JP2845710B2 - Machining method - Google Patents
Machining methodInfo
- Publication number
- JP2845710B2 JP2845710B2 JP4282693A JP4282693A JP2845710B2 JP 2845710 B2 JP2845710 B2 JP 2845710B2 JP 4282693 A JP4282693 A JP 4282693A JP 4282693 A JP4282693 A JP 4282693A JP 2845710 B2 JP2845710 B2 JP 2845710B2
- Authority
- JP
- Japan
- Prior art keywords
- tool
- axis
- workpiece
- machining
- interference
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Numerical Control (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は機械加工方法に関し、特
に回転送り軸を有したNC工作機械を用いた切削加工、
研削加工におけるワークと工具系との間の干渉を回避し
つつ、かつボールエンドミル等の球状工具を使用し可能
な限り工具を倒して工具軸線から最も離れた工具先端の
切刃外周部がワークと接触して加工することにより工具
の加工能力を向上して連続加工する機械加工方法に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a machining method, and more particularly to a machining method using an NC machine tool having a rotary feed shaft.
While avoiding interference between the workpiece and the tool system in the grinding process, use a spherical tool such as a ball end mill and defeat the tool as much as possible, and the outer periphery of the cutting edge at the tool tip farthest from the tool axis is the workpiece. The present invention relates to a machining method for performing continuous machining by improving the machining ability of a tool by machining in contact.
【0002】[0002]
【従来の技術】曲面を有したワークの加工では、ボール
エンドミルや先端が球形状の軸付き砥石を用いた3軸加
工が主に行われているが、深溝等の立ち壁を持つ形状で
3軸加工を行う場合、ワークと工具把持部との間で干渉
が生じる。この干渉を回避するため工具の突き出し長を
長くしたり、ワークの取り付け位置を変更し、例えば5
軸工作機械のA軸、B軸を回転することにより数回ワー
クを加工し易い向きに割り出してワークと工具把持部と
の相対姿勢を変更して加工を行っている。2. Description of the Related Art In the processing of a workpiece having a curved surface, triaxial processing is mainly performed using a ball end mill or a grinding wheel with a shaft having a spherical tip. When performing axis machining, interference occurs between the workpiece and the tool gripping portion. In order to avoid this interference, lengthen the protruding length of the tool or change the mounting position of the work, for example,
By rotating the A-axis and the B-axis of the axis machine tool, the workpiece is indexed several times in an easy-to-machine direction, and the relative posture between the workpiece and the tool grip is changed to perform the machining.
【0003】[0003]
【発明が解決しようとする課題】図7は従来技術による
3軸加工方法の説明図であり、3軸加工において工具と
してボールエンドミル71を使用し、ボールエンドミル
71を把持する工具ホルダ72または工具ホルダ72を
把持する主軸73がワーク74に干渉領域75で干渉す
る状態を示す。この干渉を回避するには工具長をl1か
らl2へと長くすればよいが、工具長を長くすると工具
の先端位置が加工時にずれるので加工精度を低下し、か
つ工具長を長くすると工具の剛性がなくなりビビリ振動
が発生するので切削送り速度を下げなければならず加工
能率が低下するという問題がある。FIG. 7 is an explanatory view of a conventional three-axis machining method. In the three-axis machining, a ball end mill 71 is used as a tool, and a tool holder 72 or a tool holder for holding the ball end mill 71 is used. 7 shows a state in which a main shaft 73 that grips 72 interferes with a work 74 in an interference area 75. To avoid this interference, the tool length may be increased from l1 to l2. However, if the tool length is increased, the position of the tip of the tool is shifted during machining, thereby reducing machining accuracy. Since the vibration disappears and chatter vibration occurs, there is a problem that the cutting feed speed must be reduced and the machining efficiency is reduced.
