JPS63126683A - Welding method for steel having excellent toughness of weld metal - Google Patents

Welding method for steel having excellent toughness of weld metal

Info

Publication number
JPS63126683A
JPS63126683A JP61271030A JP27103086A JPS63126683A JP S63126683 A JPS63126683 A JP S63126683A JP 61271030 A JP61271030 A JP 61271030A JP 27103086 A JP27103086 A JP 27103086A JP S63126683 A JPS63126683 A JP S63126683A
Authority
JP
Japan
Prior art keywords
weld metal
welding
less
steel
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61271030A
Other languages
Japanese (ja)
Inventor
Masahiro Obara
昌弘 小原
Hiroyuki Honma
弘之 本間
Hiroshi Iwami
岩見 博志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP61271030A priority Critical patent/JPS63126683A/en
Publication of JPS63126683A publication Critical patent/JPS63126683A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Abstract

PURPOSE:To improve the low temp. toughness of a weld metal by using a steel contg. specific components in the case of executing high-energy density welding with an electron beam or the like. CONSTITUTION:The basic components are composed, by weight %, of 0.01-0.20% C, <=0.85 Si, 0.30-2.0% Mn, <=0.025% P, <=0.020% S, <=0.007% Al, and <=0.010% O. The steel further contains 1 or >=22 kinds among <=4.5% Ni, <=1% Cr, <=0.5% Mo, <=0.10% Nb, eta0.10% V, <=1.5% Cu, and <=0.002% B, and contains the balance iron and unavoidable impurity elements. The high- energy density welding is executed by using such steel. The weld metal having the excellent toughness is thereby obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電子ビーム、レーザなどの高エネルギー密度
熱源を用いた溶接法に係わり、特に鋼の溶接金属で良好
な靭性を得る溶接法に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a welding method using a high energy density heat source such as an electron beam or a laser, and particularly relates to a welding method for obtaining good toughness in steel weld metal. It is something.

(従来の技術) 高エネルギー密度溶接法は、従来アーク溶接法に比較し
て狭いビード幅で深い溶は込みが得られる高能率な低入
熱溶接法であることから、近年、海洋構造物、船舶、圧
力容器等の大型鋼構造物の溶接に適用が進められようと
している。溶融、a固が極めて急速に行われるこの高エ
ネルギー密度溶接方法に於ては、溶融金属中のガス成分
(溶接金属に含まれている酸素と炭素の反応によって生
じた一酸化炭素ガス)の離脱が不十分となり、溶接部に
割れ、ブローホール等の溶接欠陥が生じ易いので、特に
溶接される鋼材中に許容される酸素含有量には極めて厳
しい制約があり、その値は接合部材の板厚によって異な
るが一般的には1)00pp程度以下である。この酸素
含有量はサブマージアーク溶接、M A G溶接、被覆
電極溶接による溶接金属に於て良好な靭性を示す微細な
針状フェライトを多く含むミクロ組織を得るに必要とさ
れている100〜400ppm程度の酸素含有量に比べ
てはるかに少ない。Mi織の微細化にこの程度の酸素含
有量が必要な理由は、溶接の冷却過程に於けるオーステ
ナイトからフェライトへの変態に際し微細に析出した多
数の非金属介在物がその変態の核として有効に働くから
であるが、高エネルギー密度溶接においては非金属介在
物数に不足をきたし微細な組織が得られない。そのため
、例えば昭和60年3月発行の溶接学界誌第54巻第2
号105〜106頁に見られる様に溶接ままの状態では
溶接金属の靭性は必ずしも良好ではなく、裔エネルギー
密度溶接法の適用にあたって重大な問題となっている。
(Prior art) High energy density welding is a highly efficient, low heat input welding method that can achieve deep penetration with a narrow bead width compared to conventional arc welding. It is being applied to welding large steel structures such as ships and pressure vessels. In this high-energy-density welding method, in which melting and solidification occur extremely rapidly, gas components in the molten metal (carbon monoxide gas generated by the reaction between oxygen and carbon contained in the weld metal) are released. In particular, there are extremely strict restrictions on the oxygen content allowed in steel materials to be welded, and the value depends on the plate thickness of the joining parts. Although it varies depending on the situation, it is generally about 1) 00 pp or less. This oxygen content is about 100 to 400 ppm, which is required to obtain a microstructure containing a large amount of fine acicular ferrite that exhibits good toughness in weld metal by submerged arc welding, M A G welding, and covered electrode welding. much less than the oxygen content of The reason why this level of oxygen content is necessary for the refinement of the Mi weave is that the numerous nonmetallic inclusions that finely precipitate during the transformation from austenite to ferrite during the cooling process of welding serve as nuclei for the transformation. However, in high energy density welding, the number of nonmetallic inclusions is insufficient and a fine structure cannot be obtained. Therefore, for example, welding academic journal, Vol. 54, 2, published in March 1985,
As can be seen on pages 105 and 106 of the issue, the toughness of the weld metal in the as-welded state is not necessarily good, which poses a serious problem when applying the progeny energy density welding method.

そこで、従来から溶接金属の靭性改善方法が検討されて
いる。
Therefore, methods for improving the toughness of weld metal have been studied.

一つの手段として、溶接後熱処理があるが作業工程が増
えるため高エネルギー密度溶接の利点を相殺しかねない
。また、特公昭56−50793号公報には溶接ままの
状態で靭性を向上させるために、電子ビーム溶接時に溶
融される鋼材の部分にあらかじめ100〜300ppm
の酸素量を含むアーク溶接あるいはスラグ溶接によって
得られる低合金鋼成分相当の物質を供給する方法を提案
している。
One option is post-weld heat treatment, but the additional steps can offset the benefits of high-energy density welding. In addition, in Japanese Patent Publication No. 56-50793, in order to improve the toughness of the as-welded state, 100 to 300 ppm was added to the part of the steel material that will be melted during electron beam welding in advance.
We propose a method of supplying a substance equivalent to the components of low-alloy steel obtained by arc welding or slag welding, which contains an amount of oxygen.

