JP2006075853A - Laser-welded joint of austenitic alloy steel and its production method - Google Patents

Laser-welded joint of austenitic alloy steel and its production method Download PDF

Info

Publication number
JP2006075853A
JP2006075853A JP2004260864A JP2004260864A JP2006075853A JP 2006075853 A JP2006075853 A JP 2006075853A JP 2004260864 A JP2004260864 A JP 2004260864A JP 2004260864 A JP2004260864 A JP 2004260864A JP 2006075853 A JP2006075853 A JP 2006075853A
Authority
JP
Japan
Prior art keywords
laser
less
welding
alloy steel
austenitic alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004260864A
Other languages
Japanese (ja)
Inventor
Takahiro Kousu
孝裕 小薄
Kazuhiro Ogawa
和博 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2004260864A priority Critical patent/JP2006075853A/en
Publication of JP2006075853A publication Critical patent/JP2006075853A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser-welded joint of an austenitic alloy steel having strength and creep strength equal to those of a base material, and to provide its production method. <P>SOLUTION: The laser-welded joint is composed of an austenitic alloy steel having a composition comprising, by mass, ≤0.2% C, ≤2% Si, ≤3% Mn, ≤0.03% P, ≤0.01% S, 15 to 35% Cr, 6 to 45% Ni, 0.001 to 0.01% B, 0.05 to 0.3% N and ≤0.03% Al, further comprising small quantity of one or more kinds selected from Nb, Ti and V, and, if required, comprising one or more kinds selected from Mo, W and Cu and is obtained by laser welding in one pass using no filler. In the shape of a weld metal, provided that the width of the surface is defined as W<SB>0</SB>and the width at a depth of 1/2 is defined as W<SB>1/2</SB>, W<SB>0</SB>/W<SB>1/2</SB>≥0.6 is satisfied. Further, provided that the output of a laser is defined as P(kW), the focal position of the laser is defined as f(mm), and the thickness of the base material is defined as t(mm), welding velocity v(cm/min) is controlled to the range within the formula. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、発電用ボイラー等の高温装置に用いられる、強度、クリープ強度および耐食性にすぐれたオーステナイト系合金鋼の溶接継ぎ手およびその製造方法に関する。   The present invention relates to a welded joint of austenitic alloy steel having excellent strength, creep strength and corrosion resistance, and a method for producing the same, which are used in high-temperature devices such as power generation boilers.

発電用ボイラー等の高温装置には高Cr高Niのオーステナイト系合金鋼が使用されるが、近年の効率向上や使用環境変化からより過酷な条件での適用が検討され種々の合金鋼が開発されてきた。このような耐熱合金鋼材を溶接構造物として使用する場合、溶接部分の高温強度や耐食性が、母材に匹敵するものであることが要求される。   Austenitic alloy steels with high Cr and high Ni are used for high-temperature equipment such as boilers for power generation. However, various alloy steels have been developed by considering the application under severer conditions due to recent efficiency improvements and changes in the usage environment. I came. When such a heat-resistant alloy steel material is used as a welded structure, the high-temperature strength and corrosion resistance of the welded portion are required to be comparable to the base material.

これら合金鋼材の溶接継手は、通常アーク溶接にて施工されるが、溶接材料に母材と同じ材料をそのまま用いても、溶融時の溶湯の流動性などによる欠陥発生、酸化などによる組成変化があり、さらには溶融後の凝固ままの状態であるので、溶接金属の結晶粒組織は粗大で成分元素は偏析を生じており、一般的にその強度や耐食性は母材より遙かに劣るものとなる。   Welded joints of these alloy steels are usually constructed by arc welding, but even if the same material as the base metal is used as is for the welding material, there are defects due to the fluidity of the molten metal during melting, and composition changes due to oxidation, etc. In addition, since it is in a solidified state after melting, the grain structure of the weld metal is coarse and segregation of the constituent elements occurs, and its strength and corrosion resistance are generally far inferior to those of the base material. Become.

このため、母材に近い組成を有し、溶接性にすぐれ、施工後の溶接継手の性能、とくに高温強度やクリープ強度が母材と同等もしくはそれ以上となるような溶接材料、およびそれらを用いた溶接継手が種々提案されてきた。たとえば特許文献1には、高Cr高Niの母材に近い組成にNb、Moを添加し、さらに溶接中に減少して強度低下を来すNを高くした溶接材料の発明が開示されている。また、特許文献2、3および4等にも、母材に近い組成の鋼をベースに前出のNbやMoなどの他成分元素の添加や、特定元素の含有範囲を規制するなどした溶接材料を用い、溶接金属あるいは溶接継手の強度やクリープ強度を向上させた発明が提示されている。   For this reason, a welding material having a composition close to that of the base material, excellent weldability, performance of the welded joint after construction, in particular, high temperature strength and creep strength equal to or higher than that of the base material, and the use thereof are used. Various welded joints have been proposed. For example, Patent Document 1 discloses an invention of a welding material in which Nb and Mo are added to a composition close to a base material of high Cr and high Ni, and further, the N is increased during welding to cause a decrease in strength. . Also, Patent Documents 2, 3 and 4 etc. also describe a welding material in which other component elements such as Nb and Mo are added based on steel having a composition close to that of the base material and the content range of specific elements is regulated. An invention has been proposed in which the strength and creep strength of a weld metal or weld joint is improved.

しかしながらこれらの発明は、いずれもTIGやMIGにより母材とは別に溶接材料を使用する多層溶接法によるものであり、溶接継手を得るまでに多くのパス回数を必要とし、溶接施工の効率がよくない。   However, these inventions are all based on the multi-layer welding method in which a welding material is used separately from the base material by TIG or MIG, and many passes are required to obtain a welded joint, and the efficiency of the welding operation is high. Absent.

近年、電子ビームやレーザのような高エネルギービーム溶接が急速に普及してきた。電子ビームやレーザビームは容易に収束させることができるので、アークなどに比べ入熱時のエネルギー密度は1000倍程度にもなり、幅に比べて溶込み深さの深い溶融部を有する溶接が実現できる。このため、熱影響部を少なくでき、溶接変形やひずみの少ない精密な溶接が可能である。電子ビーム溶接は真空でおこなう必要があり、X線の発生も伴うので真空室や防護設備を必要とするが、レーザビーム溶接では大気中でおこなうことができX線の発生もない。このような点から、薄板や微細部の接合を要する溶接に実用化されている。   In recent years, high energy beam welding, such as electron beams and lasers, has rapidly become widespread. Since the electron beam and laser beam can be easily converged, the energy density at the time of heat input is about 1000 times that of an arc or the like, and welding having a melted portion having a deep penetration depth compared to the width is realized. it can. For this reason, the heat affected zone can be reduced, and precise welding with less welding deformation and distortion is possible. Electron beam welding needs to be performed in a vacuum and X-rays are generated, so that a vacuum chamber and protective equipment are required. However, laser beam welding can be performed in the atmosphere and does not generate X-rays. From such a point, it has been put to practical use in welding that requires joining of thin plates and fine parts.