【0004】図8は従来技術による5軸断続加工方法の
説明図であり、ボールエンドミル81を把持する工具ホ
ルダ82または工具ホルダ82を把持する主軸83がワ
ーク84に干渉領域85で干渉するときに、その干渉を
回避するため5軸加工においてA軸またはB軸の回りに
ワーク84をθ°だけ時計方向に回転して加工する例を
示す。この場合、断続的にこの回転角度をワークを加工
し易い向きに数回割り出してA軸、B軸を所定角度に設
定してはX、Y、Zの3軸加工を行うので、数回の段取
りに時間と労力を要するという問題がある。また、数回
割り出してワークを加工するので割り出し姿勢が異なる
状態で加工された加工面間に数ミクロンの段差が生じ、
加工面が滑らかとならず仕上げ工程のワーク表面加工に
時間と労力を要するという問題がある。この問題を解決
するためには、表面加工を連続的に行うことが考えられ
る。FIG. 8 is an explanatory view of a five-axis interrupted machining method according to the prior art. When a tool holder 82 for holding a ball end mill 81 or a main shaft 83 for holding the tool holder 82 interferes with a work 84 in an interference area 85. An example in which the work 84 is rotated clockwise by θ ° around the A-axis or the B-axis in five-axis machining to avoid the interference will be described. In this case, the rotation angle is intermittently indexed several times in a direction in which the workpiece can be easily processed, and the X-axis, Y-axis, and Z-axis processing are performed by setting the A-axis and the B-axis at a predetermined angle. There is a problem that the setup requires time and labor. In addition, since the workpiece is machined by indexing several times, a step of several microns occurs between the machining surfaces machined in different indexing postures,
There is a problem that the machined surface is not smooth, and it takes time and effort to work the workpiece surface in the finishing process. In order to solve this problem, it is conceivable to perform surface processing continuously.
【0005】一方、ボールエンドミル等の球状工具を使
用し、上述の干渉を回避してワークを加工するだけでは
工具軸線がワークに対してほぼ垂直となって加工される
ことが多く、工具が実際にワークに接触する切削部の回
転速度が低くなり、工具の加工能力が発揮できないとい
う問題がある。特に小径工具のときは工具回転数を過度
に高速としないと加工不良を発生するという問題があ
る。On the other hand, when a spherical tool such as a ball end mill is used, and the above-mentioned interference is avoided to process the work alone, the tool axis is often made substantially perpendicular to the work, and the tool is actually used. In addition, there is a problem that the rotation speed of the cutting portion that comes into contact with the workpiece is reduced, and the machining ability of the tool cannot be exhibited. Particularly, in the case of a small-diameter tool, there is a problem that a machining defect occurs unless the tool rotation speed is set to an excessively high speed.
【0006】したがって、本発明の目的は上述の問題点
のない、すなわちワークと工具把持部間の干渉を回避し
つつ、かつ可能な限り工具を倒して工具軸線から最も離
れた工具先端の切刃外周部がワークと接触して加工する
ことにより工具が実際にワークに接触する切削部の回転
数が高い部分で加工でき工具の加工能力を向上し、小径
工具でも工具回転数を過度に高速とせずに連続加工する
機械加工方法を提供することにある。Accordingly, an object of the present invention is to eliminate the above-mentioned problems, that is, to avoid the interference between the workpiece and the tool gripping portion and to tilt the tool as far as possible to cut the cutting edge at the tool tip farthest from the tool axis. Since the outer peripheral part is in contact with the workpiece, the tool can be machined in the part where the rotational speed of the cutting part where the tool actually contacts the workpiece is high, improving the machining capability of the tool. It is an object of the present invention to provide a machining method for performing continuous machining without using the same.
【0007】[0007]
【課題を解決するための手段】図1は本発明による機械
加工方法の基本処理の流れ図である。前記目的を達成す
る本発明の機械加工方法は、X軸、Y軸、Z軸の互いに
直交する3つの直線送り軸と、X軸の回りに回転するA
軸またはY軸の回りに回転するB軸の内少なくとも一つ
の回転送り軸と、を有するNC工作機械を用い、先端に
円弧状切刃を有する工具を使用するNC工作機械の回転
主軸に装着してワークを加工する機械加工方法におい
て、下記の各段階を備える。FIG. 1 is a flow chart showing the basic processing of a machining method according to the present invention. In order to achieve the above object, the machining method according to the present invention comprises three linear feed axes orthogonal to each other, that is, an X axis, a Y axis, and a Z axis;
At least one of the B-axis rotating around the Y-axis or the Y-axis is mounted on the rotary spindle of the NC machine using a tool having an arcuate cutting edge at the tip. In the machining method for machining a workpiece by using the method, the method includes the following steps.
