JP3401861B2 - Curved surface processing method - Google Patents

Curved surface processing method

Info

Publication number
JP3401861B2
JP3401861B2 JP24520993A JP24520993A JP3401861B2 JP 3401861 B2 JP3401861 B2 JP 3401861B2 JP 24520993 A JP24520993 A JP 24520993A JP 24520993 A JP24520993 A JP 24520993A JP 3401861 B2 JP3401861 B2 JP 3401861B2
Authority
JP
Japan
Prior art keywords
grindstone
workpiece
head
curved surface
grinding wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24520993A
Other languages
Japanese (ja)
Other versions
JPH07100750A (en
Inventor
康生 新野
幸夫 小田
退三 遠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Koki KK
Original Assignee
Toyoda Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki KK filed Critical Toyoda Koki KK
Priority to JP24520993A priority Critical patent/JP3401861B2/en
Publication of JPH07100750A publication Critical patent/JPH07100750A/en
Application granted granted Critical
Publication of JP3401861B2 publication Critical patent/JP3401861B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、トロイダル曲面に代表
される自由曲面を加工するための曲面加工方法に関す
る。 【0002】 【従来の技術】トロイダル曲面に代表される三次元の自
由曲面を有する工作物の一例を図7に示す。図7におい
て、1はトロイダル曲面を有する工作物であり、この工
作物1のトロイダル曲面2は、B軸と平行な軸線回りの
曲率とA軸と平行な軸線回りの曲率とが異なる曲面を有
している。 【0003】従来、このようなトロイダル曲面の加工に
は、X軸およびY軸方向に移動されるワークテーブル
と、Z軸方向に移動される円盤状の砥石3を有する3軸
制御方式の加工機が使用される。このような加工機を用
いて工作物をトロイダル曲面加工する場合は、工作物1
をX軸方向に移動しながら、砥石3を曲面形状データに
したがいZ軸方向に切込み送りをかけてワンパス加工す
る。そして、工作物1をY軸方向に1ピッチ分移動させ
た後、再び工作物と砥石をX軸とZ軸方向に同時制御し
てワンパス加工する。以下、同様な動作を繰り返すこと
により、工作物を曲面形状データにしたがい曲面加工す
る。 【0004】 【発明が解決しようとする課題】しかしながら、上記の
ような従来の加工機では、3軸制御によりトロイダル曲
面を加工するものであるため、曲面加工に際し、工作物
1をY軸方向にピッチフィード送りした場合、工作物1
と砥石3との接触方向は、Y軸方向の加工曲面2の中央
から端部側へ移動するにつれて図8に示すように変化す
る。 【0005】すなわち、砥石3が工作物1に対し図8の
2点鎖線に示す位置にあるときは、工作物1と砥石3と
の接触方向(接触点P1)は砥石切込み送り方向(Z軸
方向)と一致する曲面2の法線方向に維持されるが、砥
石3が図8の実線に示す位置になると、工作物1と砥石
3との接触方向(接触点P2)は砥石切込み送り方向と
一致する曲面2の法線4から角度θ1ずれてしまう。そ
の結果、曲面のNC形状データにより制御される曲面の
加工位置と実際に加工される位置間にθ1に応じたずれ
が生じ、曲面の創成精度に悪影響を与えることになる。
また、曲面加工に際し、工作物1をX軸方向に移動しな
がら砥石3をZ軸方向に切込み送りした場合、工作物1
と砥石3との接触方向は、X軸方向の加工曲面2の中央
から端部側へ移動するにつれて図9に示すように変化す
る。 【0006】すなわち、砥石3が工作物1に対し図9の
2点鎖線に示す位置にあるときは、工作物1と砥石3と
の接触方向(接触点P3)は砥石切込み方向(Z軸方
向)と一致する曲面2の法線方向に維持されるが、砥石
3が図9の実線に示す位置になると、工作物1と砥石3
との接触方向(接触点P4)は砥石切込み送り方向と一
致する曲面2の法線5から角度θ2ずれてしまう。その
結果、曲面のNC形状データにより制御される曲面の加
工位置と実際に加工される位置との間にθ2に応じたず
れが生じ、これが曲面の創成精度に悪影響を与えるほ
か、砥石が摩耗してくると、その創成精度への影響は無
視できず、トロイダルミラー用の型成形には利用できな
い場合が生じる。 【0007】本発明は、上記の点に鑑みなされたもの
で、工作物と砥石との接触方向を一定に維持して工作物
の曲面形状の創成精度を向上できる曲面加工方法を提供
することを目的とする。 【0008】 【課題を解決するための手段】上記目的を達成するため
に本発明は、工作物に三次元の自由曲面を砥石により加
工する曲面加工方法であって、工作物を支持する支持部
と、回転駆動される円盤状の砥石を有する砥石ヘッド
と、前記工作物と砥石とが互いに接離する切込み方向に
前記支持部と砥石ヘッドを相対移動させる第1の駆動手
段と、前記切込み方向と直角なトラバース送り方向に前
記支持部と砥石ヘッドを相対移動させる第2の駆動手段
と、前記トラバース送り方向と直角なピッチフィード送
り方向に前記支持部と砥石ヘッドを相対移動させる第3
の駆動手段と、前記支持部または砥石ヘッドを前記トラ
バース送り方向と平行な軸回りに揺動させる第4の駆動
手段と、前記支持部または砥石ヘッドを前記ピッチフィ
ード送り方向と平行な軸回りに揺動させる第5の駆動手
段とを備え、前記第3の駆動手段により前記支持部と砥
石ヘッドを相対的にピッチフィード送りし、該ピッチフ
ィード送り毎に前記工作物の加工曲面の法線と前記砥石
の切込み方向とが一致するように前記第4の駆動手段に
より前記支持部または砥石ヘッドを揺動させる第1の工
程と、前記第1の工程の次に第2の駆動手段により前記
支持部と砥石ヘッドをトラバース送り方向に相対移動さ
せながら、前記第1の駆動手段により前記支持部と砥石
ヘッドを相対移動させて砥石に切込みを与えると同時に
その切込み送り位置に応じて工作物の加工曲面の法線と
前記砥石の切込み方向とが一致するように前記第5の駆
動手段により前記支持部または砥石ヘッドを揺動させる
第2の工程とを備え、前記第1の工程と第2の工程を繰
り返すことにより工作物に三次元の自由曲面を加工する
ようにしたことを特徴とする。 【0009】 【作用】本発明において、揺動テーブルと砥石ヘッドを
相対的にピッチフィードさせる毎に揺動テーブルをトラ
バース送り方向と平行な軸回りに曲面形状データに応じ
て揺動させ、そして、揺動テーブルと砥石ヘッドをトラ
バース送り方向に相対移動させながら、該揺動テーブル
と砥石ヘッドを切込み送り方向に相対移動すると同時
に、揺動テーブルをピッチフィード送り方向と平行な軸
回りに曲面形状データに応じて揺動させることにより、
工作物の自由曲面加工につれ自由曲面の法線が変化して
も、自由曲面の法線と砥石ヘッドとの関係を常に同じに
維持することができる。よって、工作物曲面の創成精度
が向上できる。 【0010】 【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1は、本発明方法を適用した5軸制御の曲面加
工機の一部を切欠いて示す正面図、図2はその左側面図
である。図1および図2において、10は床面11上に
除震台12を介して設置したベッド、13はベッド10
上に案内部材14によりX軸方向に(トラバース送り方
向)に移動可能に設置したスライドテーブルであり、こ
のスライドテーブル13は、ベッド10側に設けたボー
ルねじ15と、これを回転駆動するサーボモータ16に
よってX軸方向に移動される構成になっている。 【0011】17はスライドテーブル13上に設けられ
た第1の揺動テーブルであり、この第1の揺動テーブル
17は、X軸方向と平行な支持軸18により、スライド
テーブル13上の支持部材19にA軸回りに揺動可能に
支持されている。第1の揺動テーブル17をA軸回りに
揺動させる第1の駆動機構20は、支持部材21により
スライドテーブル13上に設置されている。 【0012】前記第1の駆動機構20は、上下方向に設
置したボールねじ201と、このボールねじ201を回
転駆動するサーボモータ202を備え、ボールねじ20
1のナット部材203は第1の揺動テーブル17に連結
されている。 【0013】22は第1の揺動テーブル17上に支持軸
23によりA軸と直交するB軸回りに揺動可能に支持し
た第2の揺動テーブルであり、この第2の揺動テーブル
22をB軸回りに揺動させる第2の駆動機構24は支持
部材25により第1の揺動テーブル17上に支持されて
いる。 【0014】前記第2の駆動機構24は、上下方向に配
置したボールねじ241と、このボールねじ241を回
転駆動するサーボモータ242を備え、ボールねじ24
1のナット243は第2の揺動テーブル22に連結され
ている。なお、1は第2の揺動テーブル22上にセット
された工作物である。 【0015】図1および図2中、26はベッド10上に
固設した門型のコラムであり、このコラム26の水平部
26aには砥石架台27が案内部28によってY軸方向
(ピッチフィード送り方向)に移動可能に設置されてお
り、この砥石架台27は、コラム水平部26aにY軸方
向と平行に配置したボールねじ29と、このボールねじ
29を回転駆動するサーボモータ30によりY軸方向に
移動される構成になっている。 【0016】前記砥石架台27には、昇降部材31がZ
軸方向(切込み送り方向)にスライド可能に設けられて
おり、この昇降部材31の下端には、研削面が円弧をな
す円盤状の砥石32および該砥石32を回転駆動する電
動機33を一体化した砥石ヘッド34が取り付けられて
いる。 【0017】また、砥石架台27上には、昇降部材31
に対向してサーボモータ35が設置され、このサーボモ
ータ35と昇降部材31の上端間は図略のボールねじに