これにより、溶接金属のミクロ組織が微細な針状フェラ
イト主体の組織になるので靭性が向上するとしているが
、先に述べたように溶接金属中に過剰な酸素があると溶
接欠陥が生じ易くなるため、実際の溶接施工に於ては技
術上の問題点があると考えられる。
As a result, the microstructure of the weld metal becomes a structure consisting mainly of fine acicular ferrite, which improves toughness, but as mentioned earlier, if there is excess oxygen in the weld metal, welding defects are likely to occur. Therefore, it is thought that there are technical problems in actual welding work.

(発明が解決しようとする問題点) この様なことから、本発明は高エネルギー密度溶接手段
によって得られる溶接金属の低温靭性を溶接ままの状態
で飛躍的に向上させる溶接法の提供を目的とする。
(Problems to be Solved by the Invention) In view of the above, the present invention aims to provide a welding method that dramatically improves the low-temperature toughness of weld metal obtained by high-energy density welding means in an as-welded state. do.

(問題点を解決するための手段) 本発明者らの一部は上記の現状を踏まえて、電子ビーム
溶接の際の高温に於ても溶接金属内にて溶解したり粗大
化することのない微細な非金属介在物を均一に分散含有
する鋼を用い、この微細な非金属介在物を針状フェライ
トの変態核としてそのまま溶接金属中に導入することに
よって組織の微細化を計り、低酸素含有量の溶接金属に
於てもその靭性を優れたものとする技術を特願昭60=
182982号に於て示した。
(Means for Solving the Problems) Based on the above-mentioned current situation, some of the present inventors have proposed that the weld metal will not melt or become coarse even at high temperatures during electron beam welding. By using steel that contains fine nonmetallic inclusions evenly dispersed, we aim to refine the structure by introducing these fine nonmetallic inclusions into the weld metal as transformation nuclei of acicular ferrite. Patent application was made in 1986 for technology that improves the toughness of welded metal even in large quantities.
No. 182982.

しかし、その後、本発明者らが高エネルギー密度溶接法
による溶接金属の変態挙動を詳細に検討した結果、溶接
金属中に含まれる5o1).Al量が非常に少ない場合
には従来微細な針状フェライト主体のMi織を得るため
に必要と考えられてきた溶接金属中の非金属介在物数よ
りもはるかに少ない非金属介在物数、すなわち高エネル
ギー密度溶接法による溶接金属に不可避的に存在する非
金属介在物数に於ても同等のミクロ組織が得られること
が判った。
However, as a result of a detailed study by the present inventors on the transformation behavior of weld metal by high-energy density welding, we found that 5o1) contained in weld metal. When the amount of Al is very small, the number of nonmetallic inclusions in the weld metal is far smaller than the number of nonmetallic inclusions in the weld metal that was conventionally thought to be necessary to obtain a Mi texture consisting mainly of fine acicular ferrite, i.e. It was found that the same microstructure could be obtained even with the number of non-metallic inclusions that inevitably exist in weld metal produced by high-energy density welding.

そこで本発明者らは以上の検討結果に基すき、高エネル
ギー密度溶接法に於て、溶接金属の5oj2゜Alの含
有量を適切な範囲に調整するならば意識的に非金属介在
物を導入することなく低酸素含有量の溶接金属でもミク
ロ組織を微細化し、溶接ままの状態で優れた靭性を持つ
溶接金属を得ることができるとの結論に達し、本発明を
成したものである。
Therefore, based on the above study results, the inventors of the present invention intentionally introduced non-metallic inclusions in order to adjust the content of 5oj2゜Al in the weld metal to an appropriate range in the high energy density welding method. The present invention was based on the conclusion that it is possible to refine the microstructure of a weld metal with a low oxygen content and obtain a weld metal with excellent toughness in the as-welded state without the above-mentioned conditions.

すなわち本発明の要旨は、重量%でC:0.01〜0.
20%、Si:0.8%以下、Mn: 0.30〜2.
0%、P:0.025%以下、S : 0.020%以
下、A6: 0.007%以下、O: 0.010%以
下を基本成分とし、又はこれにさらにNi:4.5%以
下、Cr:1%以下、Mo : 0.5%以下、Nb:
0.10%以下、V二0.10%以下、Cu : 1.
5%以下、B:0.002%以下の1種または2種以上
を含有し、残部鉄および不可避不純物元素を含有する鋼
を用い高エネルギー密度溶接を行なうことを特徴とする
溶接金属の靭性に優れた鋼の溶接方法にある。
That is, the gist of the present invention is that C: 0.01 to 0.01% by weight.
20%, Si: 0.8% or less, Mn: 0.30-2.
0%, P: 0.025% or less, S: 0.020% or less, A6: 0.007% or less, O: 0.010% or less, or further Ni: 4.5% or less , Cr: 1% or less, Mo: 0.5% or less, Nb:
0.10% or less, V2 0.10% or less, Cu: 1.
5% or less, B: 0.002% or less, and the toughness of weld metal characterized by high energy density welding using steel containing iron and unavoidable impurity elements. There is an excellent method of welding steel.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

(作 用) 最初に本発明に言う高エネルギー密度溶接方法とは、電
子ビーム溶接およびレーザ溶接の如き、従来のアーク溶
接方法に比しその熱源に於て高いエネルギー集中度を有
するものである。またsol。
(Function) First, the high energy density welding method referred to in the present invention is one that has a higher degree of energy concentration in its heat source than conventional arc welding methods such as electron beam welding and laser welding. Also sol.

八βとは次式で示すへβ量とする。8β is the amount of β expressed by the following formula.

soj!、AA=(全AI2量)  −(insoC八
l)−へ(A IlNとしてのへj2量) 次に、本発明の対象とする鋼の成分を上記の如く限定し
た理由は次の通りである。
Soj! , AA = (Total AI2 amount) - (insoC8l) - (Hej2 amount as A IIN) Next, the reason why the components of the steel targeted by the present invention are limited as described above is as follows. .

まず、Cは溶接金属の強度を向上させる有効な成分とし
て添加するものであるが、0.2%を越える過剰な添加
は靭性を劣化させ、さらに溶接割れを生じ易くするので
上限を0.20%とした。また、0.01%より低くな
ると溶接金属としての必要な強度を確保することが困難
となるために下限を0601%とした。
First, C is added as an effective component to improve the strength of weld metal, but excessive addition of more than 0.2% deteriorates toughness and makes weld cracking more likely, so the upper limit is set at 0.20%. %. Furthermore, if the content is lower than 0.01%, it becomes difficult to secure the necessary strength as a weld metal, so the lower limit was set at 0601%.