【0008】(第1段階)加工するワークの形状を表す
データとしての形状データを記憶する。 (第2段階)工具の先端部の工具中心点と、工具を把持
する工具ホルダまたは工具ホルダを把持する主軸の最外
側部とを結んで得られる円錐形状干渉モデルの形状デー
タを記憶する。 (第3段階)予め指令した工具経路に従って工具を送り
つつ、工具経路上における工具進行方向へ引いた接線と
工具軸線とのなす角が、ワーク形状データと円錐形状干
渉モデルの形状データとからワークと円錐形状干渉モデ
ルとが干渉しない範囲内で最小となる干渉回避最小角度
を演算する。 (第4段階)A軸またはB軸の回転送り軸を回転し、前
記接線と工具軸線とのなす角が干渉回避最小角度となる
ようワークと工具とのなす相対姿勢を変更し、加工す
る。(First stage) Shape data as data representing the shape of a workpiece to be processed is stored. (Second stage) The shape data of the conical interference model obtained by connecting the tool center point at the tip of the tool and the tool holder for holding the tool or the outermost portion of the main spindle for holding the tool holder is stored. (Third step) While feeding a tool according to a previously specified tool path, the angle between a tangent drawn in the tool advancing direction on the tool path and the tool axis is determined based on the workpiece shape data and the cone shape interference model shape data. And the minimum angle for avoiding interference that is minimized within a range where the interference model does not interfere with the conical interference model. (Fourth step) The A-axis or B-axis rotary feed shaft is rotated, and the relative posture between the workpiece and the tool is changed so that the angle between the tangent and the tool axis is the minimum angle for avoiding interference.
【0009】[0009]
【作用】図2は本発明の制御手段のブロック図である。
全体を制御するCPUからなる制御部21、ワーク形状
データを格納するワーク形状データ記憶部22、後述す
る円錐形状干渉モデルデータを格納する円錐形状干渉モ
デルデータ記憶部23、ワークの加工形状に沿った工具
の移動経路を主としてなる加工プログラムを格納する加
工プログラム記憶部24、5軸NC工作機械26のX軸
回りの回転軸であるA軸およびY軸回りの回転軸である
B軸を駆動するA、B軸駆動部25とからなる。FIG. 2 is a block diagram of the control means of the present invention.
A control unit 21 comprising a CPU for controlling the whole, a work shape data storage unit 22 for storing work shape data, a cone shape interference model data storage unit 23 for storing cone shape interference model data described later, A machining program storage unit 24 that stores a machining program mainly including a moving path of the tool, and an A that drives an A axis that is a rotation axis around the X axis and a B axis that is a rotation axis around the Y axis of the 5-axis NC machine tool 26. , B-axis drive unit 25.
【0010】制御部21は、ワーク形状データ記憶部2
2に記憶されるワーク形状データと円錐形状干渉モデル
データ記憶部23に記憶される円錐形状干渉モデルの形
状データとから、工具の移動経路に沿った工具の各位置
における接線と工具軸線とのなす角を、ワークと円錐形
状干渉モデルとが干渉しない範囲内で最小となるよう
に、干渉回避最小角度を演算する。次に、A軸またはB
軸の回転送り軸を回転し、前記接線と工具軸線とのなす
角が干渉回避最小角度となるようワークと工具とのなす
相対姿勢を変更し、加工するようA、B軸駆動部25を
制御する。A、B軸駆動部25はその制御に従い5軸N
C工作機械26のA軸、B軸を所定角度回転する。次
に、制御部21は工具を工具経路に沿って移動させて加
工を続行するよう制御する。The control unit 21 stores the work shape data storage unit 2
From the workpiece shape data stored in the storage unit 2 and the cone shape interference model shape data stored in the cone shape interference model data storage unit 23, a tangent at each position of the tool along the tool movement path and the tool axis are formed. An interference avoidance minimum angle is calculated so that the angle is minimized within a range where the workpiece does not interfere with the conical interference model. Next, A axis or B
The A / B axis drive unit 25 is controlled to rotate the feed axis of the shaft and change the relative posture between the work and the tool so that the angle between the tangent and the tool axis is the minimum angle for avoiding interference, and perform machining. I do. The A and B axis driving units 25 control the 5 axis N
The A axis and the B axis of the C machine tool 26 are rotated by a predetermined angle. Next, the control unit 21 controls the tool to move along the tool path and to continue machining.