高温用のオーステナイト系合金鋼材の場合、厚さが4〜25mm程度の中厚肉材が対象になるが、通常、TIGなどによる多層溶接がおこなわれる。これに対してレーザビーム溶接を適用するには、母材の継手形成部を突合わせ、その突合わせ面に沿ってビームを照射し溶融接合させることになる。   In the case of high-temperature austenitic alloy steel materials, medium-thickness materials with a thickness of about 4 to 25 mm are targeted, but multi-layer welding with TIG or the like is usually performed. On the other hand, in order to apply laser beam welding, the joint forming portion of the base material is abutted, and the beam is irradiated and melt-bonded along the abutting surface.

このようなレーザ溶接方法を採用すれば、(1)1パスでの高能率、高速の溶接が可能、(2)熱影響部を狭くすることが可能、(3)母材と同じ溶接金属の形成が可能、等の利点が考えられる。しかしながら、レーザ溶接法は高温用のオーステナイト系合金鋼材の溶接継手としては、まだ実用化には至ってない。これは得られた溶接継手の高温特性は、溶接金属の化学組成が母材とほぼ同じであれば耐食性に関しては問題ないとしても、溶接部の健全性や強度、とくに高温でのクリープ強度に関しては、十分明らかでないためと考えられる。   By adopting such a laser welding method, (1) high-efficiency and high-speed welding in one pass is possible, (2) the heat-affected zone can be narrowed, and (3) the same weld metal as the base metal The advantage that it can be formed is considered. However, the laser welding method has not yet been put to practical use as a welded joint for a high temperature austenitic alloy steel. The high temperature characteristics of the obtained welded joints are that there is no problem with corrosion resistance if the chemical composition of the weld metal is almost the same as that of the base metal, but regarding the soundness and strength of the weld, especially the creep strength at high temperatures. This is probably because it is not clear enough.

特開平6−142980号公報JP-A-6-142980 特開平8−71784号公報JP-A-8-71784 特開平11−277292号公報JP 11-277292 A 特開2004−58062号公報JP 2004-58062 A

レーザ溶接法は継手の熱影響部が小さく、高速溶接が可能という利点があるが、高温で用いられるオーステナイト系合金鋼材料には適用されていない。これは、溶接継手の高温強度が必ずしも十分でないためと推定される。本発明の目的は、母材と同等の強度およびクリープ強度を有するオーステナイト系合金鋼のレーザ溶接継手とその製造方法を提供することにある。   The laser welding method has the advantage that the heat-affected zone of the joint is small and high-speed welding is possible, but it is not applied to austenitic alloy steel materials used at high temperatures. This is presumably because the high temperature strength of the welded joint is not always sufficient. An object of the present invention is to provide a laser-welded joint of austenitic alloy steel having the same strength and creep strength as the base metal and a method for producing the same.

本発明の要旨は次のとおりである。
(a)耐熱用に使用されるオーステナイト系合金鋼の溶接継手であって、フィラーを用いない1パスのレーザ溶接による継手であり、溶接金属の形状がレーザ照射側表面のビード幅をW0、溶接金属の表面からの1/2深さ位置における幅をW1/2とするとき、下記(1)式を満足するものであることを特徴とするオーステナイト系合金鋼のレーザ溶接継手。
The gist of the present invention is as follows.
(A) A welded joint of austenitic alloy steel used for heat resistance, which is a joint by laser welding of one pass without using a filler, and the shape of the weld metal has a bead width of the laser irradiation side surface of W 0 , An austenitic alloy steel laser weld joint characterized in that the following equation (1) is satisfied when the width at a half depth position from the surface of the weld metal is W 1/2 .

0/W1/2 ≧ 0.6 ・・・・・ (1)
(b)質量%で、C:0.2%以下、Si:2%以下、Mn:3%以下、P:0.03%以下、S:0.01%以下、Cr:15〜35%、Ni:6〜45%、B:0.001〜0.01%、N:0.05〜0.3%、Al:0.03%以下で、Nb:0.01〜1.5%、Ti:0.005〜0.5%およびV:0.01〜1%の1種または2種以上を含み残部はFeおよび不純物であるオーステナイト系合金鋼を母材とする溶接継手であって、フィラーを用いない1パスのレーザ溶接による継手であり、溶接金属の形状がレーザ照射側表面のビード幅をW0、溶接金属の表面からの1/2深さ位置における幅をW1/2とするとき、下記(1)式を満足するものであることを特徴とするオーステナイト系合金鋼のレーザ溶接継手。
0/W1/2 ≧ 0.6 ・・・・・ (1)
W 0 / W 1/2 ≧ 0.6 (1)
(B) In mass%, C: 0.2% or less, Si: 2% or less, Mn: 3% or less, P: 0.03% or less, S: 0.01% or less, Cr: 15 to 35%, Ni: 6-45%, B: 0.001-0.01%, N: 0.05-0.3%, Al: 0.03% or less, Nb: 0.01-1.5%, Ti : A welded joint containing one or more of 0.005 to 0.5% and V: 0.01 to 1%, with the balance being Fe and an austenitic alloy steel that is an impurity, and a filler In this case, the weld metal shape has a bead width W 0 on the laser irradiation side surface and a width at a half depth position from the surface of the weld metal W 1/2 . A laser welded joint of austenitic alloy steel characterized by satisfying the following formula (1).
W 0 / W 1/2 ≧ 0.6 (1)

(c)質量%で、C:0.2%以下、Si:2%以下、Mn:3%以下、P:0.03%以下、S:0.01%以下、Cr:15〜35%、Ni:6〜45%、B:0.001〜0.01%、N:0.05〜0.3%、Al:0.03%以下で、Nb:0.01〜1.5%、Ti:0.005〜0.5%およびV:0.01〜1%の1種または2種以上と、さらにMo:0.2〜3%、W:0.2〜4%およびCu:0.2〜5%の1種または2種以上とを含み残部はFeおよび不純物であるオーステナイト系合金鋼を母材とする溶接継手であって、フィラーを用いない1パスのレーザ溶接による継手であり、溶接金属の形状がレーザ照射側表面のビード幅をW0、溶接金属の表面からの1/2深さ位置における幅をW1/2とするとき、下記(1)式を満足するものであることを特徴とするオーステナイト系合金鋼のレーザ溶接継手。
0/W1/2 ≧ 0.6 ・・・・・ (1)
(C) In mass%, C: 0.2% or less, Si: 2% or less, Mn: 3% or less, P: 0.03% or less, S: 0.01% or less, Cr: 15 to 35%, Ni: 6-45%, B: 0.001-0.01%, N: 0.05-0.3%, Al: 0.03% or less, Nb: 0.01-1.5%, Ti : 0.005 to 0.5% and V: 0.01 to 1% or more, Mo: 0.2 to 3%, W: 0.2 to 4%, and Cu: 0. 2 to 5% of 1 type or 2 types or more and the balance is a weld joint using Fe and impurities as austenitic alloy steel as a base material, and a joint by laser welding of one pass without using a filler, when the shape of the weld metal bead width of the laser irradiation surface W 0, the width at half depth position from the surface of the weld metal and W 1/2, the following ( ) Laser welded joint of austenitic steel alloy which is characterized in that, thereby satisfying the expression.
W 0 / W 1/2 ≧ 0.6 (1)

(d)上記(a)、(b)または(c)に記載のオーステナイト系合金鋼の厚さt(mm)の鋼材に対し、レーザ溶接の出力をP(kW)、レーザ照射の焦点位置をf(mm)(ただし、鋼材表面位置が0、表面より上側が+、内部側が−である)とするとき、溶接速度v(cm/min)を、下記(2)式で規定される範囲としてフィラーを用いない1パスのレーザ溶接をおこなうことを特徴とする上記(a)、(b)または(c)のオーステナイト系合金鋼のレーザ溶接継手の製造方法。

