JPS63127867A - Helical groove machining method by use of machining center - Google Patents

Helical groove machining method by use of machining center

Info

Publication number
JPS63127867A
JPS63127867A JP27499386A JP27499386A JPS63127867A JP S63127867 A JPS63127867 A JP S63127867A JP 27499386 A JP27499386 A JP 27499386A JP 27499386 A JP27499386 A JP 27499386A JP S63127867 A JPS63127867 A JP S63127867A
Authority
JP
Japan
Prior art keywords
tool
axis
tool material
helical groove
spindle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27499386A
Other languages
Japanese (ja)
Other versions
JPH0558865B2 (en
Inventor
Takayuki Nishimura
西村 隆侑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
G N TOOL KK
Original Assignee
G N TOOL KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by G N TOOL KK filed Critical G N TOOL KK
Priority to JP27499386A priority Critical patent/JPS63127867A/en
Publication of JPS63127867A publication Critical patent/JPS63127867A/en
Publication of JPH0558865B2 publication Critical patent/JPH0558865B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To conveniently form a helical groove, by controlling the moving distance of a spindle attached with a machining tool in the axial direction thereof and the rotating angle of a columnar material held in the horizontal direction, in a predetermined relationship each time when the columnar material is fed by a unit length, orthogonal to the spindle. CONSTITUTION:A columnar tool material 9 clamped between tail stock bars 8a, 8b is inclined with respect to a spindle 5 so as to make the included angle between the tool material 9 and the rear end face 6a of a grind stone 6 coincident with the twisting angle theta of a helical groove in a lead L. Then, the spindle 5 is moved in the Y-axis direction to be set at a height at which the cut-in depth of the grind stone into the tool material 9 becomes a predetermined groove depth, and further, a bed 2 is moved in the Z-axis direction to be set at a cut-in starting point. Further, the axial moving distance Z of the spindle 5 attached thereto with the grind stone 6 and the rotating angle C of the tool material 9 are controlled by use the formulae l each time when the bed 2 is fed by a division length X of a unit length in the X-axis direction. Thus, it is possible to form a helical groove in a circular material with the use of a horizontal type machining center.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、マシニングセンタを利用したヘリカル溝加
工法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a helical groove machining method using a machining center.

〔従来の技術〕[Conventional technology]

円柱形の工具素材にヘリカル溝を加工する場合、従来は
工具研削盤を用いて行っていた。工具研削盤は、砥石を
取り付けた砥石ヘッドが鉛直軸の周りに回動可能であり
、水平方向に保持した工具素材に対して溝のねじれ角に
等しい角度だけ砥石を傾斜して保持することが可能であ
る。従って、この状態を保ちながら工具素材をその軸心
周りに自転させつつその軸心方向に移動させれば、二軸
の同時制御のみで容易にヘリカル溝を研削加工すること
ができる。
Traditionally, a tool grinder was used to machine a helical groove on a cylindrical tool material. A tool grinder has a grinding wheel head attached with a grinding wheel that can rotate around a vertical axis, and the grinding wheel can be held at an angle equal to the helix angle of the groove with respect to the tool material held horizontally. It is possible. Therefore, by rotating the tool material around its axis while moving it in the axial direction while maintaining this state, it is possible to easily grind a helical groove with only simultaneous control of two axes.

ところで、近年マシニングセンタが多くの工場で使用さ
れるようになっているが、このうち横形のマシニングセ
ンタは、加工工具を取り付ける主軸を水平方向に設けで
ある。この主軸は、上下方向(Y軸方向)及びその軸心
方向(Z軸方向)に移動可能であるが、鉛直軸の周りに
は回動することはできない構造となっている。従って、
このようなマシニングセンタを使用して円柱形の工具素
材にヘリカル溝を加工しようとすると、テーブル上に保
持された工具素材を鉛直軸の周り(B方向)に回動させ
、加工工具との傾斜角を溝のねじれ角に一致させて行う
必要がある。
By the way, machining centers have come to be used in many factories in recent years, and among these, horizontal machining centers have a main shaft to which a machining tool is attached in a horizontal direction. This main shaft is movable in the vertical direction (Y-axis direction) and in the axial direction (Z-axis direction), but cannot rotate around the vertical axis. Therefore,
When attempting to machine a helical groove in a cylindrical tool material using such a machining center, the tool material held on the table is rotated around the vertical axis (direction B), and the inclination angle with the processing tool is adjusted. It is necessary to match the helix angle of the groove.