Siは、主として強度確保のために添加するが、0.8
%を越える過剰な添加は溶接性および靭性が低下するた
めに上限を0.8%とした。
Si is added mainly to ensure strength, but 0.8
Excessive addition of more than 1% will reduce weldability and toughness, so the upper limit was set at 0.8%.

またMnは、溶接金属の強度、靭性の確保に重要なもの
であるが、0.30%未満の添加ではこれ等の効果が十
分ではなく、また2、0%を越えると靭性にむしろ悪影
響を与えるので0.30〜2.0%の範囲とした。
Furthermore, although Mn is important for ensuring the strength and toughness of weld metal, adding less than 0.30% does not have sufficient effects, and adding more than 2.0% has a negative effect on toughness. Therefore, it was set in the range of 0.30 to 2.0%.

一方、PおよびSは、特に高エネルギー密度溶接に於て
は溶接割れの原因となることから、それぞれ上限を0.
025%および0.020%とした。
On the other hand, since P and S cause weld cracking especially in high energy density welding, the upper limit of each is set to 0.
0.025% and 0.020%.

次に八1は0.007%以下としたが、これは次に示す
理由による。すなわち、鋼が溶接されたのちの冷却過程
に於てオーステナイトからフェライトが生成する時にオ
ーステナイト粒界と同様に溶接金属中の非金属介在物の
存在はフェライトの核生成に対してエネルギー的に有利
な箇所であり、まずこれらの箇所から変態が開始する。
Next, 81 was set to 0.007% or less for the following reason. In other words, when ferrite is generated from austenite during the cooling process after steel is welded, the presence of nonmetallic inclusions in the weld metal, like austenite grain boundaries, is energetically advantageous for nucleation of ferrite. These are the places where metamorphosis begins.

溶接金属中に固溶したA1はCとの間に排斥作用が働く
ことから5o1).Allが0.005%を越えて存在
するときには、変態中のフェライトから未変態のオース
テナイトへのCの排斥が促進されsol、A1が少ない
場合に比較してオーステナイト中のCの濃化はより著し
くなる。その結果、未変態オーステナイトの変態温度は
低下し、微細な針状フェライトが変態し得なくなり、さ
らに変態温度の低いベイナイトが生成される様になる。
A1 dissolved in the weld metal acts as a repellent between C and 5o1). When All exists in excess of 0.005%, the exclusion of C from ferrite undergoing transformation to untransformed austenite is promoted, and the concentration of C in austenite is more marked than when sol and A1 is small. Become. As a result, the transformation temperature of untransformed austenite decreases, fine needle-like ferrite becomes unable to transform, and bainite with a lower transformation temperature is produced.

従ってSOβ、A1が存在する場合に微細な針状フェラ
イト主体のミクロ組織を得るためには、溶接金属中に多
数の非金属介在物が存在し、その非金属介在物から未変
態オーステナイト中にCの濃化が生じフェライト核生成
が困難になる以前にほぼ同時にフェライト核生成が始ま
ることが必須の条件となる。従来、微細な組織を得るた
めに溶接金属中に100〜400ppmの酸素含有量に
相当する非金属介在物数が必要とされていたのは以上の
様な理由による。一方、sol#1が0.005%以下
の場合には、溶接金属中の非金属介在物からフェライト
核生成した後も未変態オーステナイト中へのCの濃化は
顕著ではなく、′その後の冷却過程に於て極度に適冷が
進んだ未変態オーステナイトから非金属介在物以外の場
所からもフェライトの核生成が始まる。その結果、高エ
ネルギー密度溶接法による溶接金属に於て不可避的に存
在する程度の量の非金属介在物数でも十分にフェライト
核生成が起こり微細な針状フェライト主体のミクロ組織
が形成されるのである。
Therefore, in order to obtain a microstructure consisting mainly of fine acicular ferrite when SOβ and A1 are present, a large number of non-metallic inclusions must exist in the weld metal, and the non-metallic inclusions must contain carbon atoms in the untransformed austenite. It is essential that ferrite nucleation begins almost simultaneously before the concentration of ferrite occurs and ferrite nucleation becomes difficult. Conventionally, the number of nonmetallic inclusions corresponding to an oxygen content of 100 to 400 ppm has been required in the weld metal in order to obtain a fine structure for the reasons described above. On the other hand, when sol#1 is 0.005% or less, the concentration of C in untransformed austenite is not significant even after ferrite nucleation from nonmetallic inclusions in the weld metal, and In the process, nucleation of ferrite begins from untransformed austenite that has been sufficiently cooled to an extent other than nonmetallic inclusions. As a result, even a small amount of non-metallic inclusions that are unavoidably present in weld metal produced by high-energy density welding is sufficient to cause ferrite nucleation and form a microstructure consisting mainly of fine acicular ferrite. be.

以上の全く新たな知見に基すき溶接金属のsol。Sol of plow weld metal based on the above completely new knowledge.

A1を0.005%以下とするために、本発明では高エ
ネルギー密度溶接に用いる鋼に含まれるAAIを0.0
07%以下とした。ここで鋼中に含まれるAl量の制限
をsol、Al量ではなく全Al量としたのは次の理由
による。すなわち、鋼中においてはAllは酸化物もし
くは窒化物として存在している場合が多いが、両者とも
高エネルギー密度溶接時の高温で分解された後、酸化物
は溶接中に起こる酸素の減少によって、また窒化物は一
般的な高エネルギー密度溶接時の急速な冷却速度によっ
てすべてのA1が再び酸化物、窒化物となるわけではな
く、大部分がsob!、Aj2として溶接金属中に残る
ようになるからである。
In order to keep A1 to 0.005% or less, in the present invention, the AAI contained in the steel used for high energy density welding is reduced to 0.0%.
07% or less. The reason why the limit on the amount of Al contained in the steel is set to the total amount of Al rather than the amount of sol or Al is as follows. In other words, Al often exists in steel as an oxide or a nitride, but after both are decomposed at high temperatures during high-energy density welding, the oxide is decomposed due to the reduction of oxygen that occurs during welding. Furthermore, due to the rapid cooling rate during general high-energy density welding, not all of the A1 becomes oxides and nitrides, and most of the nitrides are sob! , Aj2 will remain in the weld metal.