より連結されており、ボールねじをサーボモータ35に
より回転駆動することで昇降部材31を含めた砥石ヘッ
ド34をY軸方向に移動させる構成になっている。 【0018】次に、図3により本発明方法を適用した制
御部の構成について説明する。図3において、加工機を
5軸制御する数値制御装置40は、加工機全体を制御し
管理する中央処理装置(以下CPUと略称する)41、
プログラムおよびデータを格納するメモリ42、CPU
41からの指令に応じて駆動パルスをX軸,Y軸,Z
軸,A軸およびB軸用の各サーボモータに分配供給する
ためのパルス分配回路43を備える。 【0019】前記パルス分配回路43には、別々の駆動
回路44〜46を介してスライドテーブル駆動用(X軸
用)サーボモータ16、砥石架台駆動用(Y軸用)サー
ボモータ30、砥石送り用(Z軸用)サーボモータ35
がそれぞれ接続されている。さらに、パルス分配回路4
3には、別々に駆動回路47,48を介して第1の揺動
テーブル駆動用(A軸用)サーボモータ202および第
2の揺動テーブル駆動用(B軸用)サーボモータ242
がそれぞれ接続されている。メモリ42には、図1に示
すように入力装置49から入力される工作物のNC形状
データ(x,y,z,α,β)および加工プログラム等
が格納されている。 【0020】上記実施例の構成において、サーボモータ
16は第2の駆動手段を、サーボモータ30は第3の駆
動手段を、サーボモータ35は第1の駆動手段を、第1
の駆動機構(サーボモータ202)20は第4の駆動手
段を、第2の駆動機構(サーボモータ242)24は第
5の駆動手段を、また第1,第2揺動テーブルは支持部
をそれぞれ構成する。 【0021】次に、上記のように構成された本実施例の
曲面加工動作について説明する。工作物1を曲面加工す
る場合は、メモリ42の加工プログラムとNC形状デー
タ(x,y,z,α,β)にしたがいCPU41からパ
ルス分配回路43に駆動指令を与えることにより、パル
ス分配回路43から送出される駆動パルスでサーボモー
タ16を駆動し、これにより、揺動テーブル17,22
を含めたスライドテーブル13をX軸方向に移動させな
がら、NC形状データと加工プログラムに基づきパルス
分配回路43からの駆動パルスによりサーボモータ30
を駆動して砥石架台27を含む砥石ヘッド34をZ軸方
向に移動させると同時に、サーボモータ242を駆動制
御することにより第2の揺動テーブル22をB軸回りに
揺動させ、これにより、工作物1をX軸方向にワンパス
加工する。 【0022】このとき、図4に示すように、工作物1に
対する砥石32が実線に示す位置から2点鎖線に示す位
置へ移動されるにつれて第2の揺動テーブル22が揺動
されることにより、工作物1も図4の実線に示す状態か
ら2点鎖線に示す状態にB軸回りに揺動されるから、工
作物1と砥石32との接触方向は砥石切込み方向(Z軸
方向)に維持される。これにより、従来のように工作物
1と砥石32との接触方向が砥石切込み方向からずれる
ことがなく、常に一致した状態に維持できる。 【0023】工作物1に対するワンパス加工が終了する
と、加工プログラムとNC形状データにしたがいCPU
41からパルス分配回路43に駆動指令を与えることに
より、パルス分配回路43から送出される駆動パルスで
サーボモータ30を駆動し、砥石架台27を含む砥石ヘ
ッド34をY軸方向に1ピッチ分移動し、さらにNC形
状データに基づきパルス分配回路43から送出される駆
動パルスによりサーボモータ202を駆動して第1の揺
動テーブル17をA軸回りに所定角度揺動させる。 【0024】この場合、工作物1に対する砥石32のY
軸方向へのピッチフィード送り位置が図5に示すよう
に、実線の位置から2点鎖線の位置へ移動されるにつれ
て、工作物1は図5の実線に示す状態から2点鎖線に示
す状態に揺動されるから、工作物1と砥石32との接触
方向は砥石切込み方向(Z軸方向)に維持される。これ
により、従来のように工作物1と砥石32との接触方向
が砥石切込み方向からずれることがなく、常に一致した
状態に維持できる。 【0025】砥石ヘット34のY軸方向へ1ピッチ送り
が終了した後に、再びX,Z,Bの3軸制御を行うこと
により、工作物1をワンパス加工する。以下、同様な動
作を繰り返すことにより、工作物1の全面をNC形状デ
ータに応じた曲面に加工する。図6は、上述する一連の
曲面加工の状態を模式的に表わしたものである。 【0026】上記のような本実施例においては、工作物
1および揺動テーブル17,22を含むスライドテーブ
ル13をX軸方向に移動しながら、砥石架台27を含む
砥石ヘッド34をZ軸方向に切込み送りし、同時に第2
揺動テーブル22をB軸回りに揺動して工作物1をワン
パス加工し、そして、砥石ヘッド34をY軸方向に1ピ
ッチ分移動し、かつ第1の揺動テーブル17をA軸回り
に所定角度揺動した後、再び上記のワンパス加工を行う
ようにしたので、図4,図5に示すように、工作物1を
砥石32との接触方向を砥石切込み送り方向と一致する
加工曲面2の法線方向に維持することができる。 【0027】即ち、工作物1と砥石32が接触した点に
おける加工曲面2の法線Fと、砥石ヘッド34の向きと
の関係は、加工曲面2の法線の向きの変化にもかかわら
ず常に一定に維持できる。これに伴い工作物1の曲面形
創成精度が向上される。 【0028】なお、上述した実施例は、揺動テーブル1
7,22をA軸,B軸回りに揺動させて、工作物1と砥
石32との接触方向と砥石ヘッド34の向きと一致させ
る例について述べたが、砥石ヘッド34をA軸,B軸回
りに揺動させても良いし、砥石ヘッド34をB軸回り、
揺動テーブル17,22をA軸回りに揺動させ、あるい
は逆であっても良い。また、本発明は、上記実施例に示
す構成のものに限定されず、請求項に記載した範囲を逸
脱しない限り、種々の変形が可能である。 【0029】 【発明の効果】以上説明したように本発明は、工作物を
支持する支持部と、回転駆動される円盤状の砥石を有す
る砥石ヘッドと、前記工作物と砥石とが互いに接離する
切込み方向に前記支持部と砥石ヘッドを相対移動させる
第1の駆動手段と、前記切込み方向と直角なトラバース
送り方向に前記支持部と砥石ヘッドを相対移動させる第
2の駆動手段と、前記トラバース送り方向と直角なピッ
チフィード送り方向に前記支持部と砥石ヘッドを相対移
動させる第3の駆動手段と、前記支持部または砥石ヘッ
ドを前記トラバース送り方向と平行な軸回りに揺動させ
る第4の駆動手段と、前記支持部または砥石ヘッドを前
記ピッチフィード送り方向と平行な軸回りに揺動させる
第5の駆動手段とを備え、前記第3の駆動手段により前
記支持部と砥石ヘッドを相対的にピッチフィード送り
し、該ピッチフィード送り毎に前記工作物の加工曲面の
法線と前記砥石の切込み方向とが一致するように前記第
4の駆動手段により前記支持部または砥石ヘッドを揺動
させる第1の工程と、前記第1の工程の次に第2の駆動
手段により前記支持部と砥石ヘッドをトラバース送り方
向に相対移動させながら、前記第1の駆動手段により前
記支持部と砥石ヘッドを相対移動させて砥石に切込みを
与えると同時にその切込み送り位置に応じて工作物の加
工曲面の法線と前記砥石の切込み方向とが一致するよう
に前記第5の駆動手段により前記支持部または砥石ヘッ
ドを揺動させる第2の工程とを備え、前記第1の工程と
第2の工程を繰り返すことにより工作物に三次元の自由
曲面を加工するようにしたことを特徴とする。 したがっ
て、本発明によれば、工作物支持部と砥石ヘッドを相対
的にピッチフィードさせる毎に支持部または砥石ヘッド
がトラバース送り方向と平行な軸回りに揺動され、この
状態で支持部と砥石ヘッドをトラバース送り方向に相対
移動させながら支持部と砥石ヘッドを切込み送り方向に
相対移動すると同時に支持部または砥石ヘッドがピッチ
フィード送り方向と平行する軸回りに揺動されるから、
工作物の自由曲面加工につれ自由曲面の法線が変化して
も、自由曲面の法線と砥石ヘッドとの関係を、常に一定
に維持できる。これにより、工作物と砥石との接触方向
を砥石切込み方向と一致する状態に常に維持することが
でき、工作物の曲面形状の創成精度を向上することがで
きる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a curved surface machining method for machining a free-form surface represented by a toroidal surface. 2. Description of the Related Art FIG. 7 shows an example of a workpiece having a three-dimensional free-form surface represented by a toroidal surface. In FIG. 7, reference numeral 1 denotes a workpiece having a toroidal curved surface, and the toroidal curved surface 2 of the workpiece 1 has a curved surface having different curvatures around an axis parallel to the B axis and around an axis parallel to the A axis. are doing. Conventionally, for processing such a toroidal curved surface, a three-axis control type processing machine having a work table moved in the X-axis and Y-axis directions and a disk-shaped grindstone 3 moved in the Z-axis direction. Is used. When a toroidal curved surface of a workpiece is processed using such a processing machine, the workpiece 1