Figure 2006075853
・・・・・ (2) (D) With respect to the steel material having the thickness t (mm) of the austenitic alloy steel described in (a), (b) or (c) above, the output of laser welding is P (kW), and the focal position of laser irradiation is When f (mm) (however, the steel surface position is 0, the upper side from the surface is +, and the inner side is-), the welding speed v (cm / min) is defined as a range defined by the following equation (2). The method for producing a laser-welded joint of austenitic alloy steel according to (a), (b) or (c) above, wherein one-pass laser welding is performed without using a filler.
Figure 2006075853
(2)

本発明の溶接継手は母材と同等の強度およびクリープ強度を有しており、高温で使用されるオーステナイト系合金鋼材料の溶接構造物に対しても、レーザ溶接方法を効果的に適用することが可能である。   The welded joint of the present invention has the same strength and creep strength as the base metal, and the laser welding method can be effectively applied to a welded structure of austenitic alloy steel material used at high temperatures. Is possible.

本発明者らは、高温で使用されるオーステナイト系合金鋼材に対し、フィラーを用いず1パスでレーザ溶接した溶接継手に関して、種々の条件でレーザ溶接をおこない、溶接欠陥防止、強度の確保、およびすぐれたクリープ強度を有する継手を得るための諸条件を種々調査した。フィラーを用いない1パスによる貫通溶接としたのは、熱変形の抑止や溶接凝固割れの防止、さらには耐食性や溶接金属の強度およびクリープ強度の確保に有利と考えられたからである。   The present inventors performed laser welding under various conditions on a welded joint that was laser-welded in one pass without using a filler to an austenitic alloy steel material used at high temperatures, preventing welding defects, ensuring strength, and Various conditions for obtaining joints with excellent creep strength were investigated. The reason why the one-pass through welding using no filler is considered to be advantageous for suppressing thermal deformation, preventing weld solidification cracking, and ensuring corrosion resistance, weld metal strength and creep strength.

溶接方法は、溶接しようとする断面を突合わせて保持し、突合わせ面に沿ってレーザビームを照射するキーホール形の深溶込み溶接である。化学組成および板厚の種々異なるオーステナイト系合金鋼材料を用い、溶接条件としては、溶接速度と入熱量とを変化させ、得られた溶接継手について、溶接欠陥の発生、溶接金属形状、強度、クリープ強度等を調査した。   The welding method is keyhole type deep penetration welding in which cross sections to be welded are held together and irradiated with a laser beam along the abutting surface. Using austenitic alloy steel materials with different chemical compositions and plate thicknesses, and welding conditions such as welding speed and heat input were changed, and the resulting welded joints were subject to weld defects, weld metal shape, strength, and creep. The strength was investigated.

まず、溶接方向に垂直な断面にて溶接金属の形状を調べてみると、溶接速度が大で入熱量が少ない場合、突合わせ部の厚さ全体を貫通する溶融が得られず部分的な溶込みとなり、ビームを照射する表面側の溶込み幅が内部の溶込み幅より狭い、いわゆる西洋梨形の形状となる。このような形状になると、溶接金属の凝固割れが発生しやすい傾向がある。   First, when examining the shape of the weld metal in a cross section perpendicular to the welding direction, if the welding speed is high and the heat input is small, melting that penetrates the entire thickness of the butt portion cannot be obtained, and partial melting occurs. It becomes a so-called pear-shaped shape in which the penetration width on the surface side irradiated with the beam is narrower than the penetration width inside. When it becomes such a shape, there exists a tendency for the solidification crack of a weld metal to generate | occur | produce easily.

一方、溶接速度が小さく入熱量が大きい場合、甚だしいときは溶接金属が溶け落ちて溶接不良となるが、それに至らないまでも表面側の溶込み幅は狭いが板厚中央から裏面側にかけて溶込み幅が大きく広がる、いわゆる徳利形の形状になる。このような形状の溶接継手では、強度が低くなり、クリ−プ強度も母材より低いものとなる。これは、溶融後の冷却速度が遅くなって結晶組織が粗大化したり、合金中の窒素の蒸発が進んだりするためと思われる。   On the other hand, if the welding speed is low and the heat input is large, the weld metal melts down in severe cases, resulting in poor welding. It becomes a so-called bottle-shaped shape that widens widely. In such a welded joint, the strength is low, and the creep strength is also lower than that of the base material. This is presumably because the cooling rate after melting slows down and the crystal structure becomes coarse, or the evaporation of nitrogen in the alloy progresses.

このように溶接金属の形状と、継手の常温での強度および高温でのクリープ強度との関係を調べてみると、次のようなことが明らかになってきた。すなわち、溶接方向に垂直な断面での溶接金属の形状を図1のように表せば、上方のレーザ照射側表面のビード幅をW0、溶接金属の表面からの溶込み深さLの1/2深さ位置における幅をW1/2とするとき、下記(1)式を満足するものである場合、凝固割れなど溶接欠陥はなく、しかも母材と同等の常温強度と高温クリープ強度を有する溶接継手となるのである。
0/W1/2 ≧ 0.6 ・・・・・ (1)
Thus, when the relationship between the shape of the weld metal, the strength of the joint at normal temperature and the creep strength at high temperature is examined, the following has been clarified. That is, if the shape of the weld metal in a cross section perpendicular to the welding direction is represented as shown in FIG. 1, the bead width of the upper laser irradiation side surface is W 0 , and 1 / of the penetration depth L from the surface of the weld metal. 2 When the width at the depth position is W 1/2 and satisfies the following formula (1), there is no welding defect such as solidification cracking, and the room temperature strength and high temperature creep strength are the same as the base metal. It becomes a welded joint.
W 0 / W 1/2 ≧ 0.6 (1)

溶接速度に対し入熱量が少なすぎる場合、厚さを貫通する深溶込みが得られなくなるばかりでなく、溶接金属の形状は前述のように西洋梨形となり、(1)式を満足しなくなる。逆に溶接速度に対し入熱量が多すぎる場合、厚さの中央部の幅が大きくなり(1)式を満足しなくなるが、その場合強度やクリープ強度が母材より大きく劣るものとなる。   If the heat input is too small with respect to the welding speed, not only deep penetration through the thickness cannot be obtained, but the shape of the weld metal becomes a pear-shaped shape as described above, and the equation (1) is not satisfied. Conversely, if the heat input is too much for the welding speed, the width at the center of the thickness becomes large and the equation (1) is not satisfied, but in that case the strength and creep strength are greatly inferior to the base material.

したがって、継手の溶接金属の形状が(1)式を満足するものであれば、強度やクリープ強度が、母材と同等のオーステナイト系合金鋼のレーザ溶接継手となる。また、このような溶接金属形状にすれば、凝固割れなど溶接欠陥の発生が抑止される。ここで、溶接金属の表面からの深さは、厚さを貫通している場合、W1/2の位置は厚さの1/2位置になる。 Therefore, if the shape of the weld metal of the joint satisfies the formula (1), the laser welded joint of austenitic alloy steel having the same strength and creep strength as the base metal is obtained. In addition, if such a weld metal shape is used, the occurrence of weld defects such as solidification cracks is suppressed. Here, when the depth from the surface of the weld metal penetrates through the thickness, the position of W 1/2 becomes a position of 1/2 of the thickness.