しかし、このように工具素材を傾斜して保持すると、工
具研削盤によって加工する場合のように、工具素材を軸
心周り゛(C方向)に自転させつつその軸心方向に送る
だけでは、ヘリカル溝を加工することはできない。なぜ
なら、工具素材を保持するテーブルを載せたベッドは工
具素材の軸心方向には移動できず、主軸に直角な方向(
X軸方向)に移動するのみであるため、ベッドの移動に
伴い、工具素材はX軸方向のみならずZ軸方向にも変位
するからである。しかし、工具研削盤は高価であるため
、横形マシニングセンタでヘリカル溝の加工ができれば
、非常に経済的であり、従来よりこのような加工法が要
望されていた。
However, when the tool material is held at an angle in this way, it is not possible to simply rotate the tool material around its axis (direction C) and feed it in the direction of its axis, as when machining with a tool grinder. Grooves cannot be machined. This is because the bed on which the table that holds the tool material is placed cannot move in the axial direction of the tool material, but in the direction perpendicular to the main axis (
This is because as the bed moves, the tool material is displaced not only in the X-axis direction but also in the Z-axis direction. However, since tool grinders are expensive, it would be very economical to machine helical grooves with a horizontal machining center, and such a processing method has been desired for some time.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この発明は以上のような事情に鑑みてなされたものであ
り、その目的とするところは、マシニングセンタを利用
して円柱形の素材にヘリカル溝を形成することのできる
加工法を提起することである。
This invention was made in view of the above circumstances, and its purpose is to propose a processing method that can form helical grooves in a cylindrical material using a machining center. .

この発明の他の目的は、簡易かつ経済的に円柱形素材に
ヘリカル溝を形成することのできる加工法を提起するこ
とである。
Another object of the present invention is to propose a processing method that can easily and economically form helical grooves in a cylindrical material.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、主軸が水平方向に設けられたマシニングセ
ンタを利用して円柱形素材にねじれ角θ及びリードLの
ヘリカル溝を形成するための加工法であって、水平方向
に保持した円柱形素材を主軸に直交する水平方向に単位
長さの分割値ΔXだけ送る毎に、砥石等の加工工具を取
り付けた主軸をその軸心方向へ移動させる距離ΔZ及び
円柱形素材をその軸心周りに回転させる角度ΔCを、次
の関係式に従って制御しながら加工する、というもので
ある。
This invention is a processing method for forming a helical groove of a helical angle θ and a lead L in a cylindrical material using a machining center whose main axis is set horizontally. Every time the main axis is fed by a unit length division value ΔX in the horizontal direction perpendicular to the main axis, the main axis to which a processing tool such as a grindstone is attached is moved in the direction of its axis, and the cylindrical material is rotated around its axis. The processing is performed while controlling the angle ΔC according to the following relational expression.

ΔZ=ΔX tanθ ΔC=(ΔX/LCO5θ)X360’〔作用〕 加工工具は、加工中工具素材の軸心に沿って移動じなけ
ればならない。
ΔZ=ΔX tanθ ΔC=(ΔX/LCO5θ)X360′ [Operation] The machining tool must move along the axis of the tool material during machining.

第3図において、最初に工具素材の軸心上にある点Aで
加工工具が工具素材に接触していたとすれば、工具素材
がX軸方向に単位長さの分割値ΔXだけ送られたときに
、点AはX軸方向にΔXだけ変位して点A′に達する。
In Figure 3, if the machining tool is initially in contact with the tool material at point A on the axis of the tool material, then when the tool material is fed in the X-axis direction by the unit length division value ΔX. Then, point A is displaced by ΔX in the X-axis direction and reaches point A'.