次はOは先に説明した様に、高エネルギー密度溶接法に
於ては溶接割れ、ブローホール等の溶接欠陥の発生につ
ながる元素であるためその上限をo’、oio%とした
Next, as explained above, since O is an element that leads to the occurrence of weld defects such as weld cracks and blowholes in high energy density welding methods, its upper limit was set as o', oio%.

以上が本発明で用いる鋼の基本成分であるが、またこれ
にさらにNi:4.5%以下、Cr:1%以下、Mo 
: 0.5%以下、Nb:0.10%以下、V : 0
.10%以下、Cu : 1.5%以下、B : 0.
002%以下の一種または二種以上を含有した鋼であっ
ても溶接金属の低soj、Aj2化によって得られる効
果は有効である。
The above are the basic components of the steel used in the present invention, but in addition to these, Ni: 4.5% or less, Cr: 1% or less, Mo
: 0.5% or less, Nb: 0.10% or less, V: 0
.. 10% or less, Cu: 1.5% or less, B: 0.
Even if the steel contains one or more of the following: 0.002% or less, the effects obtained by lowering the soj and Aj2 of the weld metal are effective.

まずNiは溶接金属の強度と靭性を同時に高める元素で
あるが、4.5%を越える濃度ではその効果が飽和し、
また強度も過大となることがあるので上限を4.5%と
した。
First, Ni is an element that increases the strength and toughness of weld metal at the same time, but its effect is saturated at concentrations exceeding 4.5%.
Furthermore, since the strength may become excessive, the upper limit was set at 4.5%.

次にCrは溶接金属の焼き入れ性を高める元素であるが
、1%を越える濃度では強度が過大となるため上限を1
%とした。
Next, Cr is an element that increases the hardenability of weld metal, but if the concentration exceeds 1%, the strength will be excessive, so the upper limit should be set to 1%.
%.

MoもCrと同様に焼き入れ性を高める元素であるが、
0.5%を越えると溶接金属の強度が過大となるので上
限を0.5%とした。
Like Cr, Mo is an element that improves hardenability, but
If it exceeds 0.5%, the strength of the weld metal becomes excessive, so the upper limit was set at 0.5%.

Nb、  Vは焼き入れ性を高めたり炭化物を形成する
ことにより鋼材の強度、靭性を向上させるために添加さ
れるが、溶接金属で0.1%を越えると焼き入れ性が過
大となり靭性が低下するためその上限はそれぞれ0.1
%とした。
Nb and V are added to improve the strength and toughness of steel materials by increasing hardenability and forming carbides, but if they exceed 0.1% in weld metal, hardenability becomes excessive and toughness decreases. Therefore, the upper limit is 0.1 for each
%.

CuはNjと同様に溶接金属の強度と靭性を高める元素
であるが、1.5%を越えると強度が過大となるため上
限を1.5%とした。
Cu, like Nj, is an element that increases the strength and toughness of the weld metal, but if it exceeds 1.5%, the strength becomes excessive, so the upper limit was set at 1.5%.

Bは溶接金属中ではオーステナイト粒界に偏析し、粒界
フェライトの析出を抑制することにより靭性の向上に寄
与するが、0.002%を越えた過剰な添加は逆に靭性
を劣化させるためその上限を0.002%とした。
B segregates at austenite grain boundaries in the weld metal and contributes to improving toughness by suppressing the precipitation of grain boundary ferrite, but excessive addition of more than 0.002% conversely deteriorates toughness and The upper limit was set at 0.002%.

次に、本発明において、上記の鋼を用い高エネルギー密
度溶接法における靭性の優れた溶接金属を得る方法につ
いて説明する。
Next, in the present invention, a method for obtaining a weld metal with excellent toughness in a high energy density welding method using the above-mentioned steel will be described.

まず、接合部材に本発明において記載した化学組成を有
する鋼材を用い、その端面にI型開光加工を施し、高エ
ネルギー密度溶接によって突き合わせ溶接を行なうこと
によって本発明の達成が可能となる。ただし、Mnは高
エネルギー密度溶接中に莫発による損失が生じるので、
鋼材中の含有量よりは溶接金属での値が下回ることを考
慮すべきである。また、この方法においては、本発明に
おけるミクロ組織の微細化による靭性向上に必須の条件
である溶接金属の低soj!、へ2化を満足する様な低
AN含有量の鋼材、すなわち真空脱酸やSi −Mn脱
酸等によるn材を接合部材として用いることはもちろん
必須であるが、しかし、次の様な方法によればへ2含有
■の比較的高い^β脱酸による通常の鋼材も接合部材と
して用いることができる。
First, the present invention can be achieved by using a steel material having the chemical composition described in the present invention as a joining member, performing I-type opening processing on the end face, and performing butt welding by high energy density welding. However, Mn causes loss due to massive explosion during high energy density welding, so
It should be taken into consideration that the value in the weld metal is lower than the content in the steel material. Moreover, in this method, the weld metal has a low soj! Of course, it is essential to use a steel material with a low AN content that satisfies H2 conversion, that is, an N material obtained by vacuum deoxidation, Si-Mn deoxidation, etc., as a joining member. According to the publication, ordinary steel materials with relatively high ^β deoxidation can also be used as joining members.

すなわち、高へl含有量の接合部材においても、本発明
が対象とする低へ2含有量の鋼材からなる挿入部材、溶
接ワイヤを供給し、溶接金属中のAl量を希釈すること
によって、溶接金属の301.Al量を低減させ、本発
明を達成することが可能である。たとえば、I型開光加
工を施された接合部材の間に低AN含有量の鋼材からな
る挿入部材を固着し両接合部材と共にこの挿入部材を溶
融する方法、低AN含有量の鋼材からなる溶接ワイヤを
溶接部に供給し接合部材と共にこのワイヤを溶融する方
法等によって、溶接金属の低so6.A/化が可能とな
る。また、接合部材の一方の部材に低A6含を量の鋼材
を用いることによっても可能である。
In other words, even in a joining member with a high Al content, welding can be carried out by supplying an insert member made of a steel material with a low Al content, which is the object of the present invention, and a welding wire, and diluting the amount of Al in the weld metal. 301 of metal. It is possible to achieve the present invention by reducing the amount of Al. For example, a method of fixing an insert member made of a steel material with a low AN content between joining members subjected to I-type opening processing and melting this insert member together with both joining members, and a welding wire made of a steel material with a low AN content. The weld metal has a low SO6. It becomes possible to convert into A/. It is also possible to use a steel material with a low A6 content for one of the joining members.