なお、(1)式では W0/W1/2の下限値0.6を規定し、上限値については特には規制しないが、実際のフィラーを用いない1パスのレーザ溶接において実現できるのは、3程度までが限度である。 Note that the lower limit value 0.6 of W 0 / W 1/2 is defined in the expression (1), and the upper limit value is not particularly restricted, but it can be realized in one-pass laser welding without using an actual filler. 3 is the limit.

上述の結果に基づき、このような形状の溶接金属を得るための溶接条件についてさらに検討した。溶接方法は1パスによるレーザビームの貫通溶接で、板厚の異なるオーステナイト系合金鋼の板を用いて、溶接速度、レーザ出力およびビームの焦点位置を変えて溶接をおこない、得られた継手の溶接金属の形状を計測し、(1)式を満足する形状の溶接金属が実現されたときの条件を整理した結果、下記の(2)式を得ることができた。

Figure 2006075853
・・・・・ (2)
ここで、Pはレーザ出力(kW)、fはレーザの焦点位置(mm)(ただし被溶接材の表面を0とし、上側を+、内部側を−とする)、tは母材厚さ(mm)、vは溶接速度(cm/min)である。なお、上記式はP:1〜50kW、f:−2〜+6mm、t:4〜25mm程度の範囲で適用できる。 Based on the above results, the welding conditions for obtaining the weld metal having such a shape were further examined. The welding method is laser beam penetration welding in one pass. Using austenitic alloy steel plates with different thicknesses, welding is performed by changing the welding speed, laser output, and the focal point of the beam. As a result of measuring the shape of the metal and organizing the conditions when a weld metal having a shape satisfying the expression (1) was realized, the following expression (2) could be obtained.
Figure 2006075853
(2)
Here, P is the laser output (kW), f is the focal position of the laser (mm) (where the surface of the welded material is 0, the upper side is +, the inner side is-), and t is the base material thickness ( mm) and v are welding speeds (cm / min). The above formula can be applied in the range of P: 1 to 50 kW, f: -2 to +6 mm, and t: 4 to 25 mm.

上記(2)式で定まる溶接速度範囲より低い速度で溶接をおこなうと、(1)式で示される形状の溶接金属が得られないばかりでなく、溶接金属が厚さ方向に貫通せず、凝固割れが生じやすくなる。また上記(2)式の溶接速度範囲を超える速度で溶接をおこなうと、(1)式で示される形状の溶接金属が得られず、強度が劣り、クリープ強度が十分でない結果になる。   When welding is performed at a speed lower than the welding speed range determined by the above formula (2), not only the weld metal having the shape shown by the formula (1) can be obtained, but the weld metal does not penetrate in the thickness direction and solidifies. Cracks are likely to occur. If welding is performed at a speed exceeding the welding speed range of the above formula (2), the weld metal having the shape shown by the formula (1) cannot be obtained, resulting in inferior strength and insufficient creep strength.

本発明に用いるレーザ熱源はとくに限定するものではないが、YAGレーザ、CO2レーザ等を用いればよい。
次に、本発明の溶接継手に用いるオーステナイト系合金鋼(母材鋼)について説明する。以下各元素の含有量はいずれも質量%である。
The laser heat source used in the present invention is not particularly limited, but a YAG laser, a CO 2 laser, or the like may be used.
Next, the austenitic alloy steel (base material steel) used for the welded joint of the present invention will be described. Hereinafter, the content of each element is mass%.

C:0.2%以下
Cはオーステナイト合金として必要な強度およびクリープ強度を確保するのに有効な元素であり、その効果を得るためには0.01%以上の含有が好ましい。しかし、0.2%を超えて含有させると固溶化処理状態で未固溶の炭化物が残存して、高温強度の向上に寄与しなくなるばかりでなく、靭性等の機械的性質に悪影響を及ぼすようになることから、0.2%以下とする。なお、熱間加工性低下や靭性劣化の観点から、望ましくは0.12%以下とするのよい。
C: 0.2% or less C is an element effective for ensuring the strength and creep strength required for an austenitic alloy. In order to obtain the effect, the content is preferably 0.01% or more. However, if the content exceeds 0.2%, undissolved carbides remain in the solution treatment state, which not only contributes to the improvement of high-temperature strength, but also adversely affects mechanical properties such as toughness. Therefore, the content is made 0.2% or less. In addition, from a viewpoint of a hot workability fall or toughness degradation, it is good to set it as 0.12% or less desirably.

Si:2%以下
Siは脱酸剤として用いられ、また固溶強化元素として添加しているNの作用を向上させるのに有効な元素であり、0.1%以上含有させるのが好ましい。一方、含有量が多くなると溶接性や熱間加工性が劣化するため、2%以下とする。また、本発明鋼のようなN添加鋼ではNの固溶度を低下させる作用があるので、望ましいのは0.8%以下とすることである。
Si: 2% or less Si is used as a deoxidizer and is an element effective for improving the action of N added as a solid solution strengthening element, and is preferably contained in an amount of 0.1% or more. On the other hand, if the content increases, weldability and hot workability deteriorate, so the content is made 2% or less. Moreover, since N addition steel like this invention steel has the effect | action which reduces the solid solubility of N, it is desirable to set it as 0.8% or less.

Mn:3%以下
Siと同様に脱酸剤として有効で、Sの含有に起因する熱間加工性劣化を抑止する作用があり、また固溶強化元素として添加しているNの固溶度の上昇にも有効な元素である。ただし過度の含有では脆化を招くため、3%以下とする。クリープ破断強度等の点からはとくに含有量に下限を設ける必要はないが、上述の脱酸効果や熱間加工性改善の点から0.1%以上含有させるのが好ましい。
Mn: 3% or less It is effective as a deoxidizing agent in the same manner as Si, has an action of suppressing hot workability deterioration due to the inclusion of S, and has a solid solubility of N added as a solid solution strengthening element. It is an effective element for the rise. However, excessive content causes embrittlement, so it is 3% or less. From the viewpoint of creep rupture strength and the like, it is not necessary to set a lower limit to the content, but it is preferable to contain 0.1% or more from the viewpoint of the above-described deoxidation effect and improvement of hot workability.

P:0.03%以下
不純物として混入し、溶接時に溶接凝固割れ感受性を高める元素であるので、少なければ少ないほどよい。ただし極端な低減は経済性の悪化を招くので、顕著な悪影響を及ぼさない限度として、0.03%以下とする。
P: 0.03% or less Since it is an element that is mixed as an impurity and increases the weld solidification cracking susceptibility during welding, the smaller the better. However, since extreme reduction leads to deterioration of economic efficiency, the limit is set to 0.03% or less as a limit that does not have a significant adverse effect.

S:0.01%以下
Pと同様に溶接時において溶接凝固割れ感受性を高める元素であり、且つ粒界に偏析し粒界固着力を低下させ、再熱割れ発生の原因となるため、少なければ少ないほどよい。顕著な悪影響が現れない限界として0.01%以下とする。
S: 0.01% or less As with P, it is an element that increases the susceptibility to weld solidification cracking during welding, and segregates at the grain boundary to lower the grain boundary fixing force, causing reheat cracking. Less is better. The limit of 0.01% or less is set as a limit at which no significant adverse effect appears.