Is moved in the X-axis direction, and the grindstone 3 is cut and fed in the Z-axis direction according to the curved surface shape data to perform one-pass machining. Then, after moving the workpiece 1 by one pitch in the Y-axis direction, the workpiece and the grindstone are again controlled simultaneously in the X-axis and Z-axis directions to perform one-pass machining. Hereinafter, by repeating the same operation, the workpiece is subjected to the curved surface processing according to the curved surface shape data. [0004] However, in the conventional processing machine described above, since the toroidal curved surface is processed by three-axis control, the workpiece 1 is moved in the Y-axis direction when the curved surface is processed. Workpiece 1 when pitch feed
As shown in FIG. 8, the contact direction between the workpiece and the grindstone 3 changes from the center of the processing curved surface 2 in the Y-axis direction to the end. That is, when the grindstone 3 is located at a position shown by a two-dot chain line in FIG. 8 with respect to the workpiece 1, the contact direction (contact point P1) between the workpiece 1 and the grindstone 3 is the grinding stone cutting feed direction (Z axis). 8), the contact direction between the workpiece 1 and the grindstone 3 (the contact point P2) is changed to the direction of the grindstone infeed when the grindstone 3 comes to the position shown by the solid line in FIG. Deviates from the normal 4 of the curved surface 2 corresponding to the angle θ1. As a result, a deviation corresponding to θ1 occurs between the processing position of the curved surface controlled by the NC shape data of the curved surface and the actually processed position, which adversely affects the accuracy of generating the curved surface.
Further, when the grinding wheel 3 is cut and fed in the Z-axis direction while moving the workpiece 1 in the X-axis direction during the curved surface machining, the workpiece 1
As shown in FIG. 9, the direction of contact between the workpiece and the grindstone 3 changes from the center to the end of the processing curved surface 2 in the X-axis direction. That is, when the grindstone 3 is located at a position shown by a two-dot chain line in FIG. 9 with respect to the workpiece 1, the contact direction between the workpiece 1 and the grindstone 3 (contact point P3) is the cutting direction of the grindstone (Z axis direction). 9), the workpiece 1 and the grindstone 3 are maintained when the grindstone 3 reaches the position shown by the solid line in FIG.
The contact direction (contact point P4) is shifted by an angle θ2 from the normal 5 of the curved surface 2 which coincides with the direction of the grinding wheel cutting feed. As a result, a deviation corresponding to θ2 occurs between the processing position of the curved surface controlled by the NC shape data of the curved surface and the actually processed position, which has an adverse effect on the accuracy of generating the curved surface, and also causes wear of the grinding wheel. Then, the influence on the creation accuracy cannot be ignored, and it may not be possible to use the mold for the toroidal mirror. SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and has as its object to provide a curved surface processing method capable of improving the accuracy of forming a curved surface shape of a workpiece while maintaining a constant contact direction between the workpiece and a grindstone. Aim. [0008] In order to achieve the above object, the present invention relates to a curved surface machining method for machining a three-dimensional free-form surface on a workpiece by using a grindstone, wherein the support portion supports the workpiece. A grindstone head having a disk-shaped grindstone that is rotationally driven; first driving means for relatively moving the support portion and the grindstone head in a cutting direction in which the workpiece and the grindstone are separated from each other; and the cutting direction. Second driving means for relatively moving the support portion and the grindstone head in a traverse feed direction perpendicular to the third direction, and third drive for relatively moving the support portion and the grindstone head in a pitch feed direction perpendicular to the traverse feed direction.
