JP2002079386A - Method for detecting weld defect in laser beam welding - Google Patents

Method for detecting weld defect in laser beam welding

Info

Publication number
JP2002079386A
JP2002079386A JP2000271714A JP2000271714A JP2002079386A JP 2002079386 A JP2002079386 A JP 2002079386A JP 2000271714 A JP2000271714 A JP 2000271714A JP 2000271714 A JP2000271714 A JP 2000271714A JP 2002079386 A JP2002079386 A JP 2002079386A
Authority
JP
Japan
Prior art keywords
intensity
light
emission spectrum
nitrogen
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000271714A
Other languages
Japanese (ja)
Inventor
Yasunobu Miyazaki
康信 宮崎
Seiji Furusako
誠司 古迫
Takashi Tanaka
隆 田中
Masahiro Obara
昌弘 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000271714A priority Critical patent/JP2002079386A/en
Publication of JP2002079386A publication Critical patent/JP2002079386A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Laser Beam Processing (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for detecting a weld defect or a method for monitoring quality of a weld zone which method is carried out by using a measuring device having a comparatively low resolution in a laser beam welding and enables obtaining of a stable and excellent correlation with the presence or absence of blow holes or pit defects even when a secular contamination is generated at the light-receiving part of the measuring device. SOLUTION: The method for detecting the weld defect in the laser beam welding is characterized in that the intensity of a predetermined light, which is in the range of wave length between 741 and 748 nm including the light emission spectrum of nitrogen among the light emission of the laser beam- induced plasma formed at a point irradiated or pierced with the laser beam, and the intensity of a predetermined light, which includes the light emission spectrum of iron and excludes the light emission spectrum of argon, are each measured in a laser beam welding, a ratio of the light intensities derived by dividing the former intensity by the latter intensity is used as a decision signal, and the presence or absence of the weld defect is determined by comparing the decision signal with the decision value preliminarily decided by an experiment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レーザ溶接部に発
生するブローホールやピットという溶接欠陥の発生有無
を、溶接中に確実に知ることができるレーザ溶接におけ
る溶接欠陥の検知方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting a welding defect in laser welding, in which the presence or absence of a welding defect such as a blowhole or a pit generated in a laser welding portion can be reliably known during welding.

【0002】[0002]

【従来の技術】レーザ溶接は熱源がレーザ光であるた
め、TIG溶接法やMIG溶接等のような気体中の放電
現象(アーク)を利用する溶接法に比較して入熱量の制御
が容易であり、溶接条件を適切に設定すれば高品質の溶
接継ぎ手を効率的に得ることができる。
2. Description of the Related Art In laser welding, since the heat source is a laser beam, the amount of heat input can be easily controlled as compared with a welding method utilizing a discharge phenomenon (arc) in a gas such as TIG welding or MIG welding. Yes, if the welding conditions are set appropriately, a high quality welded joint can be obtained efficiently.

【0003】しかしながら、レーザ溶接においてもシー
ルドガス流の乱れや溶接速度等の溶接条件の変動を完全
に無くすことは困難であり、これら溶接条件が変動する
と、溶接ビードにブローホールやピット等の溶接欠陥が
発生することがあるため、溶接欠陥の発生有無を検知す
ることは重要である。
However, even in laser welding, it is difficult to completely eliminate fluctuations in welding conditions such as turbulence of the shield gas flow and welding speed. Since defects may occur, it is important to detect whether or not welding defects have occurred.

【0004】従来のレーザ溶接時の溶接部の欠陥の監視
方法として、特開平08−267241号公報では、レ
ーザ溶接時に被溶接材やシールドガスの一部が電離して
プラズマ状態になって発する光のうち、溶接部裏側のA
r、HeまたはFeの発光スペクトル線強度を測定し
て、その強度変化から溶接部の溶け落ちや裏ビード形状
の状態を検知する方法が開示されている。
[0004] As a conventional method for monitoring a defect in a welded portion during laser welding, Japanese Patent Application Laid-Open No. 08-267241 discloses a method in which a part of a material to be welded or a shielding gas is ionized and becomes a plasma during laser welding. Of the A on the back side of the weld
There is disclosed a method of measuring the emission spectrum line intensity of r, He or Fe, and detecting the burn-through of the welded portion or the state of the back bead shape from the change in the intensity.

