JPS63128118A - Manufacture of low temperature steel having superior toughness at low temperature - Google Patents

Manufacture of low temperature steel having superior toughness at low temperature

Info

Publication number
JPS63128118A
JPS63128118A JP27484986A JP27484986A JPS63128118A JP S63128118 A JPS63128118 A JP S63128118A JP 27484986 A JP27484986 A JP 27484986A JP 27484986 A JP27484986 A JP 27484986A JP S63128118 A JPS63128118 A JP S63128118A
Authority
JP
Japan
Prior art keywords
steel
low
low temp
temperature
low temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27484986A
Other languages
Japanese (ja)
Inventor
Tetsuya Otohata
乙幡 徹也
Masaaki Nakamura
昌明 中村
Akitoshi Teraguchi
寺口 彰俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP27484986A priority Critical patent/JPS63128118A/en
Publication of JPS63128118A publication Critical patent/JPS63128118A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a low temp. steel having superior toughness at low temp. at low cost by restricting the amts. of sol. Al and N in a low temp. Ni steel and treating the steel by direct quenching so as to precipitate fine AlN and to form fine austenite grains. CONSTITUTION:A low temp. steel having a compsn. consisting of, by weight, <=0.1% C, <=0.5% Si, <=1% Mn, 8-10% Ni, 0.02-0.04% sol. Al, 0.004-0.006% N and the balance Fe with inevitable impurities is manufactured by refining and continuously cast into a slab. This slab is heated to <=1,100 deg.C, hot rolled and immediately quenched. It is then tempered at the Ac1 transformation point or below to obtained a low temp. steel having superior toughness at low temp. The resulting low temp. steel is suitable for use as a material for LNG transportation and storage containers.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 近年LNG等の運搬・貯蔵容器用材料として9%Ni 
f14がますます広く使われるようになってきている。
[Detailed description of the invention] [Industrial application field] In recent years, 9% Ni has been used as a material for transportation and storage containers for LNG, etc.
f14 is becoming more and more widely used.

これらは−160℃以下という苛酷な条件で使用される
ため、普通の材料に(らべて安定した低温靭性が望まれ
ている。
Since these materials are used under harsh conditions of -160°C or lower, they are desired to have more stable low-temperature toughness than ordinary materials.

一方、最近ではエネルギー消¥′2量を削減するために
、熱間圧延後直ちに焼入れをするいわゆる直接焼入れ法
が広く採用されている。この方法は厚eIl仮のみなら
ず、継目無鋼管等にも採用されつつあるが、通常の再加
熱焼入れにくらべて結晶粒度が粗大化しやす(、低m 
ffl性が劣化し易い。
On the other hand, recently, in order to reduce energy consumption, the so-called direct quenching method, in which quenching is performed immediately after hot rolling, has been widely adopted. This method is being adopted not only for thick eIl pipes but also for seamless steel pipes, etc., but compared to normal reheating and quenching, the grain size tends to become coarser (for low m
ffl properties tend to deteriorate.

本発明は直接焼入れ法によって製造される低温靭性にす
ぐれた低温用鋼特に9%Nigtiの製造法に関する。
The present invention relates to a method for producing low-temperature steel having excellent low-temperature toughness, particularly 9% Nigti, which is produced by a direct quenching method.

〔従来技術及びその問題点〕[Prior art and its problems]

9%N igAの低温靭性がばらつく要因として、IN
の析出が考えられる。このため、従来からsol、Al
1ff1またはNff1を減らすことで粗大化したAu
 Nの析出を抑えることが試みられており、通常の回加
F、A tfl入れ法に於ては安定した低温靭性が得ら
れている。
The reason for the variation in low-temperature toughness of 9% N
is considered to be precipitated. For this reason, conventionally sol, Al
Au coarsened by reducing 1ff1 or Nff1
Attempts have been made to suppress the precipitation of N, and stable low-temperature toughness has been obtained in the usual F and Atfl injection methods.

ところが、9%N1g4を直接焼入れ法にて製造すると
 sol、Al1量またはNfftが低くなり過ぎると
却って低温靭性が悪化する現象が認められる。
However, when 9%N1g4 is produced by a direct quenching method, a phenomenon is observed in which low-temperature toughness deteriorates when the sol, Al1 amount, or Nfft becomes too low.