【0011】本発明の機械加工方法によれば、ワークと
工具把持部との間の干渉をチェックしつつそれらが干渉
しないようにワークと工具把持部の相対的姿勢を制御
し、かつ可能な限り工具を倒して工具先端の工具軸線か
ら最も離れた切刃外周部がワークと接触して加工するこ
とにより工具の加工能力を向上して連続加工するので、
工具長が短くてもワークとの干渉をさけ、高精度高速加
工が実現でき、かつ小径工具でも工具回転数を過度に高
速としない加工が実現できる。According to the machining method of the present invention, while checking the interference between the workpiece and the tool gripping part, the relative posture of the workpiece and the tool gripping part is controlled so that they do not interfere with each other, and as much as possible. Since the outer periphery of the cutting edge farthest from the tool axis at the tip of the tool by tipping the tool comes into contact with the workpiece and machining, the machining ability of the tool is improved and continuous machining is performed.
Even if the tool length is short, interference with the workpiece can be avoided, high-precision high-speed machining can be realized, and machining with a small-diameter tool without excessively high tool rotation speed can be realized.
【0012】[0012]
【実施例】図3は本発明による5軸連続加工方法の説明
図である。本図は、ボールエンドミル31を把持する工
具ホルダ32または工具ホルダ32を把持する主軸33
がワーク34に干渉領域35で干渉するときに、その干
渉を回避するため工具の中心点36を支点として工具軸
をθ°だけ反時計方向に回転して加工する例を示す。こ
の場合、連続的にこの回転角度制御を行いながらX、
Y、Zの3軸加工を行うので従来技術の問題を解決し、
すなわち加工精度を保ちかつ加工能率を向上し、さらに
段取りに要する時間と労力を削減することが可能とな
る。工具を傾斜させる代わりに、ワークを傾斜させても
同じである。FIG. 3 is an explanatory view of a 5-axis continuous machining method according to the present invention. The figure shows a tool holder 32 for holding the ball end mill 31 or a spindle 33 for holding the tool holder 32.
An example is shown in which the tool axis is rotated counterclockwise by θ ° with the center point 36 of the tool as a fulcrum in order to avoid the interference when the tool interferes with the work 34 in the interference area 35. In this case, X, while continuously performing this rotation angle control,
Since the three-axis machining of Y and Z is performed, the problem of the prior art is solved,
That is, it is possible to maintain the processing accuracy, improve the processing efficiency, and further reduce the time and labor required for setup. The same is true if the work is inclined instead of the tool.
【0013】図4はフライス荒取り加工の説明図であ
り、フライスカッタ41により、ワーク44を荒取り加
工する手順を以下に説明する。本図は加工直前のワーク
44およびフライスカッタ41の断面図を示す。ワーク
44の素材形状の断面は点L1、L2、L3、L4で囲
まれる長方形であり、最終加工後の製品の断面形状は点
L41、L42、L3、L4で囲まれる形状であり、点
L41と点L42間は曲線である。このような加工を行
うときは、まずフライス荒取り加工を行う。FIG. 4 is an explanatory view of the milling roughing process. A procedure for roughing the workpiece 44 by the milling cutter 41 will be described below. This figure shows a sectional view of the work 44 and the milling cutter 41 immediately before processing. The cross section of the material shape of the work 44 is a rectangle surrounded by points L1, L2, L3, and L4, and the cross-sectional shape of the product after final processing is a shape surrounded by points L41, L42, L3, and L4. A curve between the points L42 is a curve. When performing such a process, first, a milling roughing process is performed.