【0005】また、特開平08−281457号公報で
は、溶接部表側の光の強度を異なる俯角の2方向から測
定して、キーホール内部のプラズマ光強度とキーホール
上部のプラズマ光強度とを別々に測定し、正確に溶接部
分の溶融状態を検知して、ビード形状不良の発生を監視
する方法が開示されている。
In Japanese Patent Application Laid-Open No. 08-281457, the intensity of light on the front side of the weld is measured from two directions with different depression angles, and the plasma light intensity inside the keyhole and the plasma light intensity above the keyhole are separately measured. And a method for accurately detecting the molten state of a welded portion and monitoring the occurrence of a defective bead shape.

【0006】しかしながら、特開平08−267241
号公報および特開平08−281457号公報の開示技
術では、溶接ビード形状または溶接部の溶け落ちを監視
することはできても、ブローホールやピット欠陥はその
発生メカニズムが異なることから、これら欠陥を検知で
きないという問題があった。
However, Japanese Patent Application Laid-Open No. 08-267241 discloses
In the technology disclosed in Japanese Patent Application Laid-Open No. 08-281457 and Japanese Patent Application Laid-Open No. 08-281457, although it is possible to monitor the shape of a weld bead or burn-through of a welded portion, blow holes and pit defects have different generation mechanisms. There was a problem that it could not be detected.

【0007】本発明を行う上で課題としたブローホール
やピット欠陥の発生有無を知るためにもレーザ誘起プラ
ズマの発光強度が測定される。
[0007] The emission intensity of laser-induced plasma is also measured in order to know the occurrence of blowholes and pit defects, which are problems in carrying out the present invention.

【0008】特開平11−188489号公報では、鋼
板裏面溶接部をHeガスでシールドして溶接する際に、
鋼板裏面に発生したプラズマプルームの発する光の強度
が、所定の強度の2倍以上になるか否かによってブロー
ホールやピット欠陥の発生有無を検出する方法、および
鋼板裏面をArまたはArおよびHeの混合ガスでシー
ルドする場合に、鋼板裏面のレーザ誘起プラズマの発す
る光のうち、窒素の特定波長光(発光スペクトル線)の強
度を測定し、その値が異常変動するか否かを監視するこ
とによって溶接欠陥の発生有無を検知する方法が開示さ
れている。また、窒素の特定波長光としては、410.
3nm、441.0nm、568.0nmの発光線を用
いることが好ましいとしている。
In Japanese Patent Application Laid-Open No. 11-188489, when welding the back surface of a steel sheet by shielding it with He gas,
A method for detecting the presence or absence of a blow hole or a pit defect by determining whether the intensity of light emitted from a plasma plume generated on the back surface of a steel plate is twice or more a predetermined intensity, and a method for detecting the back surface of the steel plate with Ar or Ar and He. When shielding with a mixed gas, of the light emitted by the laser-induced plasma on the back of the steel sheet, the intensity of the specific wavelength light of nitrogen (emission spectrum line) is measured, and by monitoring whether the value abnormally fluctuates. A method for detecting the presence or absence of a welding defect is disclosed. As the specific wavelength light of nitrogen, 410.
It is stated that it is preferable to use emission lines of 3 nm, 441.0 nm, and 568.0 nm.

【0009】しかし、上記特開平11−188489号
公報に開示された監視方法では、用いる測定器が高精度
(波長分解能が十分高い)でなければ、光の強度変化とボ
ローホールやピット欠陥の発生有無との対応関係が極め
て曖昧となり、欠陥の検知が困難となるという問題があ
った。また、プラズマプルームの発する光の強度や窒素
の特定波長光の強度だけで溶接欠陥の発生有無を判定す
るため、プラズマ光の受光部が溶接によって発生するヒ
ュームによって汚れて信号強度が経時的に低下した場合
に、溶接欠陥の発生有無を誤って判定するという問題が
あった。
However, in the monitoring method disclosed in the above-mentioned Japanese Patent Application Laid-Open No. H11-188489, the measuring instrument used is highly accurate.
Unless the wavelength resolution is sufficiently high, the correspondence between the change in light intensity and the presence or absence of a borrow hole or a pit defect becomes extremely ambiguous, and there is a problem that detection of the defect becomes difficult. In addition, since the presence or absence of welding defects is determined only by the intensity of light emitted from the plasma plume or the intensity of light of a specific wavelength of nitrogen, the light receiving portion of the plasma light is contaminated by fumes generated by welding, and the signal intensity decreases over time. In such a case, there is a problem that the presence / absence of a welding defect is erroneously determined.