もちろん、これらの場合に用いる鋼材、挿入部材、溶接
ワイヤのAI塩以外化学組成も本発明の範囲内にある必
要があることは言うまでもない。
Of course, it goes without saying that the chemical compositions of the steel materials, insertion members, and welding wires used in these cases, other than the AI salt, must also fall within the scope of the present invention.

また、本発明の主口的は高エネルギー密度溶接法におい
て、溶接ままの状態で高靭性の溶接金属を得ることであ
るが、溶接後熱処理を施す必要がある場合においても当
該溶接金属は良好な靭性を示すことは言うまでもない。
Furthermore, although the main purpose of the present invention is to obtain a weld metal with high toughness in an as-welded state in a high energy density welding method, the weld metal also has good toughness even when heat treatment is required after welding. Needless to say, it shows toughness.

次に本発明の効果を実施例によって更に具体的に述べる
Next, the effects of the present invention will be described in more detail with reference to Examples.

(実施例1) 第1表は試作鋼の化学成分を示す表であり、板厚501
mの40キロから80キロ級鋼まで試作した。これらの
鋼板にI開先加工を施し、同鋼種同士を対にしてルート
ギャップなしの突き合わせ溶接を第2表に示す電子ビー
ム溶接条件を用いて行った。同表に示すa / b値と
は電子ビームの収束レンズ中央から電子ビームの焦点位
置までの距離に対する収束レンズ中央から非溶接物表面
までの距離の比を意味し、ビーム振動のx、y方間とは
それぞれ溶接進行方向およびそれに直交する方向を意味
する。それぞれの溶接金属部の化学成分を第3表に示す
。溶接ままの状態で各溶接部から第1図に示す要領で板
厚中央部からシャルピー衝撃試験片を採取し、同温度で
の繰り返し数を3として一80〜0℃の範囲で衝撃試験
を行なった。その結果を第3表に併記する。
(Example 1) Table 1 is a table showing the chemical composition of the prototype steel, and the plate thickness is 501 mm.
We have produced prototypes of steel ranging from 40 kg to 80 kg. These steel plates were subjected to I-bevel processing, and butt welding was performed on pairs of steels of the same type without a root gap using the electron beam welding conditions shown in Table 2. The a/b value shown in the same table means the ratio of the distance from the center of the convergent lens to the surface of the non-weld object to the distance from the center of the electron beam convergent lens to the focal position of the electron beam, and the "Between" means the direction of welding progress and the direction perpendicular thereto, respectively. Table 3 shows the chemical composition of each weld metal part. A Charpy impact test piece was taken from the center of the plate thickness from each welded part in the as-welded state as shown in Figure 1, and the impact test was conducted in the range of -80 to 0°C with the number of repetitions at the same temperature being 3. Ta. The results are also listed in Table 3.

第3表の本発明何重および2は、40キロ級鋼を用いた
電子ビーム溶接金属の例である。soj!。
Numbers 2 and 2 of the present invention in Table 3 are examples of electron beam welding metal using 40 kg class steel. Soj! .

AAO量は十分に低く抑えられているため、溶接金属の
ミクロ組織は微細な針状フェライトが主体の組織となり
非常に優れた靭性値を示している。
Since the amount of AAO is kept sufficiently low, the microstructure of the weld metal is mainly composed of fine acicular ferrite, and exhibits an extremely excellent toughness value.

本発明例3は本発明範囲の上限のA1を含んだ鋼材を用
いた電子ビーム溶接金属の例である。
Example 3 of the present invention is an example of electron beam welding metal using a steel material containing A1 at the upper limit of the range of the present invention.

5oj7.Alの量が高目のため微細な針状フェライト
に一部上部ペイナイトが混合したミクロ組織となり本発
明例1および2に比較して靭性値はいくぶん低下してい
るものの、この程度の上部ベイナイトの生成量であれば
溶接金属の靭性値はまだ十分に良好な値を示す。
5oj7. Because the amount of Al is high, the microstructure is a mixture of fine acicular ferrite and some upper bainite, and the toughness value is somewhat lower than that of Invention Examples 1 and 2. The toughness value of the weld metal still shows a sufficiently good value as long as the amount generated is low.

それに対して比較例1)および12は、それぞれ本発明
例1および2の溶接金属と化学組成がほぼ同じであるが
、本発明の範囲を越えてAj2を多く含有している鋼を
用いたため溶接金属中に含まれるsol、A1量が過剰
になった結果、前記の本発明例1および2のミクロ組織
と大きく異なり上部ベイナイト主体の組織となって、従
来から電子ビーム溶接金属部で観察されていた程度の極
めて低い靭性値を示している。
On the other hand, Comparative Examples 1) and 12 have almost the same chemical composition as the weld metals of Inventive Examples 1 and 2, respectively, but because they used steel containing a large amount of Aj2 beyond the scope of the present invention, welding was difficult. As a result of excessive amounts of sol and A1 contained in the metal, the microstructure differs greatly from the microstructures of Examples 1 and 2 of the present invention, resulting in a structure consisting mainly of upper bainite, which has not been observed in electron beam welded metal parts in the past. This shows extremely low toughness values.

本発明例4および5は、それぞれ基本成分系にNiおよ
びNbを含有した40キロ級鋼の電子ビーム溶接金属の
例である。用いた鋼の八lの量は適正であり、これらの
靭性は本発明例1および2のそれに匹敵する。
Examples 4 and 5 of the present invention are examples of electron beam welded metals of 40 kg class steel containing Ni and Nb in the basic component system, respectively. The amount of steel used is appropriate and their toughness is comparable to that of Inventive Examples 1 and 2.

本発明例6は、50キロ級鋼を用いた電子ビーム溶接金
属の例である。溶接金属のSOβ、ANは適正範囲にあ
り良好な靭性値を示している。
Example 6 of the present invention is an example of electron beam welding metal using 50 kg class steel. SOβ and AN of the weld metal are within appropriate ranges and exhibit good toughness values.