【0014】このフライス荒取り加工においては、5軸
NC工作機械を用いて前述の割り出しを3回行って加工
を行うと好適であることは図から明白である。1回目の
割り出し後、すなわちA軸B軸を所定角度に設定後、フ
ライス荒取り加工はL1、L2間の直線加工からL1
1、L12間の直線加工まで数回図の右から左へ直線加
工して行う。同様に2回目の割り出し後、フライス荒取
り加工はL21、L22間の直線加工からL23、L2
4間の直線加工まで数回図の左下から右上へ直線加工し
て行う。同様に3回目の割り出し後、フライス荒取り加
工はL31、L32間の直線加工からL33、L34間
の直線加工まで数回図の右下から左上へ直線加工して行
う。It is apparent from the figure that in this rough milling, it is preferable to perform the above-described indexing three times using a 5-axis NC machine tool. After the first indexing, that is, after setting the A-axis and the B-axis at a predetermined angle, the milling roughing is performed from the linear processing between L1 and L2 to L1.
1. Straight line processing is performed several times from right to left in the figure until straight line processing between L12. Similarly, after the second indexing, the milling roughing is performed from the linear machining between L21 and L22 to L23 and L2.
The straight line machining is performed several times from the lower left to the upper right in the figure several times until the straight line machining between four. Similarly, after the third indexing, the milling roughing is performed by straight-line machining from the lower right to the upper left in the figure several times from the linear machining between L31 and L32 to the linear machining between L33 and L34.
【0015】図5は本発明の円錐形状干渉モデルの説明
図である。本図はワークの曲面上をボールエンドミル等
の工具51、工具51を把持する工具ホルダ52および
工具ホルダ52を把持する主軸53からなる工具把持部
が移動してワークを加工するときの断面図を示す。本発
明の円錐形状干渉モデルは、先端に円弧状切刃を有する
工具51の最先端点57から工具先端部のなす円弧半径
R分だけ工具中心軸に沿って主軸53へ向かった点であ
る工具中心点56と、工具ホルダ52および主軸53の
最外側部、この図の場合M1、M2とを結んで得られ
る。円錐形状干渉モデルデータはその円錐形状干渉モデ
ルの形状を表すデータであり、このデータを制御手段の
記憶部に格納し、そのデータをワークと工具把持部との
間の干渉チェックに使用する。ワークの一つの曲面を表
わす曲線P1P2を細分化し、その細分化した各地点に
おいて、干渉チェックを行いつつ工具姿勢制御を行う。FIG. 5 is an explanatory view of a conical interference model according to the present invention. This drawing is a cross-sectional view when a tool 51 such as a ball end mill, a tool holder 52 for holding the tool 51, and a tool gripping portion composed of a main shaft 53 for holding the tool holder 52 move on the curved surface of the work to process the work. Show. The conical interference model of the present invention is a tool which is a point which is directed from the foremost point 57 of the tool 51 having an arc-shaped cutting edge to the main axis 53 along the tool center axis by an arc radius R formed by the tool tip. The center point 56 is obtained by connecting the tool holder 52 and the outermost portions of the main shaft 53, M1 and M2 in this case. The conical shape interference model data is data representing the shape of the conical shape interference model. This data is stored in the storage unit of the control means, and the data is used for checking the interference between the workpiece and the tool gripping unit. The curve P1P2 representing one curved surface of the work is subdivided, and at each of the subdivided points, tool posture control is performed while performing an interference check.
【0016】図6は本発明による加工実施例の説明図で
ある。本図はワークの曲面上を工具把持部が移動してワ
ークを加工するときの断面を示し、5軸工作機械を用い
た加工において荒取り加工後のワーク形状と工具の円錐
形状干渉モデルとが干渉しないY軸回りの回転変化量を
求めるためY軸に直交する1つのXZ平面を示す。ま
た、本図は荒取り加工後のワーク形状を実線で示し、工
具中心点のワーク表面加工時の移動軌跡(工具経路)を
一点鎖線で示し、ワークの最終加工形状を二点鎖線で示
す。ワーク加工中の各工具の工具中心点がA、B、C、
D、E、Fの位置におけるそれぞれの前記円錐形状干渉
モデルの形状を点線で示す。また、ボールエンドミル6
1は工具ホルダ62で把持され、工具ホルダ62は主軸
63で把持されている。FIG. 6 is an explanatory view of a working example according to the present invention. This figure shows the cross section when the tool gripper moves on the curved surface of the workpiece and the workpiece is machined. In the machining using a 5-axis machine tool, the workpiece shape after roughing and the conical interference model of the tool are shown. One XZ plane orthogonal to the Y axis is shown to determine the amount of rotation change around the Y axis that does not interfere. In this drawing, the workpiece shape after the roughing is shown by a solid line, the movement locus (tool path) of the tool center point during the workpiece surface processing is shown by an alternate long and short dash line, and the final machining shape of the workpiece is shown by an alternate long and two short dashes line. The tool center point of each tool during workpiece machining is A, B, C,
The shapes of the conical interference models at the positions D, E, and F are indicated by dotted lines. In addition, ball end mill 6
1 is held by a tool holder 62, and the tool holder 62 is held by a main shaft 63.