【0010】[0010]

【発明が解決しようとする課題】上記従来技術の問題点
に鑑み、本発明の目的は、レーザ溶接時に、比較的分解
能が低く安価な測定器を用いることができ、かつ溶接に
よって発生するヒュームなどによる受光部の汚損によっ
て受光能力が低下し、信号強度が低下した場合にも、長
期的に安定して溶接欠陥の発生有無を検知することがで
きるレーザ溶接における溶接欠陥の検知方法または溶接
品質の監視方法を提供することにある。
SUMMARY OF THE INVENTION In view of the above-mentioned problems of the prior art, an object of the present invention is to use an inexpensive measuring instrument having relatively low resolution during laser welding, and to generate fumes generated by welding. Even if the light receiving ability is reduced due to contamination of the light receiving part due to the deterioration of the signal intensity and the signal strength is reduced, it is possible to stably detect the presence or absence of a welding defect over a long period of time. It is to provide a monitoring method.

【0011】[0011]

【課題を解決するための手段】本発明は上記の課題を解
決するものであり、その要旨は、以下の通りである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and the gist thereof is as follows.

【0012】(1) 被接合材の表面または裏面の溶接
部をHeガスでシールドしてレーザ溶接を行う際に、H
eガスでシールドされた前記溶接部のレーザ加工点近傍
に発生するレーザ誘起プラズマの発する光のうちで、窒
素の発光スペクトル線を含む波長範囲741〜748n
mにある所定の光の強度と鉄の発光スペクトル線を含む
所定の光の強度をそれぞれ測定し、前者を後者で除した
光の強度比を判定信号として、この判定信号と予め実験
により定めた判定値とを比較することにより溶接欠陥の
発生有無を判定することを特徴とするレーザ溶接におけ
る溶接欠陥の検知方法。
(1) When laser welding is performed by shielding the welded portion on the front surface or the back surface of the material to be joined with He gas,
Among the light emitted by the laser-induced plasma generated near the laser processing point of the welded portion shielded by e-gas, a wavelength range 741 to 748n including an emission spectrum line of nitrogen.
m, and the intensity of the predetermined light including the emission spectrum line of iron was measured, and the intensity ratio of light obtained by dividing the former by the latter was determined as a determination signal. A method for detecting welding defects in laser welding, wherein the presence or absence of a welding defect is determined by comparing a determination value.

【0013】(2) 被接合材の表面または裏面の溶接
部をArガスまたは、Arを含む混合ガスでシールドし
てレーザ溶接を行う際に、ArガスまたはArガスを含
むシールドガスでシールドされた前記溶接部のレーザ加
工点近傍に発生するレーザ誘起プラズマの発する光のう
ちで、窒素の発光スペクトル線を含む波長範囲741〜
748nmにある所定の光の強度と鉄の発光スペクトル
線を含み、かつArの発光スペクトル線を含まない所定
の光の強度をそれぞれ測定し、前者を後者で除した光の
強度比を判定信号として、この判定信号と予め実験によ
り定めた判定値とを比較することにより溶接欠陥の発生
有無を判定することを特徴とするレーザ溶接における溶
接欠陥の検知方法。
(2) When laser welding is performed by shielding the welded portion on the front or back surface of the material to be joined with Ar gas or a mixed gas containing Ar, the material is shielded with Ar gas or a shield gas containing Ar gas. Of the light emitted by the laser-induced plasma generated in the vicinity of the laser processing point of the welding portion, a wavelength range 741 including a light emission spectrum line of nitrogen is included.
A predetermined light intensity at 748 nm and a predetermined light intensity including an emission spectrum line of iron and not including an emission spectrum line of Ar are measured, and an intensity ratio of light obtained by dividing the former by the latter is used as a determination signal. A method for detecting welding defects in laser welding, wherein the presence or absence of a welding defect is determined by comparing the determination signal with a determination value determined in advance by an experiment.

【0014】[0014]

【発明の実施の形態】本発明について、以下に詳細に説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below.

【0015】一般に、レーザ溶接時に溶接部のシールド
ガス流量に変動が生じたり、加工点近傍の幾何学的な形
状が変化してシールドガス流が乱れるとシールド性が低
下し、大気中の窒素分子がレーザビームの照射されてい
る加工点近傍に侵入する。侵入した窒素分子は、レーザ
誘起プラズマ中で原子状に解離または電離されるが、こ
れら原子状窒素は窒素分子に比較すると格段に溶鋼中に
溶解し易い。このため溶鋼中に多量の窒素が溶解し、溶
融金属が凝固する際に溶鋼に溶解した窒素がブローホー
ルやピット欠陥を形成する。
In general, when the shield gas flow rate at the welded portion fluctuates during laser welding or when the shield gas flow is disturbed due to a change in the geometrical shape near the processing point, the shielding performance is reduced and nitrogen molecules in the atmosphere are reduced. Penetrates into the vicinity of the processing point irradiated with the laser beam. The invading nitrogen molecules are dissociated or ionized into atoms in the laser-induced plasma, but these atomic nitrogens are much easier to dissolve in molten steel than nitrogen molecules. Therefore, a large amount of nitrogen is dissolved in the molten steel, and when the molten metal solidifies, the nitrogen dissolved in the molten steel forms blowholes and pit defects.