Cr:15〜35%
Crは高温での強度や耐酸化性および耐食性確保の点より必要な元素であり、その十分な効果を発揮させるには15%以上の含有量を確保する必要がある。しかし、過剰に含有させると高温でオーステナイト組織の安定性が低下し、強度が低下するため上限は35%とする。
Cr: 15-35%
Cr is an element necessary for securing strength at high temperatures, oxidation resistance, and corrosion resistance, and it is necessary to ensure a content of 15% or more in order to exert its sufficient effect. However, if it is excessively contained, the stability of the austenite structure decreases at high temperatures and the strength decreases, so the upper limit is made 35%.

Ni:6〜45%
Niはオーステナイト組織を安定化させ、かつクリープ強度の向上に必要な元素であり、6%以上の含有が必要である。さらに高温、長時間での組織の安定性を確保するためには、15%以上の含有とするのが好ましい。しかし、多量の添加は効果が飽和してしまい、それ以上の含有はコストの増大を招くだけなので45%までとする。好ましくは35%以下、より好ましくは25%以下である。
Ni: 6 to 45%
Ni is an element necessary for stabilizing the austenite structure and improving the creep strength, and it is necessary to contain 6% or more. Furthermore, in order to ensure the stability of the structure at a high temperature and for a long time, the content is preferably 15% or more. However, the effect is saturated when a large amount is added, and the addition of more than that causes only an increase in cost, so it is limited to 45%. Preferably it is 35% or less, More preferably, it is 25% or less.

B:0.001〜0.01%
Bは、微細な窒化物の分散析出強化および粒界強化によりクリープ強度を向上させる元素なので少量含有させる。その含有量が0.001%未満では十分な効果が得られない。一方、過剰に添加すると溶接凝固割れ感受性を著しく増大させるため、0.01%以下とする。
B: 0.001 to 0.01%
B is contained in a small amount because B is an element that improves the creep strength by strengthening dispersion precipitation of fine nitrides and strengthening grain boundaries. If the content is less than 0.001%, a sufficient effect cannot be obtained. On the other hand, if excessively added, the sensitivity to weld solidification cracking is remarkably increased, so 0.01% or less.

N:0.05〜0.3%
Nは固溶強化の作用があり、さらにNbN、NbCrN、TiN、VN等を形成し、それらの析出強化により強度やクリープ強度の向上に極めて有効な元素である。とくに、本発明の1パスでのノンフィラーレーザ溶接では、アーク溶接のように溶接ワイヤー等からの合金成分の補充がなされないので、溶接時の蒸発逸散による溶接金属のN含有量の低下を配慮し、0.05%以上を含有させる必要がある。また、NはCと比べて固溶限が大きいので比較的多量に含有させても溶体化状態で固溶させることができ、時効中に生じる窒化物析出に伴う靭性低下も比較的少ない。しかし、多すぎる含有は時効により靭性が大きく劣化し、かつブローホール等の溶接欠陥の原因となるので、0.3%以下とする。
N: 0.05-0.3%
N has an effect of solid solution strengthening, and further forms NbN, NbCrN, TiN, VN and the like, and is an extremely effective element for improving strength and creep strength by precipitation strengthening thereof. In particular, in the non-filler laser welding in one pass of the present invention, the alloy component from the welding wire or the like is not replenished as in arc welding, so the N content of the weld metal is reduced due to evaporation dissipation during welding. In consideration, it is necessary to contain 0.05% or more. Further, since N has a solid solubility limit larger than that of C, even if it is contained in a relatively large amount, it can be dissolved in a solution state, and the toughness reduction accompanying nitride precipitation that occurs during aging is also relatively small. However, if the content is too large, the toughness is greatly deteriorated due to aging, and it causes welding defects such as blow holes, so the content is made 0.3% or less.

Al:0.03%以下
Alは、溶製時の脱酸剤として使用され、その結果として鋼中に残存含有されるが、過剰に残存すると溶接金属中に介在物を形成し、クリープ延性の低下を招くため、Al含有量は0.03%以下とする。なお、MnやSi等の他の元素で十分脱酸できる場合は、添加する必要はなく、その場合は不純物レベルとなる。
Al: 0.03% or less Al is used as a deoxidizer at the time of melting, and as a result, remains in the steel, but if it remains excessively, it forms inclusions in the weld metal and creep ductility In order to cause a decrease, the Al content is set to 0.03% or less. In addition, when it can fully deoxidize with other elements, such as Mn and Si, it is not necessary to add, In that case, it becomes an impurity level.

Nb:0.01〜1.5% 、Ti:0.005〜0.5%およびV:0.01〜1%の1種又は2種以上
これらの元素は炭窒化物を形成し、それらは微細に析出して組織の微細化や析出強化により強度やクリープ強度を向上させる作用がある。したがって、含有させてその効果を発揮させるためには、Nbでは0.01%以上、Tiでは0.005%以上、Vでは0.01%以上含有させる必要がある。一方、過剰に含むと溶接凝固割れ感受性を高くしたり、溶接性や加工性を劣化させたりするため、Nbは1.5%以下、Tiでは0.5%以下、Vでは1%以下の範囲に限定しなければならない。Nbの場合、とくにNbN、NbCrNおよびNbCを同時に形成して微細に凝固組織の粒内及び粒界に析出し、溶接金属の強度およびクリープ強度の向上効果が大きいので、このような目的にNbを含有させる場合は、0.1%以上の含有とするのが好ましい。
One or more of Nb: 0.01 to 1.5%, Ti: 0.005 to 0.5% and V: 0.01 to 1% These elements form carbonitrides, It has the effect of improving the strength and creep strength by fine precipitation and refinement of the structure and precipitation strengthening. Therefore, in order to make it contain and to exhibit the effect, it is necessary to contain 0.01% or more for Nb, 0.005% or more for Ti, and 0.01% or more for V. On the other hand, if excessively contained, the sensitivity to weld solidification cracking is increased, and weldability and workability are deteriorated. Therefore, Nb is 1.5% or less, Ti is 0.5% or less, and V is 1% or less. Must be limited to. In the case of Nb, NbN, NbCrN and NbC are formed at the same time and are finely deposited in the grains and grain boundaries of the solidified structure, and the effect of improving the strength and creep strength of the weld metal is great. When it contains, it is preferable to make it contain 0.1% or more.

Mo:0.2〜3%、W:0.2〜4%およびCu:0.2〜5%の1種または2種以上
Mo、WおよびCuは、いずれもクリープ強度を改善する効果があり、含有させなくてもよいが、要すればこれらの1種または2種以上を含有させる。クリープ強度が向上する理由は、MoおよびWは固溶によるマトリックスの強化によると考えられ、Cuは高温で析出してマトリックスを強化するためと考えられる。このような効果を発揮させるためには、Mo、WおよびCuはそれぞれ0.2%以上含有させる。しかし多すぎる含有は、効果が飽和して無駄になるだけでなく、加工性が劣化し、溶接時の凝固割れ感受性が増大するなど、有害な作用が現れてくるので、Moは3%まで、Wは4%まで、Cuは5%までとするのがよい。
One or more of Mo: 0.2-3%, W: 0.2-4% and Cu: 0.2-5% Mo, W, and Cu all have the effect of improving creep strength However, if necessary, one or more of these may be contained. The reason why the creep strength is improved is considered that Mo and W are due to the strengthening of the matrix by solid solution, and Cu is precipitated at a high temperature to strengthen the matrix. In order to exhibit such an effect, Mo, W, and Cu are contained by 0.2% or more, respectively. However, if the content is too large, not only is the effect saturated and wasted, but workability is deteriorated and susceptibility to solidification cracking at the time of welding increases, so Mo appears up to 3%. It is preferable that W is up to 4% and Cu is up to 5%.