Driving means, and fourth driving means for swinging the support portion or the grindstone head around an axis parallel to the traverse feed direction, and the support portion or the grindstone head around an axis parallel to the pitch feed direction. A fifth drive unit for swinging, the third drive unit feeds the support portion and the grindstone head relatively in a pitch feed, and for each pitch feed feed, a normal line to a processing curved surface of the workpiece. A first step of swinging the support portion or the grinding wheel head by the fourth driving means so that a cutting direction of the grinding stone coincides with the first driving step; The first driving means moves the support unit and the grinding wheel head relative to each other to relatively cut the grinding wheel while moving the grinding wheel head and the grinding wheel head in the traverse feed direction. A second step of swinging the support portion or the grinding wheel head by the fifth driving means so that a normal line of a processing curved surface of the workpiece and a cutting direction of the grinding wheel coincide with each other, and By repeating the first step and the second step, a three-dimensional free-form surface is machined on the workpiece. In the present invention, each time the swing table and the grindstone head are relatively pitch-fed, the swing table is swung about an axis parallel to the traverse feed direction according to the curved surface shape data, and While relatively moving the swing table and the grindstone head in the traverse feed direction, the swing table and the grindstone head are relatively moved in the notch feed direction, and at the same time, the swing table is curved surface data around an axis parallel to the pitch feed feed direction. By swinging according to
Even if the normal of the free-form surface changes as the free-form surface is machined, the relationship between the normal of the free-form surface and the grinding wheel head can always be kept the same. Therefore, the accuracy of creating a workpiece curved surface can be improved. Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a partially cutaway front view of a five-axis control curved surface processing machine to which the method of the present invention is applied, and FIG. 2 is a left side view thereof. 1 and 2, reference numeral 10 denotes a bed installed on a floor 11 via a vibration isolator 12, and 13 denotes a bed 10.
The slide table 13 is mounted on a guide member 14 so as to be movable in the X-axis direction (traverse feed direction). The slide table 13 includes a ball screw 15 provided on the bed 10 side and a servo motor for rotating the ball screw 15. 16 is configured to be moved in the X-axis direction. Reference numeral 17 denotes a first swing table provided on the slide table 13. The first swing table 17 is supported by a support member 18 on the slide table 13 by a support shaft 18 parallel to the X-axis direction. 19 is supported so as to be swingable around the A axis. A first drive mechanism 20 that swings the first swing table 17 around the A axis is installed on the slide table 13 by a support member 21. The first drive mechanism 20 includes a ball screw 201 installed in a vertical direction, and a servomotor 202 for driving the ball screw 201 to rotate.
The first nut member 203 is connected to the first swing table 17. Reference numeral 22 denotes a second swing table supported on the first swing table 17 by a support shaft 23 so as to be able to swing around a B-axis orthogonal to the A-axis. The second drive mechanism 24 that swings the first arm about the B axis is supported on the first swing table 17 by a support member 25. The second drive mechanism 24 includes a ball screw 241 arranged vertically and a servomotor 242 for driving the ball screw 241 to rotate.
The first nut 243 is connected to the second swing table 22. Reference numeral 1 denotes a workpiece set on the second swing table 22. In FIG. 1 and FIG. 2, reference numeral 26 denotes a gate-shaped column fixed on the bed 10. A grindstone mount 27 is provided on a horizontal portion 26a of the column 26 by a guide portion 28 in the Y-axis direction (pitch feed feed). The grinding wheel base 27 is mounted on a column horizontal portion 26a in a Y-axis direction by a ball screw 29 disposed in parallel with the Y-axis direction and a servomotor 30 for rotating the ball screw 29. It is configured to be moved to. On the whetstone mount 27, an elevating member 31
A disc-shaped grinding wheel 32 whose grinding surface forms an arc and an electric motor 33 for rotating the grinding wheel 32 are integrated at the lower end of the elevating member 31 so as to be slidable in the axial direction (cut feed direction). A grindstone head 34 is mounted. The lifting member 31 is placed on the grindstone base 27.
A servo motor 35 is installed in opposition to the servo motor 35, and an upper end of the servo motor 35 is connected to an upper end of the elevating member 31 by a ball screw (not shown). The whetstone head 34 is moved in the Y-axis direction. Next, the configuration of a control unit to which the method of the present invention is applied will be described with reference to FIG. In FIG. 3, a numerical control device 40 that controls a processing machine with five axes includes a central processing unit (hereinafter abbreviated as CPU) 41 that controls and manages the entire processing machine.