【0016】これは、溶鋼に比較して凝固相の窒素溶解
度が極端に小さいため、凝固初晶の溶解度以上に窒素が
溶解している場合、初晶に溶解し得なかった窒素は溶鋼
中に放出されて溶鋼中の窒素濃度が凝固の進展に伴って
増加していく。溶鋼中の窒素量が、溶鋼の溶解度を超え
ると溶鋼中で気泡を形成する。そして溶鋼より離脱でき
ず、溶接金属中に取り残された気泡は「ブローホール」
となり、溶鋼より離脱しかかった状態で凝固した気泡は
ビード表面に開口した「ピット」を形成する。
This is because the nitrogen solubility of the solidified phase is extremely small as compared with the molten steel. Therefore, when nitrogen is dissolved in excess of the solubility of the solidified primary crystal, nitrogen that cannot be dissolved in the primary crystal is added to the molten steel. The released nitrogen concentration in the molten steel increases with the progress of solidification. When the amount of nitrogen in the molten steel exceeds the solubility of the molten steel, bubbles are formed in the molten steel. Bubbles that cannot be removed from the molten steel and remain in the weld metal
The bubbles solidified in a state of being separated from the molten steel form "pits" opened on the bead surface.

【0017】従って、レーザ誘起プラズマ中で解離した
原子状窒素の量とブローホールやピット欠陥の発生有無
との間には相関が生じる。
Therefore, there is a correlation between the amount of atomic nitrogen dissociated in the laser-induced plasma and the occurrence of blowholes or pit defects.

【0018】上述の特開平11−188489号公報に
は、この相関を利用した溶接欠陥の検知方法が開示され
ている。この方法は、鋼板裏面をArまたはArおよび
Heの混合ガスでシールドする場合に、裏面のレーザ誘
起プラズマの発する光の中で、窒素の発光スペクトル線
強度を測定する方法であり、測定すべき発光スペクトル
線として、波長410.3nm、411.0nm、56
8.0nmの光が好ましいとしている。
The above-mentioned Japanese Patent Application Laid-Open No. 11-188489 discloses a method for detecting a welding defect utilizing this correlation. In this method, when the back surface of a steel plate is shielded with Ar or a mixed gas of Ar and He, the emission spectrum line intensity of nitrogen is measured in the light emitted by the laser-induced plasma on the back surface. As spectral lines, wavelengths 410.3 nm, 411.0 nm, 56
A light of 8.0 nm is preferred.

【0019】しかしながら、本発明者らの実験によれ
ば、波長分解能が2nm程度の測定器を用いた場合、前
記特開平11−188489号公報で開示されている波
長410.3nm、411.0nm、568.0nmの
発光スペクトル線は、鉄の発光スペクトル線との区別が
できず測定が困難であった。
However, according to experiments by the present inventors, when a measuring instrument having a wavelength resolution of about 2 nm is used, the wavelengths of 410.3 nm, 411.0 nm, 411.0 nm and 411.0 nm disclosed in JP-A-11-188489 are used. The emission spectrum line at 568.0 nm was indistinguishable from the emission spectrum line of iron, making measurement difficult.

【0020】このため窒素の発光スペクトル線の強度だ
けを測定して溶接ビードのブローホールやピット欠陥を
検出する方法では、用いる測定器の精度(波長分解能)が
かなり高くなければ発光強度と溶接欠陥の発生有無との
対応関係が明確にはできない。
Therefore, in the method of detecting blowholes and pit defects of the weld bead by measuring only the intensity of the emission spectrum line of nitrogen, the emission intensity and the welding defect are required unless the accuracy (wavelength resolution) of the measuring instrument used is extremely high. It is not possible to clarify the correspondence between the occurrence and the occurrence of the problem.