本発明例7は、Nt+−Vを含有した50キロ級鋼の溶
接金属の例である。so7!、//!の量は低く、本発
明例1と同等の優れた靭性値を示す。それに対して比較
例13は本発明例7の溶接金属の化学組成とほとんど同
じであるにもかかわらずAfO量が本発明範囲を越えて
はるかに高い鋼を用いているので、微細な針状フェライ
ト主体の本発明例7のミクロ組織とは一変した粗いベイ
ナイト組織となりその靭性値は非常に低い。
Invention Example 7 is an example of weld metal of 50kg steel containing Nt+-V. so7! ,//! The amount of is low, and exhibits an excellent toughness value equivalent to that of Inventive Example 1. On the other hand, in Comparative Example 13, although the chemical composition of the weld metal is almost the same as in Inventive Example 7, the amount of AfO is much higher than the range of the present invention, so that fine acicular ferrite is formed. It becomes a coarse bainite structure, which is completely different from the main microstructure of Invention Example 7, and its toughness value is very low.

本発明例8から10は、基本成分系にそれぞれNb −
V−Cu、、Ni −Cr−Moを含む60キロ級鋼、
N+−Cr−Mo−Nb −V −Cu −Bを含む8
0キロ級鋼を用いた電子ビーム溶接金属の例である。用
いた鋼のAl量は適正であり、溶接金属のso#、Al
が低く抑えられた結果、微細な針状フェライト主体のミ
クロMi織を呈し優れた靭性値を示している。
Examples 8 to 10 of the present invention each have Nb − in the basic component system.
60 kg class steel containing V-Cu, Ni-Cr-Mo,
8 containing N+-Cr-Mo-Nb-V-Cu-B
This is an example of electron beam welding metal using 0 kg class steel. The amount of Al in the steel used was appropriate, and the so# and Al of the weld metal were
As a result, the micro-Mi texture is mainly composed of fine needle-like ferrite and exhibits an excellent toughness value.

(実施例2) 第1表に示す化学組成の試作鋼のうち、第3表の本発明
例1と比較例1)において用いられた鋼材1および6を
選び、端面にI型開光加工を施し、異種鋼材の対として
ルートギャップ無しの突き合わせ溶接を第2表に示す電
子ビーム溶接条件で行った。電子ビームの入射位置は突
き合わせ位置とした。実施例1で示した要領で溶接まま
の溶接部からシャルピー衝撃試験片を採取し、同一温度
での繰り返し数を3としてシャルピー衝撃試験を実施し
た。第4表に、得られた靭性値と溶接金属の化学組成を
第3表で示した比較例1)のそれと共に示す。
(Example 2) Among the prototype steels with the chemical compositions shown in Table 1, steel materials 1 and 6 used in Invention Example 1 and Comparative Example 1 in Table 3 were selected, and the end faces were subjected to I-type opening processing. , Butt welding of pairs of dissimilar steel materials without a root gap was performed under the electron beam welding conditions shown in Table 2. The incident position of the electron beam was set at the butt position. Charpy impact test pieces were taken from the as-welded welds in the same manner as described in Example 1, and the Charpy impact test was conducted at the same temperature with a repetition rate of 3. Table 4 shows the obtained toughness values and the chemical composition of the weld metal together with those of Comparative Example 1) shown in Table 3.

鋼材1および6を突き合わせ溶接した本発明例において
は、鋼材6に含まれていたAlの量が低Aρ含有量の鋼
材1によって希釈された結果、溶接金属のso l 、
A j2含有量が低減され、上部ベイナイト主体であっ
た比較例のミクロ組織とは異なり一部ベイナイトが残る
ものの微細な針状フェライト主体の組織に変化している
。したがって、その靭性値は一40°Cにおいても良好
な値を示す。
In the example of the present invention in which steel materials 1 and 6 are butt welded, the amount of Al contained in steel material 6 is diluted by steel material 1 with a low Aρ content, so that the so l of the weld metal,
The A j2 content was reduced, and unlike the microstructure of the comparative example, which consisted mainly of upper bainite, the microstructure changed to a structure mainly composed of fine acicular ferrite, although some bainite remained. Therefore, its toughness value shows good values even at -40°C.

(実施例3) 第1表に示す化学組成の試作鋼のうち、第3表の本発明
例2において用いられた鋼材2に加工を施し、板厚3龍
の挿入部材を試作した。この挿入部材を第2図に示す様
に第3表の比較例12において用いられた鋼材7のI型
開光の間に挟み込み、鋼材7と共に挿入部材を溶融する
突き合わせ溶接を行った。溶接条件は、第2表に示す電
子ビーム溶接条件とした。溶接ままの溶接部から実施例
1で示した要領でシャルピー衝撃試験片を採取し、同一
温度での繰り返し数を3としてシャルピー衝撃試験を実
施した。得られた靭性値と溶接金属の化学組成を第5表
に示す。また、同時に第3表で示した比較例12の靭性
値および溶接金属の化学組成も併記した。
(Example 3) Among the prototype steels with the chemical compositions shown in Table 1, steel material 2 used in Invention Example 2 in Table 3 was processed to prototype an insert member with a plate thickness of 3. As shown in FIG. 2, this insert member was inserted between the I-shaped openings of the steel material 7 used in Comparative Example 12 in Table 3, and butt welding was performed to melt the insert member together with the steel material 7. The welding conditions were the electron beam welding conditions shown in Table 2. A Charpy impact test piece was taken from the as-welded weld in the same manner as shown in Example 1, and the Charpy impact test was performed at the same temperature with three repetitions. Table 5 shows the obtained toughness values and chemical compositions of the weld metals. At the same time, the toughness value and chemical composition of the weld metal of Comparative Example 12 shown in Table 3 are also listed.

鋼材2を挿入部材として鋼材7の突き合わせ溶接部に挿
入した本発明例においては、鋼材7に多く含まれていた
AIが低Al含有量の挿入部材の溶融によって希釈され
た結果、溶接金属の5ojl!。
In the example of the present invention in which the steel material 2 is inserted into the butt weld of the steel material 7 as an insert member, the Al contained in the steel material 7 in large amounts is diluted by the melting of the insert member with a low Al content, and as a result, 5 ojl of the weld metal ! .