Memory 42 for storing programs and data, CPU
The drive pulse is supplied to the X axis, Y axis, Z
A pulse distribution circuit 43 for distributing and supplying the servomotors for the axes A, B and A is provided. The pulse distribution circuit 43 includes servo motors 16 for driving the slide table (for the X-axis), a servomotor 30 for driving the grinding wheel gantry (for the Y-axis), and a grinding wheel feed through separate driving circuits 44 to 46. (For Z axis) Servo motor 35
Are connected respectively. Further, the pulse distribution circuit 4
The servomotor 202 for driving the first swing table (for the A-axis) and the servomotor 242 for driving the second swing table (for the B-axis) are separately provided via drive circuits 47 and 48 respectively.
Are connected respectively. As shown in FIG. 1, the memory 42 stores NC shape data (x, y, z, α, β) of a workpiece input from the input device 49, a machining program, and the like. In the configuration of the above embodiment, the servo motor 16 serves as the second drive means, the servo motor 30 serves as the third drive means, the servo motor 35 serves as the first drive means, and the first drive means serves as the first drive means.
Drive mechanism (servo motor 202) 20 is a fourth drive means, second drive mechanism (servo motor 242) 24 is a fifth drive means, and first and second swing tables are support portions, respectively. Constitute. Next, the curved surface machining operation of the embodiment configured as described above will be described. When the workpiece 1 is to be subjected to a curved surface processing, a drive command is given from the CPU 41 to the pulse distribution circuit 43 according to the machining program in the memory 42 and the NC shape data (x, y, z, α, β). The servo motor 16 is driven by the drive pulse sent from the oscillating tables 17 and 22.
The servo motor 30 is moved by the drive pulse from the pulse distribution circuit 43 based on the NC shape data and the machining program while moving the slide table 13 including the
To move the grindstone head 34 including the grindstone gantry 27 in the Z-axis direction, and at the same time, drive-control the servomotor 242 to swing the second swing table 22 around the B-axis. The workpiece 1 is subjected to one-pass machining in the X-axis direction. At this time, as shown in FIG. 4, the second swing table 22 is swung as the grindstone 32 with respect to the workpiece 1 is moved from the position shown by the solid line to the position shown by the two-dot chain line. Since the workpiece 1 is also swung about the B axis from the state shown by the solid line in FIG. 4 to the state shown by the two-dot chain line, the contact direction between the workpiece 1 and the grinding wheel 32 is in the grinding wheel cutting direction (Z axis direction). Will be maintained. Thus, the contact direction between the workpiece 1 and the grindstone 32 does not deviate from the cutting direction of the grindstone as in the related art, and can always be maintained in the same state. When the one-pass machining for the workpiece 1 is completed, the CPU is executed according to the machining program and the NC shape data.
By giving a drive command to the pulse distribution circuit 43 from 41, the servo motor 30 is driven by the drive pulse sent from the pulse distribution circuit 43, and the grindstone head 34 including the grindstone gantry 27 is moved by one pitch in the Y-axis direction. Further, the servo motor 202 is driven by a drive pulse sent from the pulse distribution circuit 43 based on the NC shape data to swing the first swing table 17 around the A axis by a predetermined angle. In this case, the Y of the grindstone 32 with respect to the workpiece 1
As the feed position of the pitch feed in the axial direction is moved from the position of the solid line to the position of the two-dot chain line as shown in FIG. 5, the workpiece 1 changes from the state shown by the solid line in FIG. Since the workpiece 1 is swung, the contact direction between the workpiece 1 and the grindstone 32 is maintained in the grindstone cutting direction (Z-axis direction). Thus, the contact direction between the workpiece 1 and the grindstone 32 does not deviate from the cutting direction of the grindstone as in the related art, and can always be maintained in the same state. After one pitch feed of the grindstone head 34 in the Y-axis direction is completed, the workpiece 1 is subjected to one-pass machining by performing X-, Z-, and B-axis control again. Hereinafter, by repeating the same operation, the entire surface of the workpiece 1 is processed into a curved surface according to the NC shape data. FIG. 6 schematically shows a state of the series of curved surface processing described above. In this embodiment as described above, while moving the workpiece 1 and the slide table 13 including the swing tables 17 and 22 in the X-axis direction, the whetstone head 34 including the whetstone mount 27 is moved in the Z-axis direction. Cut feed and at the same time the second