その理由は直接焼入れ法においては再加熱焼入れ法に比
べ結晶粒度はスラグの加熱およびその後の熱間圧延工程
で決まり、再加熱焼入れ温度より高潟の影響が残るため
一般に粗粒となり易い。しかし、sol、Al2 ff
iおよびN量が多いとINが析出し、粒界移動を阻止さ
れ、結晶粒の成長が小さくなるため、直t?焼入れ法に
おいても再加熱焼入れ法とほぼ同等の結晶粒度が得られ
るが、sol。
The reason for this is that in the direct quenching method, compared to the reheating quenching method, the crystal grain size is determined by the heating of the slag and the subsequent hot rolling process, and since the influence of Takagata remains than the reheating quenching temperature, the grain size is generally more likely to become coarse. However, sol, Al2ff
If the amounts of i and N are large, IN will precipitate, blocking movement of grain boundaries and reducing the growth of crystal grains. Although the quenching method can obtain almost the same crystal grain size as the reheating quenching method, sol.

、l ffiまたはNmが低(なり過ぎ、l!Nの析出
が少なくなり過ぎる場合は結晶粒の成長を阻止するもの
がなくなり直接焼入れ法における結晶粒度は粗大化し低
温靭性が悪化する。
, l ffi or Nm becomes too low (too much, or the precipitation of l!N becomes too small), there is nothing to inhibit the growth of crystal grains, and the crystal grain size in the direct quenching method becomes coarse, resulting in poor low-temperature toughness.

直接焼入れ法におけるこの結晶粒度粗大化を防止する目
的で、鋼片加熱温度を低くすることが考えられるが、A
l2mの析出が少な過ぎる場合はその効果が十分でなく
、かつ鋼片加熱温度を低(し過ぎるとミルパワーの面か
ら圧延不能となる場合がある。
In order to prevent this grain size coarsening in the direct quenching method, it is possible to lower the heating temperature of the steel billet, but A
If the amount of 12m precipitated is too small, the effect is not sufficient, and if the heating temperature of the steel billet is too low, rolling may become impossible in terms of mill power.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、結晶粒の成長を机上でさかつ低温靭性を劣化
させない適当な大きさの、INを析出させるために、s
ol、Al1m及びN量を限定し、低温靭性を確保する
最適な製造条件を提案する。
The present invention aims to prevent the growth of crystal grains on paper and to precipitate IN of an appropriate size without deteriorating low-temperature toughness.
We propose optimal manufacturing conditions that limit the amount of ol, Al1m, and N to ensure low-temperature toughness.

本発明は、重量比でC≦0.1%、St≦0.5%、M
n≦0.0%、Ni 8.0−10.0%を含み残部F
e及び不可避的不純物からなり、かつso 1. A4
0.02〜0.04%、N 0.004〜0.006%
である低温用鋼を加熱湯度1100℃以下に加熱後熱間
圧延し、その後直ちに焼入れ、続いてA c +変態点
以下の温度で焼戻すことを特徴とする、低温靭性にすぐ
れた低温用鋼の製造法に関する。
The present invention has a weight ratio of C≦0.1%, St≦0.5%, M
n≦0.0%, including Ni 8.0-10.0%, balance F
e and unavoidable impurities, and so 1. A4
0.02-0.04%, N 0.004-0.006%
A low-temperature steel with excellent low-temperature toughness, which is characterized by hot-rolling a steel for low-temperature use after heating it to a hot water temperature of 1100°C or less, immediately quenching it, and subsequently tempering it at a temperature below A c + transformation point. Concerning the manufacturing method of steel.

更に、MO≦0.5%を含めたとを特徴とする低温用鋼
の製造法に閃する。
Furthermore, a method for manufacturing a low temperature steel characterized by containing MO≦0.5% is inspired.

次に各成分の限定理由を示す。Next, the reasons for limiting each component will be shown.

Cは精錬過程で必然的に含まれてくることと強度確保の
ために最も安価な元素であるからであるが、0.1%を
超えると、低温靭性に悪彩りを及ぼす。
This is because C is inevitably included in the refining process and is the cheapest element for ensuring strength, but if it exceeds 0.1%, it adversely affects low temperature toughness.

Si  は脱酸のため精錬過程で含まれてくるが、0.
5%を超えると低温靭性に悪影響を与える。
Si is included in the refining process for deoxidation, but 0.
If it exceeds 5%, low temperature toughness will be adversely affected.