へβ量が少なくなり、上部ベイナイト主体であった比較
例のミクロ組織とは大きくことなる微細な針状フェライ
ト主体の組織に変化している。この溶接金属の組織改善
によって、本発明例での靭性値は大幅に向上している。
The amount of Fβ decreased, and the microstructure changed to a structure mainly composed of fine acicular ferrite, which is significantly different from the microstructure of the comparative example, which was mainly composed of upper bainite. Due to this improvement in the structure of the weld metal, the toughness value in the example of the present invention is significantly improved.

(実施例4) 第1表に示す化学組成の試作鋼のうち、第3表の本発明
例1において用いられた鋼材1に加工を施し、低Al含
有量の1.2 mm径の溶接ワイヤを製作した。また、
第3表の比較例1)において用いられた鋼材6を12.
7 +nまで減厚後、端面にI型開光加工を施し、ルー
トギャップを0.5 amに設定した突き合わせ溶接部
を用意した。この突き合わせ溶接部に前記の溶接ワイヤ
を送給しつつ、レーザ溶接を施した。レーザ溶接条件は
、レーザ出力14kW、溶接速度750 mm/min
 、焦点距離200鶴、a / b (lI!O,g、
ワイヤ送給速度5m/min。
(Example 4) Among the prototype steels with the chemical compositions shown in Table 1, steel material 1 used in Invention Example 1 in Table 3 was processed to produce a 1.2 mm diameter welding wire with a low Al content. was produced. Also,
Steel material 6 used in Comparative Example 1) in Table 3 was 12.
After the thickness was reduced to 7+n, the end face was subjected to I-type opening processing to prepare a butt weld with a root gap of 0.5 am. Laser welding was performed while feeding the welding wire to this butt weld. Laser welding conditions are: laser output 14kW, welding speed 750mm/min
, focal length 200 Tsuru, a/b (lI!O,g,
Wire feeding speed 5m/min.

i1eガス流m 151 /minである。また同時に
、12.7mmに減摩後I型開光加工を施した鋼材6を
用いて、ワイヤ送給無し、ルートギャップ無しの突き合
わせ溶接を前記のレーザ溶接条件で行い比較例とした。
i1e gas flow m 151 /min. At the same time, butt welding without wire feeding and without root gap was performed under the laser welding conditions described above using steel material 6 which had been subjected to I-type opening processing after friction reduction to 12.7 mm as a comparative example.

溶接ままの溶接部から実施例1で示した要領でシャルピ
ー衝撃試験片を採取し、同一温度での繰り返し数を3と
してシャルピー衝撃試験を実施した。得られた靭性値と
溶接金属の化学組成を第6表に示す。
A Charpy impact test piece was taken from the as-welded weld in the same manner as shown in Example 1, and the Charpy impact test was performed at the same temperature with three repetitions. Table 6 shows the obtained toughness values and chemical compositions of the weld metals.

レーザ溶接時に低Al含有量のワイヤを送給した本発明
例においては、鋼材6に含まれていた八βが希釈され溶
接金属のsol、Al2)<減少した結果、その靭性値
は良好な値を示す。それに対してレーザ溶接時にワイヤ
送給を行わなかった比較例においては、溶接金属中のs
oj?、Allは高く、ミクロ組織は一部マルチンサイ
トを含む上部ベイナイト組織となり靭性は非常に低い。
In the example of the present invention in which a wire with a low Al content was fed during laser welding, the 8β contained in the steel material 6 was diluted and the weld metal sol, Al2) was reduced, resulting in a good toughness value. shows. On the other hand, in a comparative example in which no wire was fed during laser welding, the s
oj? , All is high, the microstructure is an upper bainite structure containing some martinsite, and the toughness is very low.

(発明の効果) 以上の実施例からも明らかなごとく、本発明によれば従
来から課題とされてきた高エネルギー密度溶接金属の大
幅な靭性向上が計れ、電子ビーム溶接等の高エネルギー
密度溶接において極めて優れた靭性の溶接金属を得るこ
とが可能となるものであって、圧力容器、海洋構造物、
ラインパイプ等の大型構造物の溶接分野において産業上
の効果は極めて顕著である。
(Effects of the Invention) As is clear from the above embodiments, according to the present invention, it is possible to significantly improve the toughness of high energy density weld metal, which has been a problem in the past, and to improve the toughness of high energy density welding metals such as electron beam welding. It is possible to obtain weld metal with extremely excellent toughness, and it is suitable for pressure vessels, offshore structures,
The industrial effects are extremely significant in the field of welding large structures such as line pipes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は溶接部からのシャルピー衝撃試験片の採取要領
を示す図である。第2図は2接合部材の間に挿入部材を
介入させる溶接方法の第3実施例を示す図である。 1:溶接金属、2:シャルピー衝撃試験片、3:切り欠
き位置、4.5:接合部材、6:挿入部材、7:溶接金
属の輪郭。 第1図 第2図
FIG. 1 is a diagram showing the procedure for collecting Charpy impact test pieces from welded parts. FIG. 2 is a diagram showing a third embodiment of a welding method in which an insertion member is inserted between two joining members. 1: Weld metal, 2: Charpy impact test piece, 3: Notch position, 4.5: Joining member, 6: Insert member, 7: Outline of weld metal. Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)重量%でC:0.01〜0.20%、Si:0.
8%以下、Mn:0.30〜2.0%、P:0.025
%以下、S:0.020%以下、Al:0.007%以
下、O:0.010%以下を基本成分とし、残部鉄およ
び不可避不純物元素を含有する鋼を用いて高エネルギー
密度溶接を行なうことを特徴とする溶接金属の靭性に優
れた鋼の溶接方法。
(1) C: 0.01-0.20%, Si: 0.0% by weight.
8% or less, Mn: 0.30-2.0%, P: 0.025
% or less, S: 0.020% or less, Al: 0.007% or less, O: 0.010% or less as basic components, and high energy density welding is performed using steel containing iron and inevitable impurity elements. A method of welding steel with excellent toughness of the weld metal.
(2)重量%でC:0.01〜0.20%、Si:0.
8%以下、Mn:0.30〜2.0%、P:0.025
%以下、S:0.020%以下、Al:0.007%以
下、O:0.010%以下を基本成分とし、さらにNi
:4.5%以下、Cr:1%以下、Mo:0.5%以下
、Nb:0.10%以下、V:0.10%以下、Cu:
1.5%以下、B:0.002%以下の1種又は2種以
上を含有し、残部鉄および不可避不純物元素を含有する
鋼を用いて高エネルギー密度溶接を行なうことを特徴と
する溶接金属の靭性に優れた鋼の溶接方法。
(2) C: 0.01-0.20%, Si: 0.
8% or less, Mn: 0.30-2.0%, P: 0.025
% or less, S: 0.020% or less, Al: 0.007% or less, O: 0.010% or less, and further Ni
: 4.5% or less, Cr: 1% or less, Mo: 0.5% or less, Nb: 0.10% or less, V: 0.10% or less, Cu:
A weld metal characterized by performing high energy density welding using steel containing one or more of B: 1.5% or less, B: 0.002% or less, and the balance containing iron and unavoidable impurity elements. A method of welding steel with excellent toughness.
JP61271030A 1986-11-14 1986-11-14 Welding method for steel having excellent toughness of weld metal Pending JPS63126683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61271030A JPS63126683A (en) 1986-11-14 1986-11-14 Welding method for steel having excellent toughness of weld metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61271030A JPS63126683A (en) 1986-11-14 1986-11-14 Welding method for steel having excellent toughness of weld metal