表1に示す化学組成のオーステナイト系合金鋼を、高周波加熱真空溶解炉を用いて溶製し、得られた鋳塊を通常の方法にて鍛造、圧延、溶体化等の熱処理を施した後、切削成形して厚さ6〜10mm、幅100mm、長さ100mmの板状試験片を作製した。   After austenitic alloy steel having the chemical composition shown in Table 1 was melted using a high-frequency heating vacuum melting furnace, the obtained ingot was subjected to heat treatment such as forging, rolling, solution treatment, etc. by a normal method, A plate-shaped test piece having a thickness of 6 to 10 mm, a width of 100 mm, and a length of 100 mm was prepared by cutting.

Figure 2006075853
これらの試験片にて、同じ組成同じ板厚の母材の端面を突合わせ、突合わせ部にレーザビームを照射して1パスのレーザ溶接をおこなった。溶接熱源にLD励起YAGレーザ溶接機を使用し、母材および板厚と、レーザ出力、焦点位置および溶接速度等の溶接条件とを変えて、溶接継手を作製した。表2に作製した継手の使用母材、溶接条件を示す。溶接条件の焦点位置は、板面を0とし、板面より上を+、板面以下を−として示している。また、板厚、レーザ出力および焦点位置から定まる(2)式による溶接速度範囲についても、合わせて表2に示す。
Figure 2006075853
With these test pieces, the end surfaces of the base materials having the same composition and the same thickness were butted together, and a laser beam was irradiated to the butted portion to perform one-pass laser welding. An LD-excited YAG laser welder was used as the welding heat source, and welding joints were produced by changing the base material and plate thickness, and welding conditions such as laser output, focal position and welding speed. Table 2 shows the base metal used and the welding conditions of the manufactured joint. The focal position of the welding conditions is indicated by 0 on the plate surface, + above the plate surface, and-below the plate surface. Table 2 also shows the welding speed range according to equation (2) determined from the plate thickness, laser output, and focal position.

得られた継手試験片について、断面における溶込み形状および凝固割れの観察、硬さの測定、およびクリープ試験をおこなった。断面調査は溶接長手方向の中央部(1/2)と1/4および3/4位置の3ヶ所でおこない、硬さは図2に示すように継手の断面において板厚中心にそって1mm間隔で試験力9.807Nのビッカース硬さを14点測定した。クリープ試験は溶接部が中央になるように図3に示す形状の試験片を削り出し、母材での破断時間が約1000時間となる条件、すなわちA1、A2およびA3材では700℃、147.1MPaの条件、A4およびA5材では700℃、156.9MPaの条件にてそれぞれ破断時間を調査した。   About the obtained joint test piece, the penetration shape and the solidification crack in a cross section, the measurement of hardness, and the creep test were done. The cross-sectional investigation is conducted at the central part (1/2) in the longitudinal direction of the weld and at 1/4 and 3/4 positions, and the hardness is 1 mm along the center of the plate thickness in the joint cross section as shown in FIG. The Vickers hardness with a test force of 9.807 N was measured at 14 points. In the creep test, the test piece having the shape shown in FIG. 3 is cut out so that the weld is in the center, and the fracture time in the base material is about 1000 hours, that is, 700 ° C. and 147. The break times were investigated under the conditions of 1 MPa, A4 and A5 materials at 700 ° C. and 156.9 MPa.

試験結果を表2に合わせて示す。溶込み形状については、貫通溶込み形状が得られたものを「良好」、貫通溶込み形状が得られなかったものおよび溶落ち形状となってしまったものは「不良」として表示している。   The test results are shown in Table 2. With respect to the penetration shape, those having a penetration penetration shape are indicated as “good”, those having no penetration penetration shape and those having a penetration penetration shape are indicated as “bad”.

割れについては、溶接金属に凝固割れが見いだされなかったものは「無し」、割れの発生していたものは「有り」とした。また、溶接金属の断面形状から(1)式で規定したW0/W1/2を求め、その値を示した。継手硬さについては、母材から溶接金属にわたる硬さ分布測定結果で、溶接金属の硬さが母材硬さの90%以上の値を示した場合は○印、90%未満の場合は×印を記載した。このような測定にて溶接金属の硬さが母材硬さの90%以上の値を示す場合、継手の引張試験を行うとその強度は母材と同等かそれ以上の値を示す。 With regard to cracking, “no” was given when no solidification cracking was found in the weld metal, and “yes” when cracking occurred. Further, W 0 / W 1/2 defined by the equation (1) was determined from the cross-sectional shape of the weld metal, and the value was shown. For joint hardness, the hardness distribution measurement result from the base metal to the weld metal indicates that the weld metal hardness is 90% or more of the base metal hardness. The mark was described. In such a measurement, when the hardness of the weld metal shows a value of 90% or more of the base metal hardness, the strength of the joint shows a value equal to or higher than that of the base material when a joint tensile test is performed.

クリープ強度は、母材の破断時間に対して、80%以上の破断時間、すなわち800時間以上を示す場合、継手として良好と判断される。なお、溶込み形状が不良である場合や、割れが発生した場合、クリープ強度は測定しなかった。   When the creep strength shows a rupture time of 80% or more, that is, 800 hours or more with respect to the rupture time of the base material, it is judged that the creep strength is good. Note that the creep strength was not measured when the penetration shape was poor or when cracks occurred.

Figure 2006075853
Figure 2006075853

表2の結果から明らかなように、溶接速度が(2)式で規制される範囲内として溶接をおこなった場合、溶込みが未貫通であったり、溶落ちが生じたりする溶込み形状不良は発生せず、凝固割れもなく、かつW0/W1/2の値が0.6以上である継手が得られている。 As is apparent from the results in Table 2, when welding is performed within the range where the welding speed is regulated by the formula (2), the penetration shape defect that the penetration is not penetrated or the burnout occurs is There has been obtained a joint which does not occur, has no solidification cracking, and has a value of W 0 / W 1/2 of 0.6 or more.

そして、W0/W1/2の値が0.6以上、すなわち、溶接金属の形状が(1)式を満足する本発明のレーザ溶接継手では、その硬さもしくは硬さから推測される強度、およびクリープ強度が母材と同等であることを示している。 In the laser welded joint of the present invention in which the value of W 0 / W 1/2 is 0.6 or more, that is, the shape of the weld metal satisfies the formula (1), the hardness or the strength estimated from the hardness And the creep strength is equivalent to that of the base material.

0およびW1/2の測定位置を示す溶接金属形状の模式図である。It is a schematic diagram of a weld metal shape showing the measurement positions of W 0 and W 1/2 . 継手の溶接金属の硬さの測定位置を示す図である。It is a figure which shows the measurement position of the hardness of the weld metal of a coupling. 継手のクリープ強度を測定する試験片を説明する図である。It is a figure explaining the test piece which measures the creep strength of a coupling.