Mn は焼入れ性向上および強度確保のため添加される
が、1.0%を超えて添加してもその効果は少(経済上
好ましくない。
Mn is added to improve hardenability and ensure strength, but even if it is added in an amount exceeding 1.0%, the effect is small (economically unfavorable).

Niは低m f、II性確保のため必要不可欠の元素で
あるが、8.0%未満ではその効果は少なく、10.0
%を超えて添加しても効果は飽和し経済上好ましくない
Ni is an essential element to ensure low m f and II properties, but if it is less than 8.0%, its effect is small;
Even if it is added in excess of 1%, the effect will be saturated and this is not economically preferable.

Mo は強度確保のため必要に応じて添加しても良いが
、0.5%を超えると低温靭性上好ましくない。
Mo may be added as necessary to ensure strength, but if it exceeds 0.5%, it is unfavorable in terms of low-temperature toughness.

上記成分は9%N1g1の基本成分であるが、本発明は
上記成分に加えsol、Al2量及びN量を限定するこ
とにある。
The above component is a basic component of 9%N1g1, but the present invention is to limit sol, the amount of Al2, and the amount of N in addition to the above component.

AIl は脱酸のため精錬過程で必然的に含まれる元素
であるが、その影響はAl2Nの析出として、9%Ni
鋼の低温靭性上大きい。A4Nは微細な析出物として析
出する場合、結晶粒界特に熱間圧延過程でのオーステナ
イト粒界の移動、つまりオーステナイト粒界が再結晶に
より大きくなるのを阻止し、結晶粒の微細化を促進し、
低温靭性に好影響を与えるが、粗大な析出物として析出
する場合、割れ発生の起点となるため、低温靭性上好ま
しくない。そのためsol、Al1ff1が0.02%
2%未満、微細なA4Nが析出するのに充分な量のA1
が少なく、  0.04%を超えると粗大なAu Nが
析出する。
Al is an element that is inevitably included in the refining process for deoxidation, but its influence is due to the precipitation of Al2N.
Great for low temperature toughness of steel. When A4N precipitates as fine precipitates, it prevents movement of grain boundaries, especially austenite grain boundaries during the hot rolling process, that is, prevents austenite grain boundaries from becoming larger due to recrystallization, and promotes grain refinement. ,
Although it has a positive effect on low-temperature toughness, if it precipitates as coarse precipitates, it becomes a starting point for cracking, which is not preferable in terms of low-temperature toughness. Therefore, sol and Al1ff1 are 0.02%
less than 2%, sufficient amount of A1 to precipitate fine A4N
If it exceeds 0.04%, coarse AuN will precipitate.

Nff1は/lNを析出させるのに必要な元素であるが
、Iltが0.004%未膚ではA4 Nが析出しにく
く、N量が0.006%を超えると粗大な、INが析出
する。第1図に示すように直接焼入れ材では、Al量が
0.02〜0.04%の範囲にある場合、Nfilが0
.004〜0.006%の範囲で低温靭性(vE’−1
90”C: −11℃におけるシャルピー衝撃値)が良
好である。
Nff1 is an element necessary to precipitate /lN, but if Ilt is 0.004%, A4 N is difficult to precipitate, and if the N content exceeds 0.006%, coarse IN is precipitated. As shown in Figure 1, in directly quenched materials, when the Al content is in the range of 0.02 to 0.04%, Nfil is 0.
.. Low temperature toughness (vE'-1
90''C: Good Charpy impact value at -11°C.

不可避的不純物としては、p、s等があるが、これらは
低温靭性の面から低い方が好ましい。Pはここでは特に
限定しないが、0.020%以下が好ましく、出来れば
0.01%以下が最適である。
Unavoidable impurities include p, s, etc., but from the viewpoint of low-temperature toughness, it is preferable that these be low. Although P is not particularly limited here, it is preferably 0.020% or less, and optimally 0.01% or less if possible.

Sはここでは特に限定しないが、o、oto%以下が好
ましく、出来れば0.001%以下が最適である。
Although S is not particularly limited here, it is preferably o, oto% or less, and optimally 0.001% or less if possible.

加熱温度を1100°C以下に加熱後熱間圧延する理由
は、1100℃を超えた加熱温度で加熱すると粒が粗大
化し、熱間圧延後の低温靭性が劣化するためである。
The reason why hot rolling is carried out after heating at a heating temperature of 1100° C. or lower is that heating at a heating temperature exceeding 1100° C. causes grains to coarsen and the low temperature toughness after hot rolling to deteriorate.