この間に、工具素材の軸心はZ軸方向にΔZ=ΔX t
anθだけ変位する。従って、ΔXの送りと同時にΔZ
の距離だけ加工工具をZ軸方向に移動すれば、加工工具
は軸心上の点Bにおいて工具素材と接触することができ
る。
During this time, the axis of the tool material moves in the Z-axis direction by ΔZ=ΔX t
Displaced by anθ. Therefore, at the same time as ΔX is fed, ΔZ
If the processing tool is moved in the Z-axis direction by a distance of , the processing tool can come into contact with the tool material at point B on the axis.

また、上記ΔZの距離の移動により、加工工具は工具素
材の軸心方向にΔS=ΔX/cosθの距離だけ送られ
たことになる。従って、このΔSの距離を送られる間に
工具素材を角度ΔG=(ΔS/L) X 360’ =
 (ΔX/Lcosθ) X 360°だけ軸心周りに
回転させれば、ねじれ角θ、リードしのヘリカル溝を形
成することができる。
Furthermore, by moving the distance ΔZ, the processing tool is moved by a distance ΔS=ΔX/cosθ in the axial direction of the tool material. Therefore, while being fed this distance of ΔS, the tool material is moved at an angle ΔG = (ΔS/L) x 360' =
(ΔX/L cos θ)

〔実施例〕〔Example〕

以下、添付図面に基いてこの発明の詳細な説明する。 Hereinafter, the present invention will be described in detail based on the accompanying drawings.

第1図は、この発明の方法の実施に使用する横形マシニ
ングセンタの要部概略図である。(1)はマシニングセ
ンタ本体のコラム、(2)はコラム(1)の前方に左右
方向(X軸方向)に移動可能に設けられたベッド、(3
)はベッド(2)の上面に鉛直軸の周り(B方向)に回
動可能に設けられたテーブル、(4)はテーブル(3)
上に固設されたワーク保持装置である。
FIG. 1 is a schematic diagram of main parts of a horizontal machining center used to implement the method of the present invention. (1) is a column of the machining center main body, (2) is a bed provided in front of the column (1) so as to be movable in the left and right direction (X-axis direction), (3)
) is a table that is rotatable around the vertical axis (direction B) on the top of the bed (2), and (4) is the table (3).
This is a workpiece holding device fixedly installed on the top.

コラム(1)の前面には、水平前方に突出して主軸(5
)が設けてあり、主軸(5)の頭部に砥石(6)等の加
工工具を取り付けてモータ(7)により回転させるよう
になっている。主軸(5)は、頭部が前後方向(Z軸方
向)に移動可能であると共に、水平状態を保ちながら全
体が上下方向(Y軸方向)に移動可能である。
At the front of the column (1), there is a main shaft (5) that protrudes horizontally forward.
), and a processing tool such as a grindstone (6) is attached to the head of the main shaft (5) and rotated by a motor (7). The head of the main shaft (5) is movable in the front-rear direction (Z-axis direction), and the entire main shaft (5) is movable in the up-down direction (Y-axis direction) while maintaining a horizontal state.

ワーク保持装置(4)は、互いに対向する一対の心押し
棒(8a) (8b)によってワークを保持するように
なっている。円柱形の工具素材(9)は、第2図に見る
ように、その両端面を一対の心押し棒(8a) (8b
)によって押圧・挾持され、水平方向に保持される。一
方の心押し棒(8a)は、その軸心周り(C方向)に回
転可能であり、加工中に工具素材をその軸心周りに回転
し得るようになっている。
The workpiece holding device (4) is configured to hold the workpiece by a pair of mutually opposing tailstock rods (8a) and (8b). As shown in FIG.
) and held in the horizontal direction. One tailstock (8a) is rotatable around its axis (direction C), so that the tool material can be rotated around its axis during processing.

次に、このような構成のマシニングセンタを使用して円
柱形の工具素材にヘリカル溝を加工するための加工法に
ついて説明する。
Next, a processing method for processing a helical groove in a cylindrical tool material using a machining center having such a configuration will be described.