Claims (4)

耐熱用に使用されるオーステナイト系合金鋼を母材とする溶接継手であって、フィラーを用いない1パスのレーザ溶接による継手であり、溶接金属の形状がレーザ照射側表面のビード幅をW0、溶接金属の表面からの1/2深さ位置における幅をW1/2とするとき、下記(1)式を満足するものであることを特徴とするオーステナイト系合金鋼のレーザ溶接継手。
0/W1/2 ≧ 0.6 ・・・・・ (1)
This is a welded joint made of austenitic alloy steel used for heat resistance as a base material, and is a joint by laser welding of one pass without using a filler, and the shape of the weld metal has a bead width W 0 on the laser irradiation side surface. A laser welded austenitic alloy steel characterized by satisfying the following formula (1) when the width at the 1/2 depth position from the surface of the weld metal is W 1/2 .
W 0 / W 1/2 ≧ 0.6 (1)
質量%で、C:0.2%以下、Si:2%以下、Mn:3%以下、P:0.03%以下、S:0.01%以下、Cr:15〜35%、Ni:6〜45%、B:0.001〜0.01%、N:0.05〜0.3%、Al:0.03%以下で、Nb:0.01〜1.5%、Ti:0.005〜0.5%およびV:0.01〜1%の1種または2種以上を含み残部はFeおよび不純物であるオーステナイト系合金鋼を母材とする溶接継手であって、フィラーを用いない1パスのレーザ溶接による継手であり、溶接金属の形状がレーザ照射側表面のビード幅をW0、溶接金属の表面からの1/2深さ位置における幅をW1/2とするとき、下記(1)式を満足するものであることを特徴とするオーステナイト系合金鋼のレーザ溶接継手。
0/W1/2 ≧ 0.6 ・・・・・ (1)
In mass%, C: 0.2% or less, Si: 2% or less, Mn: 3% or less, P: 0.03% or less, S: 0.01% or less, Cr: 15 to 35%, Ni: 6 -45%, B: 0.001-0.01%, N: 0.05-0.3%, Al: 0.03% or less, Nb: 0.01-1.5%, Ti: 0.00. One or more of 005 to 0.5% and V: 0.01 to 1%, with the balance being a welded joint made of austenitic alloy steel, which is Fe and impurities, with no filler This is a joint by laser welding of one pass, and when the shape of the weld metal is W 0 on the laser irradiation side surface and the width at the 1/2 depth position from the surface of the weld metal is W 1/2 A laser weld joint of austenitic alloy steel characterized by satisfying the formula (1).
W 0 / W 1/2 ≧ 0.6 (1)
質量%で、C:0.2%以下、Si:2%以下、Mn:3%以下、P:0.03%以下、S:0.01%以下、Cr:15〜35%、Ni:6〜45%、B:0.001〜0.01%、N:0.05〜0.3%、Al:0.03%以下で、Nb:0.01〜1.5%、Ti:0.005〜0.5%およびV:0.01〜1%の1種または2種以上と、さらにMo:0.2〜3%、W:0.2〜4%およびCu:0.2〜5%の1種または2種以上とを含み残部はFeおよび不純物であるオーステナイト系合金鋼を母材とする溶接継手であって、フィラーを用いない1パスのレーザ溶接による継手であり、溶接金属の形状がレーザ照射側表面のビード幅をW0、溶接金属の表面からの1/2深さ位置における幅をW1/2とするとき、下記(1)式を満足するものであることを特徴とするオーステナイト系合金鋼のレーザ溶接継手。
0/W1/2 ≧ 0.6 ・・・・・ (1)
In mass%, C: 0.2% or less, Si: 2% or less, Mn: 3% or less, P: 0.03% or less, S: 0.01% or less, Cr: 15 to 35%, Ni: 6 -45%, B: 0.001-0.01%, N: 0.05-0.3%, Al: 0.03% or less, Nb: 0.01-1.5%, Ti: 0.00. One or more of 005 to 0.5% and V: 0.01 to 1%, Mo: 0.2 to 3%, W: 0.2 to 4%, and Cu: 0.2 to 5 %, And the balance is a welded joint made of austenitic alloy steel, which is Fe and impurities, and is a joint by laser welding of one pass without using a filler. W 0 to bead width shape the laser irradiation surface, the width at half depth position from the surface of the weld metal when a W 1/2, the following equation (1) Laser welded joint of austenitic steel alloy, characterized in that it is intended to satisfy.
W 0 / W 1/2 ≧ 0.6 (1)
請求項1、2または3に記載のオーステナイト系合金鋼の厚さt(mm)の鋼材に対し、レーザ溶接の出力をP(kW)、レーザ照射の焦点位置をf(mm)(ただし、鋼材表面位置が0、表面より上側が+、内部側が−である)とするとき、溶接速度v(cm/min)を、下記(2)式で規定される範囲としてフィラーを用いない1パスのレーザ溶接をおこなうことを特徴とする請求項1、2または3に記載のオーステナイト系合金鋼のレーザ溶接継手の製造方法。
Figure 2006075853
・・・・・ (2)
4. For the steel material of thickness t (mm) of the austenitic alloy steel according to claim 1, 2 or 3, the laser welding output is P (kW) and the focal point of laser irradiation is f (mm) (however, the steel material When the surface position is 0, the upper side from the surface is +, and the inner side is-), the welding speed v (cm / min) is set to a range defined by the following equation (2), and a one-pass laser that does not use a filler The method for manufacturing a laser welded joint of austenitic alloy steel according to claim 1, 2 or 3, wherein welding is performed.
Figure 2006075853
(2)
JP2004260864A 2004-09-08 2004-09-08 Laser-welded joint of austenitic alloy steel and its production method Pending JP2006075853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004260864A JP2006075853A (en) 2004-09-08 2004-09-08 Laser-welded joint of austenitic alloy steel and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004260864A JP2006075853A (en) 2004-09-08 2004-09-08 Laser-welded joint of austenitic alloy steel and its production method

Publications (1)

Publication Number Publication Date
JP2006075853A true JP2006075853A (en) 2006-03-23

Family

ID=36155745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004260864A Pending JP2006075853A (en) 2004-09-08 2004-09-08 Laser-welded joint of austenitic alloy steel and its production method

Country Status (1)

Country Link
JP (1) JP2006075853A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102822654A (en) * 2010-03-30 2012-12-12 株式会社鹭宫制作所 Pressure-sensitive device and method of welding joint of pressure-sensitive device
CN104400225A (en) * 2014-09-25 2015-03-11 北京航星机器制造有限公司 Laser welding method for Ti2A1Nb intermetallic compound
JP2015107500A (en) * 2013-12-04 2015-06-11 新日鐵住金株式会社 Weld material for austenitic heat resistant steel, and weld metal and weld joint using the same
CN105916627A (en) * 2014-01-17 2016-08-31 株式会社日立制作所 Laser welding method and welded joint
CN108637477A (en) * 2018-05-11 2018-10-12 湖南大学 A method of increasing different-metal material welding molten bath both sides recess
JP2019044242A (en) * 2017-09-05 2019-03-22 日新製鋼株式会社 Austenitic stainless weld member
JP2019044243A (en) * 2017-09-05 2019-03-22 日新製鋼株式会社 Austenitic stainless weld member
EP4144871A1 (en) * 2020-04-30 2023-03-08 Nippon Steel Corporation Austenitic heat-resistant steel
EP4144872A1 (en) * 2020-04-30 2023-03-08 Nippon Steel Corporation Method for manufacturing austenitic heat-resistant steel