熱間圧延後直ちに焼入れる理由は、本発明の目的が直接
焼入れのできる9%Ni鋼の製造法が目的であるためで
ある。焼戻しは通常の焼戻しと特に異なることはなく、
Ac+変態点以下で焼戻せば良い。
The reason for quenching immediately after hot rolling is that the purpose of the present invention is to provide a method for producing 9% Ni steel that can be directly quenched. Tempering is not particularly different from normal tempering;
It is sufficient to temper it below the Ac+ transformation point.

〔実 施 例〕〔Example〕

表1に示す化学成分の9%Ni鋼をIg!素上吹き転炉
で溶製した後、連続鋳造しスラブとした。これらの連鋳
スラブを1050℃に加熱して熱a厚板圧延を行ない、
(1)直接焼入れ、焼戻し、■再加熱焼入れ、焼戻しを
実施した。その時の一196℃での衝撃値vE −19
6℃を調べ表2に示した。
Ig! 9% Ni steel with the chemical composition shown in Table 1! After being melted in a top-blown converter, it was continuously cast into a slab. These continuously cast slabs were heated to 1050°C and hot a thick plate rolling was carried out.
(1) Direct quenching, tempering, (2) Reheating quenching, and tempering. Shock value vE -19 at 196℃ at that time
The temperature at 6°C was investigated and shown in Table 2.

表2に示すように、本発明例の符号A、Bの9%N+f
14ではIl!接焼入れ法に於ても高いvE −196
℃を示すのに比べ、N量の低い符号C,Eの9%N1g
4は、直接焼入れ法に於て低いvE −198℃を示し
、N量の高い符号り、Fの9%Ni鋼は、直接焼入れ法
、再加熱焼入れ法は於ても低いvE−106℃を示す。
As shown in Table 2, 9%N+f of codes A and B in the example of the present invention
In 14 Il! High vE -196 even in contact hardening method
9%N1g of codes C and E, which have a lower amount of N than that shown in °C
4 shows a low vE of -198℃ in the direct quenching method, and 9% Ni steel with high N content shows a low vE of -106℃ in the direct quenching method and the reheat quenching method. show.

(以下余白) 〔発明の効果〕 本発明のように9%N1fJ4のsol、Afl量及び
Nnを限定することにより、微細なlNを析出し、微細
なオーステナイト粒が得られ、その結果従来安定した低
温靭性の得られなかった直接焼入れ法による9%Ni鋼
の問題の解決がなされた・
(The following is a blank space) [Effect of the invention] By limiting the sol, Afl amount, and Nn of 9%N1fJ4 as in the present invention, fine lN is precipitated and fine austenite grains are obtained, and as a result, conventionally stable The problem of 9% Ni steel using the direct quenching method, where low-temperature toughness could not be obtained, was resolved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は直接焼入れ法と再加熱焼入れ法におけるNQと
vE−196℃との関係を示す図である。 0   20   40   60  80  100
  12ON量(ppm)
FIG. 1 is a diagram showing the relationship between NQ and vE-196°C in the direct quenching method and the reheating quenching method. 0 20 40 60 80 100
12ON amount (ppm)

Claims (2)

【特許請求の範囲】[Claims] (1)重量比で、C≦0.1%、Si≦0.5%、Mn
≦1.0%、Ni8.0〜10.0%を含み残部Feお
よび不可避的不純物からなり、かつsol.Al0.0
2〜0.04%、N0.004〜0.006%である低
温用鋼を、加熱温度1100℃以下に加熱後熱間圧延し
、その後直ちに焼き入れ、続いてAc_1変態点以下の
温度で焼戻すことを特徴とする、低温靭性にすぐれた低
温用鋼の製造法。
(1) Weight ratio: C≦0.1%, Si≦0.5%, Mn
≦1.0%, Ni8.0 to 10.0%, the balance consisting of Fe and inevitable impurities, and sol. Al0.0
A low-temperature steel containing 2 to 0.04% and 0.004 to 0.006% of N is heated to a heating temperature of 1100°C or lower, then hot rolled, immediately quenched, and then sintered at a temperature of Ac_1 transformation point or lower. A method for producing low-temperature steel with excellent low-temperature toughness.
(2)低温用鋼がさらに重量比でMo≦0.5%を含む
ことを特徴とする、特許請求の範囲第1項記載の低温靭
性にすぐれた低温用鋼の製造法。
(2) The method for producing a low-temperature steel with excellent low-temperature toughness according to claim 1, characterized in that the low-temperature steel further contains Mo≦0.5% by weight.
JP27484986A 1986-11-18 1986-11-18 Manufacture of low temperature steel having superior toughness at low temperature Pending JPS63128118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27484986A JPS63128118A (en) 1986-11-18 1986-11-18 Manufacture of low temperature steel having superior toughness at low temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27484986A JPS63128118A (en) 1986-11-18 1986-11-18 Manufacture of low temperature steel having superior toughness at low temperature