まず、第2図に見るように、円柱形の工具素材(9)を
その両端面を一対の心押し棒(8a) (8b)を介し
て押圧することにより挟持し、ワーク保持装置(4)に
セットする。そして、テーブル(3)をB方向に回動さ
せて工具素材(9)を主軸(5)に対して傾斜させ、主
軸(5)の頭部に取りつけた砥石(6)の後端面(6a
)と工具素材(9)の軸心とのなす角を溝のねじれ角(
θ)に一致させる。テーブル(3)は、加工中この状態
でベッド(2)上に固定される。
First, as shown in FIG. 2, a cylindrical tool material (9) is held by pressing both end surfaces of the material through a pair of tailstocks (8a) (8b), and the workpiece holding device (4) Set to . Then, the table (3) is rotated in direction B to tilt the tool material (9) with respect to the main shaft (5), and the rear end surface (6a) of the grindstone (6) attached to the head of the main shaft (5) is
) and the axis of the tool material (9) is the helix angle of the groove (
θ). The table (3) is fixed on the bed (2) in this state during processing.

次に、主軸(5)をY軸方向に移動して砥石(6)の工
具素材(9)への切込み深さが所定の溝深さとなるよう
な高さに設定する。主軸(5)は、加工中この高さで固
定される。
Next, the main shaft (5) is moved in the Y-axis direction and set at a height such that the cutting depth of the grindstone (6) into the tool material (9) becomes a predetermined groove depth. The main shaft (5) is fixed at this height during processing.

さらに、ベッド(2)をX軸方向に移動し、砥石(6)
が工具素材(9)に形成するヘリカル溝の始点に位置す
るように設定する。そして、この状態からベッド(2)
のX軸方向への送り、主軸(5)のZ軸方向への移動及
び工具素材(9)のC方向への回転を同時に制御しなが
ら回転する砥石(6)によって研削加工を行えば、工具
素材(9)にはヘリカル溝が形成されることになる。
Furthermore, the bed (2) is moved in the X-axis direction, and the grinding wheel (6) is
is located at the starting point of the helical groove to be formed in the tool material (9). From this state, bed (2)
If grinding is performed using the rotating grindstone (6) while simultaneously controlling the feed in the X-axis direction, the movement of the spindle (5) in the Z-axis direction, and the rotation of the tool material (9) in the C direction, the tool A helical groove will be formed in the material (9).

このときのベッド(2)、主軸(5)及び工具素材(9
)の運動は、次式に従って制御される。
At this time, the bed (2), spindle (5) and tool material (9
) is controlled according to the following equation:

ΔZ=ΔX tanθ ΔC=(ΔX/LCO3θ)  X 360゜ここにΔ
Xはベッド(2)ひいては工具素材(9)のX軸方向へ
の送り量の単位長さの分割値、ΔZは主軸(5)のZ軸
方向への移動距離、ΔCは工具素材(9)の軸心周りの
回転角、θはヘリカル溝のねじれ角、Lはヘリカル溝の
リードである。この関係式に従った各軸の制御は、通常
のマシニングセンタのNC制御装置に所定のプログラム
をインプットすれば、容易に実現することができる。
ΔZ=ΔX tanθ ΔC=(ΔX/LCO3θ) X 360° here Δ
X is the unit length division value of the feed amount in the X-axis direction of the bed (2) and therefore the tool material (9), ΔZ is the moving distance of the spindle (5) in the Z-axis direction, and ΔC is the tool material (9) , θ is the twist angle of the helical groove, and L is the lead of the helical groove. Control of each axis according to this relational expression can be easily realized by inputting a predetermined program into the NC control device of a normal machining center.

次に、上記関係式に従ってベッド(2)、主軸(5)及
び工具素材(9)が行う運動について詳述する。
Next, the motions performed by the bed (2), the spindle (5), and the tool material (9) according to the above relational expression will be described in detail.