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6422488A (en) * 1987-07-20 1989-01-25 Toshiba Corp Laser beam welding method
JPH06328280A (en) * 1993-05-14 1994-11-29 Nippon Steel Corp Laser welding method for steel sheet
JPH0796383A (en) * 1993-09-29 1995-04-11 Kobe Steel Ltd Laser beam welding method of aluminum or aluminum alloy
JPH07303916A (en) * 1992-08-24 1995-11-21 Sumitomo Metal Ind Ltd Welding method for tube manufacturing under multiple heat source
JPH0953145A (en) * 1995-08-15 1997-02-25 Nkk Corp Resistance welded tube excellent in corrosion resistance to carbon dioxide gas and its production
JPH10296471A (en) * 1997-04-24 1998-11-10 Topy Ind Ltd Laser beam welding method for long size member of sheet and using the same method
JPH1161352A (en) * 1997-08-27 1999-03-05 Nkk Corp Austenitic steel excellent in strength and corrosion resistance at high temperature
JP2002079386A (en) * 2000-09-07 2002-03-19 Nippon Steel Corp Method for detecting weld defect in laser beam welding
JP2002096111A (en) * 2000-09-19 2002-04-02 Nisshin Steel Co Ltd METHOD FOR MANUFACTURING Mo-CONTAINING HIGH-Cr HIGH-Ni AUSTENITIC STAINLESS STEEL PIPE EXCELLENT IN DUCTILITY OF WELDED PART
JP2003088969A (en) * 2001-09-18 2003-03-25 Hitachi Zosen Corp Thick plate lap welding method and equipment

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6422488A (en) * 1987-07-20 1989-01-25 Toshiba Corp Laser beam welding method
JPH07303916A (en) * 1992-08-24 1995-11-21 Sumitomo Metal Ind Ltd Welding method for tube manufacturing under multiple heat source
JPH06328280A (en) * 1993-05-14 1994-11-29 Nippon Steel Corp Laser welding method for steel sheet
JPH0796383A (en) * 1993-09-29 1995-04-11 Kobe Steel Ltd Laser beam welding method of aluminum or aluminum alloy
JPH0953145A (en) * 1995-08-15 1997-02-25 Nkk Corp Resistance welded tube excellent in corrosion resistance to carbon dioxide gas and its production
JPH10296471A (en) * 1997-04-24 1998-11-10 Topy Ind Ltd Laser beam welding method for long size member of sheet and using the same method
JPH1161352A (en) * 1997-08-27 1999-03-05 Nkk Corp Austenitic steel excellent in strength and corrosion resistance at high temperature
JP2002079386A (en) * 2000-09-07 2002-03-19 Nippon Steel Corp Method for detecting weld defect in laser beam welding
JP2002096111A (en) * 2000-09-19 2002-04-02 Nisshin Steel Co Ltd METHOD FOR MANUFACTURING Mo-CONTAINING HIGH-Cr HIGH-Ni AUSTENITIC STAINLESS STEEL PIPE EXCELLENT IN DUCTILITY OF WELDED PART
JP2003088969A (en) * 2001-09-18 2003-03-25 Hitachi Zosen Corp Thick plate lap welding method and equipment

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102822654A (en) * 2010-03-30 2012-12-12 株式会社鹭宫制作所 Pressure-sensitive device and method of welding joint of pressure-sensitive device
JP2015107500A (en) * 2013-12-04 2015-06-11 新日鐵住金株式会社 Weld material for austenitic heat resistant steel, and weld metal and weld joint using the same
CN105916627A (en) * 2014-01-17 2016-08-31 株式会社日立制作所 Laser welding method and welded joint
EP3095548A4 (en) * 2014-01-17 2017-09-27 Hitachi, Ltd. Laser welding method and welded joint
CN104400225A (en) * 2014-09-25 2015-03-11 北京航星机器制造有限公司 Laser welding method for Ti2A1Nb intermetallic compound
JP2019044242A (en) * 2017-09-05 2019-03-22 日新製鋼株式会社 Austenitic stainless weld member
JP2019044243A (en) * 2017-09-05 2019-03-22 日新製鋼株式会社 Austenitic stainless weld member
CN108637477A (en) * 2018-05-11 2018-10-12 湖南大学 A method of increasing different-metal material welding molten bath both sides recess
EP4144871A1 (en) * 2020-04-30 2023-03-08 Nippon Steel Corporation Austenitic heat-resistant steel
EP4144872A1 (en) * 2020-04-30 2023-03-08 Nippon Steel Corporation Method for manufacturing austenitic heat-resistant steel
EP4144871A4 (en) * 2020-04-30 2024-05-22 Nippon Steel Corporation Austenitic heat-resistant steel
EP4144872A4 (en) * 2020-04-30 2024-05-22 Nippon Steel Corporation Method for manufacturing austenitic heat-resistant steel

Similar Documents

Publication Publication Date Title
KR101586590B1 (en) Austenite steel welded joint
WO2011155620A1 (en) Ultra high-strength welded joint and method for producing same
JP6432716B1 (en) Fillet welded joint and manufacturing method thereof
CN111344427B (en) Austenitic heat-resistant steel weld metal, weld joint, weld material for austenitic heat-resistant steel, and method for producing weld joint
WO2019070000A1 (en) Austenitic stainless steel weld metal and welded structure
JP6492811B2 (en) Welding material and weld metal and welded joint formed using the same
JP2007119811A (en) Welded joint and its manufacturing method
JP6642282B2 (en) Manufacturing method of austenitic stainless steel welded joint
JP6235402B2 (en) Weld metal with excellent strength, toughness and SR cracking resistance
JPWO2019186701A1 (en) Ni-based alloy wire for submerged arc welding and method for manufacturing welded joint
KR102255016B1 (en) Welding materials for austenitic heat-resistant steel, weld metals and welded structures, and methods of manufacturing welded metals and welded structures
JP2006075853A (en) Laser-welded joint of austenitic alloy steel and its production method
JP3504518B2 (en) Welding material for martensitic stainless steel, welded joint and method for producing the same
JP6448844B1 (en) Welding method
JP2005125348A (en) Large heat input butt welded joint superior in brittle fracture characteristic resistance
JP3939563B2 (en) Cored wire and solid wire for laser welding of steel
EP3795709B1 (en) High chromium creep resistant weld metal for arc welding of thin walled steel members
JP5361516B2 (en) Flux-cored wire for metal-based gas shielded arc welding for hardfacing
JP7502041B2 (en) Welding materials for high Cr ferritic heat-resistant steel
JP2004136329A (en) Ferrous filler metal for laser beam welding
JP4542361B2 (en) Ferritic ERW boiler tube with excellent reheat cracking resistance and its manufacturing method
JP6107170B2 (en) Welding material for austenitic heat-resistant steel, weld metal and welded joint produced using the same
JP6515287B2 (en) Method of manufacturing welded joint
JP3145228B2 (en) Laser welding method for thin steel plate
JP7477763B2 (en) Method for manufacturing welded joint using low-temperature Ni steel and welded joint obtained by the method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100428

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120214