Publications (1)

Publication Number Publication Date
JPS63128118A true JPS63128118A (en) 1988-05-31

Family

ID=17547434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27484986A Pending JPS63128118A (en) 1986-11-18 1986-11-18 Manufacture of low temperature steel having superior toughness at low temperature

Country Status (1)

Country Link
JP (1) JPS63128118A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03223442A (en) * 1990-01-25 1991-10-02 Kawasaki Steel Corp Thin nickel steel sheet for low temperature use excellent in toughness of weld zone
US5266417A (en) * 1990-01-25 1993-11-30 Kawasaki Steel Corporation Low-temperature service nickel plate with excellent weld toughness
JP2011219849A (en) * 2010-04-14 2011-11-04 Sumitomo Metal Ind Ltd Thick steel plate for ultra-low temperature and method for producing the same
JP2011219848A (en) * 2010-04-14 2011-11-04 Sumitomo Metal Ind Ltd Thick steel plate for ultra-low temperature and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03223442A (en) * 1990-01-25 1991-10-02 Kawasaki Steel Corp Thin nickel steel sheet for low temperature use excellent in toughness of weld zone
US5266417A (en) * 1990-01-25 1993-11-30 Kawasaki Steel Corporation Low-temperature service nickel plate with excellent weld toughness
JP2011219849A (en) * 2010-04-14 2011-11-04 Sumitomo Metal Ind Ltd Thick steel plate for ultra-low temperature and method for producing the same
JP2011219848A (en) * 2010-04-14 2011-11-04 Sumitomo Metal Ind Ltd Thick steel plate for ultra-low temperature and method for producing the same

Similar Documents

Publication Publication Date Title
JPS63286517A (en) Manufacture of high-tensile steel with low yielding ratio
JPS58100625A (en) Production of high toughness high tensile steel plate having excellent weldability
JPS63128118A (en) Manufacture of low temperature steel having superior toughness at low temperature
JPH0159333B2 (en)
JPH01176029A (en) Manufacture of high-tensile steel plate with low yield ratio by accelerated cooling method
JPS602364B2 (en) Manufacturing method of non-thermal high tensile strength steel plate with excellent low-temperature toughness
JPH0351769B2 (en)
JPH083636A (en) Production of low yield ratio high toughness steel
JP2661768B2 (en) Manufacturing method of high strength steel sheet with high fatigue limit by thin cast strip
JPH10280050A (en) Production of high strength hot rolled steel sheet excellent in press formability
KR910003883B1 (en) Making process for high tension steel
KR100452303B1 (en) Manufacturing method of high-tension steel for line pipe having excellent tenacity at low temperature
JP3297107B2 (en) Method for producing low temperature steel with excellent weldability
JPH1180832A (en) Production of high tensile strength steel with low yield ratio, excellent in weldability and toughness at low temperature
JPS6367524B2 (en)
JPS5952207B2 (en) Manufacturing method of low yield ratio, high toughness, high tensile strength steel plate
JPH026828B2 (en)
JPH0215122A (en) Production of high strength and high toughness thick steel plate having excellent weldability
JPH11264017A (en) Production of non-heat treated high tensile strength steel with small quality deviation and excellent in weldability
JPS582244B2 (en) Method for manufacturing thick-walled non-tempered high-strength steel with excellent toughness
JP3802626B2 (en) Method for producing low yield ratio high strength steel with excellent weldability and low temperature toughness
KR20230174969A (en) High carbon hot rolled steel sheet with excellent low-temperature toughness and methods of fabricating the same
JP2002105540A (en) Method for producing high strength hot rolled steel sheet
JPH10168516A (en) Production of low yield ratio high tensile strength steel excellent in weldability and low temperature toughness
KR950003547B1 (en) Making method of low temperature ni-steel