【0017】図6を解析することにより、以下に説明す
るように荒取り加工後のワーク形状と円錐形状干渉モデ
ルとが干渉しないY軸回りの回転変化量を求めることが
できる。5軸工作機械のX、Y、Zの3軸を制御して工
具を移動させつつ、円錐形状干渉モデルと荒取り加工後
のワーク形状とが干渉しないようにX軸回りの回転軸で
あるA軸とY軸回りの回転軸であるB軸の回転を制御し
て連続加工を行う。本実施例では、ワーク加工中の工具
中心点がAの位置において、工具の姿勢は工具経路に引
いた接線つまり水平状態からY軸回りにB軸をαだけ時
計方向へ回転することにより、すなわちZ軸をY軸回り
にαだけ時計方向へ回転した軸を工具軸線とすれば干渉
を回避できる。同様に工具中心点がB点、D点、E点、
F点の位置における干渉を回避する工具の姿勢を求める
ことができる。工具中心点がCの位置において、工具の
姿勢は工具経路に引いた接線からY軸回りにB軸をβだ
け時計方向へ回転することにより、すなわちZ軸をY軸
回りにβだけ時計方向へ回転した軸を工具軸線とすれば
干渉を回避できる。なお、図6ではY軸回りの回転変化
量についてのみを示したが、同様にX軸回りの回転変化
量はX軸に直交するYZ平面について解析すればよいの
で説明は省略する。By analyzing FIG. 6, it is possible to obtain a rotation change amount around the Y-axis where the workpiece shape after the roughing and the conical interference model do not interfere as described below. While controlling the X, Y, and Z axes of the 5-axis machine tool to move the tool, A is a rotation axis around the X axis so that the conical interference model does not interfere with the workpiece shape after roughing. Continuous machining is performed by controlling the rotation of the B-axis, which is a rotation axis about the axis and the Y-axis. In the present embodiment, at the position of the tool center point during the machining of the workpiece, the posture of the tool is obtained by rotating the B axis clockwise by α around the Y axis from the tangent drawn on the tool path, that is, from the horizontal state. Interference can be avoided by setting the axis, which rotates the Z axis clockwise around the Y axis by α, as the tool axis. Similarly, the tool center point is point B, point D, point E,
The posture of the tool that avoids interference at the position of the point F can be obtained. When the tool center point is at position C, the posture of the tool is obtained by rotating the B axis clockwise by β around the Y axis from the tangent drawn on the tool path, that is, by rotating the Z axis clockwise by β around the Y axis. Interference can be avoided if the rotated axis is used as the tool axis. Although FIG. 6 shows only the amount of rotation change about the Y axis, the amount of rotation change about the X axis may be similarly analyzed on a YZ plane orthogonal to the X axis, and a description thereof will be omitted.