The swing table 22 is swung about the B axis to perform one-pass machining of the workpiece 1, and the grindstone head 34 is moved by one pitch in the Y axis direction, and the first swing table 17 is swung about the A axis. After swinging by a predetermined angle, the above-mentioned one-pass machining is performed again. Therefore, as shown in FIGS. 4 and 5, as shown in FIGS. Can be maintained in the normal direction. That is, the relationship between the normal F of the processing curved surface 2 at the point where the workpiece 1 contacts the grinding wheel 32 and the direction of the grinding wheel head 34 is always determined despite the change in the direction of the normal of the processing curved surface 2. Can be kept constant. Accordingly, the accuracy of creating the curved surface shape of the workpiece 1 is improved. In the embodiment described above, the swing table 1 is used.
The example in which the direction of contact between the workpiece 1 and the grindstone 32 is made to coincide with the direction of the grindstone head 34 by swinging the grindstones 7 and 22 around the A axis and the B axis has been described. Around the B axis,
The swing tables 17 and 22 may swing around the A axis, or vice versa. Further, the present invention is not limited to the configuration shown in the above embodiment, and various modifications can be made without departing from the scope described in claims. As described above, according to the present invention , a work piece
Has a supporting part to support and a disk-shaped grinding wheel that is driven to rotate
The grinding wheel head, the workpiece and the grinding wheel move toward and away from each other
Relatively move the support and the grinding head in the cutting direction
First driving means and a traverse perpendicular to the cutting direction
A step of relatively moving the support portion and the grinding wheel head in the feed direction
2 and a pit that is perpendicular to the traverse feed direction.
Relative to the support and the grinding head in the feed direction.
A third driving means for moving the support portion or the grindstone head.
Swing around an axis parallel to the traverse feed direction.
Fourth driving means, and the supporting portion or the grinding wheel head
Swing about an axis parallel to the pitch feed direction.
A fifth driving means, and the third driving means
Pitch feed relative to the support and the grinding head
And every time the pitch feed is fed,
In order to make the normal line and the cutting direction of the grinding stone coincide with each other,
The support unit or the grinding wheel head is swung by the driving means of 4.
A first step to perform, and a second drive after the first step
How to traverse the support and the grinding head by means
While being relatively moved in the direction
Move the support part and the grindstone head relatively to cut the grindstone.
At the same time as the feed
Make sure that the normal of the curved surface matches the cutting direction of the whetstone
The supporting portion or the grinding wheel head by the fifth driving means.
A second step of oscillating the gate, wherein the first step
Three-dimensional freedom on the workpiece by repeating the second step
It is characterized by processing a curved surface. Accordingly
According to the present invention , each time the workpiece support and the grindstone head are relatively pitch-fed, the support or the grindstone head is swung about an axis parallel to the traverse feed direction. Since the support portion and the grindstone head are relatively moved in the cutting feed direction while the head is relatively moved in the traverse feed direction, and at the same time the support portion or the grindstone head is swung about an axis parallel to the pitch feed feed direction,
Even if the normal of the free-form surface changes as the free-form surface of the workpiece changes, the relationship between the normal of the free-form surface and the grinding wheel head can always be kept constant. Accordingly, the contact direction between the workpiece and the grinding wheel can always be maintained in a state that matches the grindstone depth cutting direction, it is possible to improve the creation accuracy of curved shape of the Engineering crops.