Publications (1)

Publication Number Publication Date
JPS63126683A true JPS63126683A (en) 1988-05-30

Family

ID=17494423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61271030A Pending JPS63126683A (en) 1986-11-14 1986-11-14 Welding method for steel having excellent toughness of weld metal

Country Status (1)

Country Link
JP (1) JPS63126683A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03221280A (en) * 1990-01-27 1991-09-30 Kobe Steel Ltd Welding method by laser beam
US5961748A (en) * 1995-08-09 1999-10-05 Nkk Corporation Laser-welded steel pipe
WO2011068216A1 (en) * 2009-12-04 2011-06-09 新日本製鐵株式会社 Butt-welded joint formed using high-energy-density beam

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5911658A (en) * 1982-07-12 1984-01-21 Hitachi Ltd Semiconductor device
JPS6035981A (en) * 1983-08-04 1985-02-23 Canon Inc Controller of motor
JPS6179745A (en) * 1984-09-28 1986-04-23 Nippon Steel Corp Manufacture of steel material superior in welded joint heat affected zone toughness

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5911658A (en) * 1982-07-12 1984-01-21 Hitachi Ltd Semiconductor device
JPS6035981A (en) * 1983-08-04 1985-02-23 Canon Inc Controller of motor
JPS6179745A (en) * 1984-09-28 1986-04-23 Nippon Steel Corp Manufacture of steel material superior in welded joint heat affected zone toughness

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03221280A (en) * 1990-01-27 1991-09-30 Kobe Steel Ltd Welding method by laser beam
US5961748A (en) * 1995-08-09 1999-10-05 Nkk Corporation Laser-welded steel pipe
US6140601A (en) * 1995-08-09 2000-10-31 Nkk Corporation Laser-welded steel pipe and method therefor
WO2011068216A1 (en) * 2009-12-04 2011-06-09 新日本製鐵株式会社 Butt-welded joint formed using high-energy-density beam
JP2012102405A (en) * 2009-12-04 2012-05-31 Nippon Steel Corp Butt-welded joint formed using beam with high-energy-density
JP4970620B2 (en) * 2009-12-04 2012-07-11 新日本製鐵株式会社 Butt weld joint using high energy density beam
CN102639277A (en) * 2009-12-04 2012-08-15 新日本制铁株式会社 Butt-welded joint formed using high-energy-density beam
KR101218961B1 (en) * 2009-12-04 2013-01-04 신닛테츠스미킨 카부시키카이샤 Butt-welded joint formed using high-energy-density beam
US9352424B2 (en) 2009-12-04 2016-05-31 Nippon Steel & Sumitomo Metal Corporation Butt welding joint using high-energy density beam

Similar Documents

Publication Publication Date Title
JP4800628B2 (en) Laser / arc hybrid welding method for ferritic steel
CA2827103C (en) Welded joint of duplex stainless steel
KR20120099534A (en) Ultra high-strength welded joint and method for producing same
KR19990022987A (en) Steel with excellent toughness of weld heat affected zone
Lei et al. Effects of MnN powder on the microstructure and properties of high nitrogen steel joint via laser-arc hybrid welding
JP2000158183A (en) Welding material of martensite system stainless steel, welding joint, and manufacture thereof
JP2857318B2 (en) Welding wire for high tensile steel
JPS63126683A (en) Welding method for steel having excellent toughness of weld metal
JP2006075853A (en) Laser-welded joint of austenitic alloy steel and its production method
JP3884363B2 (en) Iron filler metal for laser welding
JPS61253344A (en) Steel plate for high heat input welding and its manufacture
JP3407668B2 (en) Shipbuilding steel plate with excellent laser weldability
RU2135622C1 (en) Steel featuring high impact strength in heat-affected zone in welding
JPH0583626B2 (en)
JPH08309428A (en) Production of welded steel tube
JP4492028B2 (en) Laser beam welded joint and method for manufacturing laser beam welded joint
JP2003220492A (en) Cored wire for laser beam welding of steel material and solid wire
JPS6264486A (en) Welding method for low-alloy high tensile steel with excellent toughness of weld metal
Svoboda et al. The effect of welding procedure on ANSI/AWS A5. 29-98 E81T1-Ni1 flux cored arc weld metal deposits
JP2003201535A (en) Steel sheet and steel pipe for electron beam welding, and pipeline having excellent low temperature toughness in weld metal zone
EP0038820B1 (en) Cast iron welding materials
JP5953647B2 (en) Laser welded joint of steel material with excellent toughness of weld metal part and manufacturing method of laser beam welded joint of steel material with excellent toughness of weld metal part
JPS63103051A (en) High toughness steel for welding
JP4332064B2 (en) High HAZ toughness steel for high heat input welding with heat input of 20-100 kJ / mm
JP3156525B2 (en) Manufacturing method of steel plate for welded structure with excellent cross weld joint characteristics