【0018】[0018]
【発明の効果】以上説明したように、本発明の機械加工
方法によれば、5軸工作機械において工具長が短いま
ま、A軸、B軸の回転角度を工具移動経路に沿ってワー
クと工具系との間の干渉を回避するよう回転しつつ連続
加工ができるので、高速高精度加工が実現でき、かつ可
能な限り工具を倒して工具先端の工具軸線から最も離れ
た切刃外周部がワークと接触して加工することにより工
具の加工能力を向上して連続加工するので、工具長が短
くても高精度高速加工が実現でき、かつ小径工具でも工
具回転数を過度に高速とせずに連続加工が実現できる。
かつ、工具の円弧切刃のできるだけ外周の加工速度の高
い部分で加工できるので工具の加工能率がよい。As described above, according to the machining method of the present invention, the rotation angle of the A-axis and the B-axis can be adjusted along the tool moving path in the five-axis machine tool while the tool length is short. Since continuous machining can be performed while rotating to avoid interference with the system, high-speed and high-precision machining can be realized, and the outer edge of the cutting edge farthest from the tool axis at the tip of the tool by tilting the tool as far as possible The tool is capable of continuous machining by improving the machining ability of the tool by contacting with the tool.Thus, even if the tool length is short, high-precision and high-speed machining can be realized. Processing can be realized.
In addition, since the tool can be machined at the highest possible machining speed on the outer periphery of the arc cutting edge of the tool, the machining efficiency of the tool is good.
【図1】本発明による機械加工方法の基本処理ステップ
の流れ図である。FIG. 1 is a flowchart of basic processing steps of a machining method according to the present invention.
【図2】本発明の制御手段のブロック図である。FIG. 2 is a block diagram of control means of the present invention.
【図3】本発明による5軸連続加工方法の説明図であ
る。FIG. 3 is an explanatory diagram of a 5-axis continuous machining method according to the present invention.
【図4】フライス荒取り加工の説明図である。FIG. 4 is an explanatory diagram of a milling roughing process.
【図5】本発明の円錐形状干渉モデルの説明図である。FIG. 5 is an explanatory diagram of a conical interference model of the present invention.
【図6】本発明による加工実施例の説明図である。FIG. 6 is an explanatory view of a working example according to the present invention.
【図7】従来技術による3軸加工方法の説明図である。FIG. 7 is an explanatory view of a conventional three-axis machining method.
【図8】従来技術による5軸加工方法の説明図である。FIG. 8 is an explanatory view of a conventional 5-axis machining method.
31、61、71、81…ボールエンドミル 32、62、72、82…工具ホルダ 33、63、73、83…主軸 34、44、64、74、84…ワーク 35、75、85…干渉領域 36、56、66…工具中心点 41…フライスカッタ 31, 61, 71, 81 ... ball end mill 32, 62, 72, 82 ... tool holder 33, 63, 73, 83 ... spindle 34, 44, 64, 74, 84 ... work 35, 75, 85 ... interference area 36, 56, 66: Tool center point 41: Milling cutter
フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G05B 19/4093 B23Q 15/00 301Continuation of front page (58) Field surveyed (Int.Cl. 6 , DB name) G05B 19/4093 B23Q 15/00 301
Claims (1)
の直線送り軸と、X軸の回りに回転するA軸またはY軸
の回りに回転するB軸の内少なくとも一つの回転送り軸
とを有するNC工作機械を用い、先端に円弧状切刃を有
する工具を前記NC工作機械の回転主軸に装着してワー
クを加工する機械加工方法において、 加工するワークの形状を表すデータとしてのワーク形状
データを記憶する第1段階と、 前記工具の先端部の工具中心点と、前記工具を把持する
工具ホルダまたは前記工具ホルダを把持する主軸の最外
側部とを結んで得られる円錐形状干渉モデルの形状デー
タを記憶する第2段階と、 予め指令した工具経路に従って前記工具を送りつつ、前
記工具経路上における接線と工具軸線とのなす角が前記
ワーク形状データと前記円錐形状干渉モデルの形状デー
タとから前記ワークと前記円錐形状干渉モデルとが干渉
しない範囲内で最小となる干渉回避最小角度を演算する
第3段階と、 前記回転送り軸を回転し、前記接線と前記工具軸線との
なす角が前記干渉回避最小角度となるよう前記ワークと
前記工具とのなす相対姿勢を変更し、加工する第4段階
と、からなることを特徴とする機械加工方法。At least one of three linear feed axes orthogonal to each other, X-axis, Y-axis, and Z-axis, and at least one of an A-axis rotating around the X-axis and a B-axis rotating around the Y-axis. In a machining method for machining a workpiece by using a NC machine tool having an axis and mounting a tool having an arc-shaped cutting edge at a tip on a rotary spindle of the NC machine tool, the data as data representing the shape of the workpiece to be machined is provided. A first step of storing workpiece shape data; a cone-shaped interference obtained by connecting a tool center point at a tip portion of the tool and a tool holder for holding the tool or an outermost portion of a main spindle for holding the tool holder. A second step of storing shape data of the model; and, while feeding the tool according to a tool path specified in advance, an angle between a tangent on the tool path and a tool axis is the workpiece shape data and the cone shape. A third step of calculating an interference avoidance minimum angle that is a minimum within a range in which the workpiece and the conical interference model do not interfere with each other from the shape data of the interference model; and rotating the rotary feed shaft, the tangent and the tool. And a fourth step of changing a relative posture between the workpiece and the tool so that an angle between the axis and the axis is the minimum angle for avoiding interference, and performing processing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4282693A JP2845710B2 (en) | 1993-03-03 | 1993-03-03 | Machining method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4282693A JP2845710B2 (en) | 1993-03-03 | 1993-03-03 | Machining method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06259123A JPH06259123A (en) | 1994-09-16 |