【図面の簡単な説明】 【図1】本発明方法を適用した加工機の一部切欠きの正
面図である。 【図2】図1の左側面図である。 【図3】本発明の実施例における制御部の構成を示すブ
ロック図である。 【図4】本実施例における工作物と砥石との接触関係を
示す説明図である。 【図5】本実施例における工作物と砥石との接触関係を
示す説明図である。 【図6】本実施例における曲面加工の状態を模式的に表
わした説明図である。 【図7】従来のトロイダル曲面を有する工作物の加工状
態を示す説明図である。 【図8】従来における工作物と砥石との接触関係を示す
説明図である。 【図9】従来における工作物と砥石との接触関係を示す
説明図である。 【符号の説明】 13 スライドテーブル 16 サーボモータ(第2の駆動手段) 17 第1の揺動テーブル 20 第1の駆動機構(第4の駆動手段) 22 第2の揺動テーブル 24 第2の駆動機構(第5の駆動手段) 30 サーボモータ(第3の駆動手段) 32 砥石 33 砥石ヘッド 35 サーボモータ(第1の駆動手段) 40 数値制御装置
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partially cutaway front view of a processing machine to which the method of the present invention is applied. FIG. 2 is a left side view of FIG. FIG. 3 is a block diagram illustrating a configuration of a control unit according to the embodiment of the present invention. FIG. 4 is an explanatory diagram showing a contact relationship between a workpiece and a grindstone in the present embodiment. FIG. 5 is an explanatory diagram showing a contact relationship between a workpiece and a grindstone in the present embodiment. FIG. 6 is an explanatory diagram schematically showing a state of a curved surface processing in the present embodiment. FIG. 7 is an explanatory view showing a processing state of a conventional workpiece having a toroidal curved surface. FIG. 8 is an explanatory view showing a conventional contact relationship between a workpiece and a grindstone. FIG. 9 is an explanatory view showing a conventional contact relationship between a workpiece and a grindstone. DESCRIPTION OF SYMBOLS 13 Slide table 16 Servo motor (second drive means) 17 First swing table 20 First drive mechanism (Fourth drive means) 22 Second swing table 24 Second drive Mechanism (Fifth Driving Means) 30 Servo Motor (Third Driving Means) 32 Grinding Stone 33 Grinding Stone Head 35 Servo Motor (First Driving Means) 40 Numerical Controller