第3図に見るように、最初に砥石(6)の後端面(6a
)の最下端が、工具素材(9)の先端の軸心上の点Aに
おいて接触しているとする。この位置から、ベッド(2
)の移動により工具素材(9)がX軸方向にΔXの距離
だけ送られると、点AはAの位置に移動すると共に軸心
はZ軸方向にΔ2だけ変位する。このとき、点Aにおけ
ると同様に、砥石(6)の後端面(6a)の最下端が工
具素材(9)の軸心上にある点Bにおいて工具素材(9
)と接触するようにするためには、ΔXの送りと同時に
2軸方向にAB間の距離Δ2だけ砥石(6)を移動させ
なければならない。ここにΔZは次式で求められること
は明らかである。
As shown in Figure 3, first the rear end surface (6a) of the grinding wheel (6)
) is in contact with the tip of the tool material (9) at point A on the axis. From this position, move the bed (2
), when the tool blank (9) is sent by a distance of ΔX in the X-axis direction, point A moves to the position of A and the axis is displaced by Δ2 in the Z-axis direction. At this time, similarly to point A, at point B where the lowermost end of the rear end surface (6a) of the grinding wheel (6) is on the axis of the tool material (9), the tool material (9)
), the grindstone (6) must be moved by the distance Δ2 between AB in two axial directions simultaneously with the feed of ΔX. It is clear that ΔZ can be found by the following equation.

ΔZ=ΔX tanθ 従って、この式に従って砥石(6)を移動するようにす
れば、砥石(6)の最下端を常に工具素材(9)の軸心
に沿って移動させることができるまた、上記ΔXの送り
に伴ってΔZだけ砥石(6)が移動すると、砥石(6)
は工具素材(9)の軸心に沿ってA’B間の距離ΔSだ
け送られたことになる。従って、ねじれ角θ、リードし
のヘリカル溝を形成するためには、このΔSの距離の移
動の間に工具素材(9)を次式で定められる角度ΔCだ
けC方向(軸心周りの方向)に回転させなければならな
い。
ΔZ=ΔX tanθ Therefore, if the grindstone (6) is moved according to this formula, the lowest end of the grindstone (6) can always be moved along the axis of the tool material (9). When the grinding wheel (6) moves by ΔZ with the feed of the grinding wheel (6),
is fed by the distance ΔS between A'B along the axis of the tool blank (9). Therefore, in order to form a helical groove with a helical angle θ and a lead, the tool material (9) must be moved in the C direction (direction around the axis) by an angle ΔC determined by the following formula during movement of this distance ΔS. must be rotated.

ΔC=(ΔS/L) X 360゜ ここで、ΔS=ΔX/cosθだから、ΔC=<ΔX/
Lcosθ)X360’となる。
ΔC=(ΔS/L) X 360°Here, since ΔS=ΔX/cosθ, ΔC=<ΔX/
Lcosθ)X360'.

よって、Δ2=ΔX tanθ、ΔC=(ΔX/Lco
sθ)X360’の関係式を満たすようにX、 Z及び
Cの値を決定すれば、上記のような構造の横形マシニン
グセンタにて円柱形の工具素材(9)にヘリカル溝を加
工することができる。
Therefore, Δ2=ΔX tanθ, ΔC=(ΔX/Lco
If the values of X, Z, and C are determined to satisfy the relational expression sθ) .

尚、上記の二式においてθを一定値とすれば等ヘリカル
等リードの溝が加工されるが、この場合には、上記二式
を一般化した式 Z=Xtanθ C= (X/L cosθ) X 360゜に従って運
動するように制御すればよい。
In the above two equations, if θ is set to a constant value, a groove with an equal helical lead can be machined, but in this case, the equation Z=Xtanθ C= (X/L cosθ) is a generalization of the above two equations. It may be controlled to move according to X 360°.

また、θを徐々に変化させて不等ヘリカルの溝を加工す
る場合には、リードしも変化するので、分割値ΔXごと
にΔZ及びΔCを算出する必要がある。
Further, when machining an unequal helical groove by gradually changing θ, the lead also changes, so it is necessary to calculate ΔZ and ΔC for each division value ΔX.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、この発明の方法によれ
ば、横形マシニングセンタを利用して円柱形素材(9)
にヘリカル溝を形成することができ、またこの方法は通
常のマシニングセンタのNC制御装置により簡易に実現
することができると共に、高価な工具研削盤を使用しな
くてもよいため経済的である等、優れた効果を有するも
のである。
As is clear from the above description, according to the method of the present invention, a cylindrical material (9) is produced using a horizontal machining center.
A helical groove can be formed on the surface, and this method can be easily realized using the NC control device of a normal machining center, and is economical because it does not require the use of an expensive tool grinder. It has excellent effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の方法に使用する横形マシニングセ
ンタの要部概略斜視図。第2図は、同マシニングセンタ
による工具素材の加工状況を示す平面説明図。第3図は
、工具素材がX軸方向へΔXだけ変位したときの位置関
係を示す平面説明図(1)・・・コラム   (2)・
・・ベッド(3)・・・テーブル (4)・・・ワーク
保持装置(5)・・・主軸   (6)・・・砥石(6
a)・・・砥石の後端面 (7)・・・モータ(8a)
 (8b)・・・心押し棒 (9)・・・工具素材ΔX
・・・X軸方向の送り量の単位長さの分割値ΔZ・・・
ΔXだけ送られたときのZ軸方向の移動距離 ΔC・・・ΔXだけ送られたときのC方向の回転角L・
・・ヘリカル溝のリード θ・・・ヘリカル溝のねじれ角
FIG. 1 is a schematic perspective view of the main parts of a horizontal machining center used in the method of the present invention. FIG. 2 is an explanatory plan view showing the machining status of the tool material by the same machining center. Figure 3 is a plan view showing the positional relationship when the tool material is displaced by ΔX in the X-axis direction (1)...Column (2)...
... Bed (3) ... Table (4) ... Work holding device (5) ... Main spindle (6) ... Grindstone (6
a)...Rear end surface of grindstone (7)...Motor (8a)
(8b)...Tailstock (9)...Tool material ΔX
...Divide value ΔZ of unit length of feed amount in X-axis direction...
Movement distance ΔC in the Z-axis direction when moved by ΔX...Rotation angle L in the C direction when moved by ΔX
・Lead θ of helical groove・・・Helix angle of helical groove

Claims (1)

【特許請求の範囲】[Claims] 1、主軸が水平方向に設けられたマシニングセンタを利
用して円柱形素材にねじれ角θ及びリードLのヘリカル
溝を形成するための加工法であって、水平方向に保持し
た円柱形素材を主軸に直交する水平方向に単位長さの分
割値ΔXだけ送る毎に、砥石等の加工工具を取り付けた
主軸のその軸心方向への移動距離ΔZ及び円柱形素材の
その軸心周りの回転角ΔCを、ΔZ=ΔXtanθ、Δ
C=(ΔX/LCOSθ)×360°の関係式に従って
制御しながら加工することを特徴とする加工法。
1. A machining method for forming a helical groove with a helical angle θ and a lead L in a cylindrical material using a machining center whose main axis is set horizontally. Every time the unit length division value ΔX is fed in the orthogonal horizontal direction, the movement distance ΔZ of the main shaft to which a processing tool such as a grindstone is attached in the direction of its axis and the rotation angle ΔC of the cylindrical material around its axis are calculated. , ΔZ=ΔXtanθ, Δ
A processing method characterized by processing while controlling according to the relational expression C=(ΔX/LCOSθ)×360°.
JP27499386A 1986-11-18 1986-11-18 Helical groove machining method by use of machining center Granted JPS63127867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27499386A JPS63127867A (en) 1986-11-18 1986-11-18 Helical groove machining method by use of machining center

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27499386A JPS63127867A (en) 1986-11-18 1986-11-18 Helical groove machining method by use of machining center

Publications (2)

Publication Number Publication Date
JPS63127867A true JPS63127867A (en) 1988-05-31
JPH0558865B2 JPH0558865B2 (en) 1993-08-27

Family

ID=17549405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27499386A Granted JPS63127867A (en) 1986-11-18 1986-11-18 Helical groove machining method by use of machining center

Country Status (1)

Country Link
JP (1) JPS63127867A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004001180A (en) * 2002-02-27 2004-01-08 Werkzeugmaschinenfabrik Zerbst Gmbh Method of machining workpiece equipped with straight surface recess, grooved part having cross section other than circular shape
JP2008307627A (en) * 2007-06-13 2008-12-25 Mitsui Seiki Kogyo Co Ltd Polishing device of drum type regulating wheel
JP2009057920A (en) * 2007-08-31 2009-03-19 Daikin Ind Ltd Apparatus and method for processing screw rotor
JP2009208183A (en) * 2008-03-03 2009-09-17 Nissan Motor Co Ltd Grinding method and grinding device
CN103831463A (en) * 2014-03-12 2014-06-04 无锡威孚马山油泵油嘴有限公司 Tool structure for machining plunger helical groove
KR102377424B1 (en) * 2021-11-04 2022-03-22 주식회사 성진텍 Worm processing apparatus for globoid type worm

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3731434A (en) * 1971-04-12 1973-05-08 Ctr Inc Grinding machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3731434A (en) * 1971-04-12 1973-05-08 Ctr Inc Grinding machine

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004001180A (en) * 2002-02-27 2004-01-08 Werkzeugmaschinenfabrik Zerbst Gmbh Method of machining workpiece equipped with straight surface recess, grooved part having cross section other than circular shape
JP4558278B2 (en) * 2002-02-27 2010-10-06 ヴェルクツォイクマシイネンファブリーク・ツェルプスト・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング A processing method for forming a surface concave portion having a circular cross section having a central axis inclined with respect to a processing material axis around the outside of the processing material
JP2008307627A (en) * 2007-06-13 2008-12-25 Mitsui Seiki Kogyo Co Ltd Polishing device of drum type regulating wheel
JP2009057920A (en) * 2007-08-31 2009-03-19 Daikin Ind Ltd Apparatus and method for processing screw rotor
JP2009208183A (en) * 2008-03-03 2009-09-17 Nissan Motor Co Ltd Grinding method and grinding device
CN103831463A (en) * 2014-03-12 2014-06-04 无锡威孚马山油泵油嘴有限公司 Tool structure for machining plunger helical groove
CN103831463B (en) * 2014-03-12 2016-02-03 无锡威孚马山油泵油嘴有限公司 A kind of tool structure for plunger helix processing
KR102377424B1 (en) * 2021-11-04 2022-03-22 주식회사 성진텍 Worm processing apparatus for globoid type worm
JP7148942B1 (en) * 2021-11-04 2022-10-06 ソンジン テック カンパニー リミテッド Drum-shaped worm shaft processing equipment
EP4176995A1 (en) * 2021-11-04 2023-05-10 Gyu-Bong Han Apparatus for machining double enveloping worm shaft
TWI814479B (en) * 2021-11-04 2023-09-01 韓商成振科技有限公司 Janggu shaped worm shaft processing device

Also Published As

Publication number Publication date
JPH0558865B2 (en) 1993-08-27

Similar Documents

Publication Publication Date Title
US4617764A (en) NC vertical spindle jig grinder
CN110064799B (en) Numerical control gear grinding machine for wire gears and wire gear grinding processing method
JPS5840255A (en) Grinder for programme control
CA2372659C (en) Method for grinding convex running surfaces and outside diameters on undulated workpieces in a clamping, and a grinding machine for carrying out the method
JP2021164988A (en) Workpiece chamfering device, tooth processing center including the same, and processing method using workpiece chamfering device
JP5239251B2 (en) Traverse grinding apparatus and processing method
JP4140574B2 (en) Method and apparatus for grinding a cam having a concave surface
CN104476362A (en) Numerically-controlled grinding machine for arced notch chamfer mill
JPS63127867A (en) Helical groove machining method by use of machining center
US4950112A (en) Machine for the precision working of the tooth flanks of toothed workpieces
JPH0639636A (en) Method and machine for precision machining of balloon-shaped or conical tooth
JP4712586B2 (en) NC machine tool
JP5425570B2 (en) Processing method and apparatus for trunnion of tripod type constant velocity joint
JPH08318456A (en) Spindle tapered hole re-boring device
JPS63144941A (en) Complex grinding device
JPH0349701B2 (en)
JP5010421B2 (en) Centerless grinding method and centerless grinding apparatus for workpiece outer diameter surface and flat surface
JPH02139112A (en) Profile grinding machine
JPH1190799A (en) Machine tool for crank pin machining and machining method for crank pin
JP6565380B2 (en) Cutting device, cutting method and annular tool
JP3204159B2 (en) Screw grinding method and screw grinding machine
JP2702127B2 (en) Copy grinding machine
RU2412785C1 (en) Method of turning shaped surfaces
JP3401861B2 (en) Curved surface processing method
JPS6411421B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term