JP2845710B2 true JP2845710B2 (en) | 1999-01-13 |
Family
ID=12646771
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4282693A Expired - Lifetime JP2845710B2 (en) | 1993-03-03 | 1993-03-03 | Machining method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2845710B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107678401A (en) * | 2017-08-23 | 2018-02-09 | 沈阳机床股份有限公司 | A kind of structural member large mold fast programming method based on threedimensional model |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5142880B2 (en) * | 2008-08-06 | 2013-02-13 | 株式会社豊田中央研究所 | Machining parameter optimization device, machining parameter optimization method and program |
CN111771172B (en) * | 2018-02-28 | 2021-09-28 | 大金工业株式会社 | Method for manufacturing machined product, tool path calculation method, machined product, and impeller |
-
1993
- 1993-03-03 JP JP4282693A patent/JP2845710B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107678401A (en) * | 2017-08-23 | 2018-02-09 | 沈阳机床股份有限公司 | A kind of structural member large mold fast programming method based on threedimensional model |
Also Published As
Publication number | Publication date |
---|---|
JPH06259123A (en) | 1994-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2685071B2 (en) | Numerical control unit | |
JP2003005815A (en) | Method for controlling feeding speed/acceleration of numerical control machine tool and numerical controller | |
JP2736359B2 (en) | Tool post of cam cutting lathe | |
JPH089124B2 (en) | Free curved surface processing method | |
JP3085339B2 (en) | Machining method | |
JP2845710B2 (en) | Machining method | |
US6163735A (en) | Numerically controlled machine tool | |
JPH11138321A (en) | Cam shaft processing machine | |
JP4531297B2 (en) | 6-axis control NC program generation method and generation apparatus, 6-axis control NC program generation program, and computer-readable recording medium storing the program | |
JP2002304203A (en) | Nc machine tool and machining method | |
JP3116129B2 (en) | Processing method | |
JP4094856B2 (en) | Machining method of arc groove | |
JP2001269816A (en) | Gear machining method and gear machining device | |
JP3085340B2 (en) | Machining method and equipment | |
JP3215971B2 (en) | Square hole machining method for numerically controlled machine tools | |
JP2000280101A (en) | Curved surface processing method | |
JPH11179608A (en) | Finish work method and working machine | |
JP4270482B2 (en) | Eccentric position spherical machining method by NC lathe | |
JP4048356B2 (en) | Machining center capable of machining gears and gear machining method | |
JPH03251301A (en) | Composite lathe | |
JP4266791B2 (en) | Machining method | |
JP2845711B2 (en) | Machining method of work with character line | |
JPH10143213A (en) | Multi-surface working machine and multi-surface working method | |
JPH1190773A (en) | Processing of scroll plate and processing device | |
JPH02139112A (en) | Profile grinding machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081030 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081030 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091030 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091030 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101030 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111030 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 13 Free format text: PAYMENT UNTIL: 20111030 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121030 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121030 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131030 Year of fee payment: 15 |
|
EXPY | Cancellation because of completion of term |