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−300152(JP,A) 特開 平2−53557(JP,A) 特開 平5−69300(JP,A) 特公 平1−55946(JP,B2) (58)調査した分野(Int.Cl.7,DB名) B24B 1/00 B24B 13/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-4-300152 (JP, A) JP-A-2-53557 (JP, A) JP-A-5-69300 (JP, A) 55946 (JP, B2) (58) Fields investigated (Int. Cl. 7 , DB name) B24B 1/00 B24B 13/00

Claims (1)

(57)【特許請求の範囲】 【請求項1】 工作物に三次元の自由曲面を砥石により
加工する曲面加工方法であって、 工作物を支持する支持部と、回転駆動される円盤状の砥
石を有する砥石ヘッドと、前記工作物と砥石とが互いに
接離する切込み方向に前記支持部と砥石ヘッドを相対移
動させる第1の駆動手段と、前記切込み方向と直角なト
ラバース送り方向に前記支持部と砥石ヘッドを相対移動
させる第2の駆動手段と、前記トラバース送り方向と直
角なピッチフィード送り方向に前記支持部と砥石ヘッド
を相対移動させる第3の駆動手段と、前記支持部または
砥石ヘッドを前記トラバース送り方向と平行な軸回りに
揺動させる第4の駆動手段と、前記支持部または砥石ヘ
ッドを前記ピッチフィード送り方向と平行な軸回りに揺
動させる第5の駆動手段とを備え、 前記第3の駆動手段により前記支持部と砥石ヘッドを相
対的にピッチフィード送りし、該ピッチフィード送り毎
に前記工作物の加工曲面の法線前記砥石の切込み方向
とが一致するように前記第4の駆動手段により前記支持
部または砥石ヘッドを揺動させる第1の工程と、前記第
1の工程の次に第2の駆動手段により前記支持部と砥石
ヘッドをトラバース送り方向に相対移動させながら、前
記第1の駆動手段により前記支持部と砥石ヘッドを相対
移動させて砥石に切込みを与えると同時にその切込み送
り位置に応じて工作物の加工曲面の法線前記砥石の
込み方向とが一致するように前記第5の駆動手段により
前記支持部または砥石ヘッドを揺動させる第2の工程と
を備え、前記第1の工程と第2の工程を繰り返すことに
より工作物に三次元の自由曲面を加工するようにしたこ
とを特徴とする曲面加工方法。
(57) [Claim 1] A curved surface machining method for machining a three-dimensional free-form surface on a workpiece with a grindstone, comprising: a support portion for supporting the workpiece; A grindstone head having a grindstone, first driving means for relatively moving the support portion and the grindstone head in a cutting direction in which the workpiece and the grindstone come and go with each other, and the support in a traverse feed direction perpendicular to the cutting direction. Second driving means for relatively moving the portion and the grinding wheel head, third driving means for relatively moving the support portion and the grinding wheel head in a pitch feed direction perpendicular to the traverse feeding direction, and the support portion or the grinding wheel head A fourth driving means for swinging the shaft around an axis parallel to the traverse feed direction, and a fifth drive means for swinging the support portion or the grindstone head around an axis parallel to the pitch feed direction. A motion means, said third said support and the grinding wheel head feed relative pitch feed by the driving means, the cutting direction of the normal to the grinding wheel machining curved surface of the workpiece for each said pitch feed Feed
A first step of oscillating the support portion or the grinding wheel head by the fourth driving means so that the first and second driving means coincide with each other. While relatively moving in the traverse feed direction, the first drive means relatively moves the support portion and the grindstone head to give a cut to the grindstone, and at the same time, according to the cut feed position, the normal to the processing curved surface of the workpiece. switching of said grinding wheel
A second step of swinging the support portion or the grindstone head by the fifth driving means so that the setting direction coincides with the second driving step, and repeating the first step and the second step.
More three-dimensional free-form surfaces are machined on workpieces.
And a curved surface processing method characterized by the following .
JP24520993A 1993-09-30 1993-09-30 Curved surface processing method Expired - Fee Related JP3401861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24520993A JP3401861B2 (en) 1993-09-30 1993-09-30 Curved surface processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24520993A JP3401861B2 (en) 1993-09-30 1993-09-30 Curved surface processing method

Publications (2)

Publication Number Publication Date
JPH07100750A JPH07100750A (en) 1995-04-18
JP3401861B2 true JP3401861B2 (en) 2003-04-28

Family

ID=17130255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24520993A Expired - Fee Related JP3401861B2 (en) 1993-09-30 1993-09-30 Curved surface processing method

Country Status (1)

Country Link
JP (1) JP3401861B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106737061A (en) * 2016-12-22 2017-05-31 东莞市乔扬数控设备有限公司 A kind of ray machine high with high accuracy and high stability
CN114571310B (en) * 2022-05-06 2022-07-19 河南嘉色铝业有限公司 Hyperboloid aluminium veneer welding seam grinding device for processing

Also Published As

Publication number Publication date
JPH07100750A (en) 1995-04-18

Similar Documents

Publication Publication Date Title
JP4456520B2 (en) Multi-axis spherical grinding apparatus and grinding method
KR101954295B1 (en) Machining Method and Machine-Tool Control Device
JPH077296B2 (en) Numerical controller for machining non-round workpieces
JPH0283118A (en) Electric discharge machining method and device for metallic work
JP3401861B2 (en) Curved surface processing method
JP3566403B2 (en) Spindle taper hole regrinding device
JPS63318262A (en) Machine tool
JPH1177493A (en) Grinding device and grinding method
JP2005262342A (en) Machine tool having steady rest device
JPH02139112A (en) Profile grinding machine
JPS63127867A (en) Helical groove machining method by use of machining center
JP2001269816A (en) Gear machining method and gear machining device
JPH1190799A (en) Machine tool for crank pin machining and machining method for crank pin
JP4157246B2 (en) Processing equipment
JP2845710B2 (en) Machining method
JPH079325A (en) Forming device of surface plate surface
JPH07100752A (en) Curved surface working device
JP2002103192A (en) Aspheric curved surface machining method
JP3086534B2 (en) Grinding machine for processing non-circular workpieces
JP2702127B2 (en) Copy grinding machine
JP2003094293A (en) Abnormality detection method for measurement device of machining device and machining device
JPH0224047A (en) Grinding method for internal surface
JP3591783B2 (en) Drive control device for CNC jig grinding machine
JPH05212658A (en) Work grinding device by three-dimensional grinding machine with vertical computer numerical control device
JP2000288894A (en) Non-circular grinding apparatus

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090228

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100228

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100228

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees