact type profilometer
JP2654366B2 (en) Micro polarimeter and micro polarimeter system
JPH04127004A (en) Ellipsometer and its using method
JPS63128211A (en) Spacing measuring method
JP3045567B2 (en) Moving object position measurement device
JPH06502254A (en) Lateral displacement measurement device for objects
JPS60249007A (en) Instrument for measuring film thickness