【0021】また、測定器の波長分解能が十分高くて
も、受光面の汚損により信号強度が経時的に低下し、発
光スペクトル線の強度と溶接ビード欠陥発生の有無との
対応関係には長期的な安定性が得られなかった。
Further, even if the wavelength resolution of the measuring instrument is sufficiently high, the signal intensity decreases with time due to contamination of the light receiving surface, and the correspondence between the intensity of the emission spectrum line and the occurrence of weld bead defects is long term. Stability was not obtained.

【0022】そこで本発明者らは、比較的分解能が低い
(波長分解能で6nm程度)安価な測定器を用いること
ができ、かつ受光部の経時的な汚損によりプラズマ光の
信号強度が低下した場合でもレーザ溶接欠陥の発生有無
との相関が長期的に安定して得られるレーザ誘起プラズ
マの測定方法を鋭意検討した。
Therefore, the present inventors can use an inexpensive measuring instrument having a relatively low resolution (wavelength resolution of about 6 nm) and reduce the signal intensity of the plasma light due to the temporal contamination of the light receiving section. However, a method for measuring laser-induced plasma that can obtain a stable correlation with the presence or absence of laser welding defects in the long term was studied.

【0023】以下、容易に測定できる窒素の発光スペク
トル線の選定と、比較的分解能が低い測定装置を用いて
もブローホールやピット欠陥の発生有無を検知できる判
定信号の作り方について順に説明する。
Hereinafter, selection of a nitrogen emission spectrum line which can be easily measured and a method of producing a determination signal which can detect the presence or absence of a blowhole or a pit defect even using a measuring device having relatively low resolution will be described in order.

【0024】先ず、容易に測定できる窒素の発光スペク
トル線の選定について説明する。
First, selection of a nitrogen emission spectrum line that can be easily measured will be described.

【0025】一般に、各元素がどのような発光スペクト
ル線を有するかについては文献に記載されている。こう
した文献には、例えば、M.I.t. WAVELEN
GTH TABLES, Volume2, Wave
lengths by Element, THE M
IT Pressがある。しかし、各発光スペクトル線
の強度は、温度や密度といったプラズマの状態によって
大きく変化するため、レーザ溶接時に生成されるレーザ
誘起プラズマという特定の状況における各発光スペクト
ル線強度を文献情報だけから推定することは困難であ
る。
Generally, what emission spectrum lines each element has is described in the literature. Such documents include, for example, M.S. I. t. WAVELEN
GTH TABLES, Volume2, Wave
lengths by Element, THE M
There is IT Press. However, since the intensity of each emission spectral line greatly changes depending on the plasma state such as temperature and density, the intensity of each emission spectral line in the specific situation of laser-induced plasma generated during laser welding should be estimated only from literature information. It is difficult.

【0026】そこで本発明者らは、板厚1mmの冷延鋼
板を、加工点でのレーザ出力4kW、溶接速度6m/m
inでHeをシールドガスとした場合と、窒素をシール
ドガスとした場合について突き合わせレーザ溶接実験を
行い、それぞれでの場合で鋼板表面に生成したレーザ誘
起プラズマの光を分光計測して発光スペクトルを比較
し、レーザ溶接において測定し易い窒素の発光スペクト
ル線を調査した。
Therefore, the present inventors prepared a cold-rolled steel sheet having a thickness of 1 mm using a laser output of 4 kW at a processing point and a welding speed of 6 m / m.
butt laser welding experiments were performed for the case where He was used as the shielding gas and the case where nitrogen was used as the shielding gas. In each case, the emission spectra were compared by spectrally measuring the light of the laser-induced plasma generated on the steel sheet surface. Then, emission spectrum lines of nitrogen, which are easy to measure in laser welding, were investigated.

【0027】図2および図3に、その実験結果を示す。2 and 3 show the results of the experiment.

【0028】図2は、窒素シールド時のレーザ誘起プラ
ズマの発光スペクトルとともに、窒素シールド時のプラ
ズマ光の各波長での強度(分光強度)のHeシールド時の
プラズマ光の分光強度に対する比を、波長範囲300〜
600nmで測定した結果を示している。ここで測定装
置の波長分解能は、半値全幅で約2nmであり、測定波
長間隔は0.5nmである。
FIG. 2 shows the emission spectrum of the laser-induced plasma in the nitrogen shield and the ratio of the intensity (spectral intensity) at each wavelength of the plasma light in the nitrogen shield to the spectral intensity of the plasma light in the He shield. Range 300 ~
The result measured at 600 nm is shown. Here, the wavelength resolution of the measurement device is about 2 nm in full width at half maximum, and the measurement wavelength interval is 0.5 nm.

【0029】通常のレーザ溶接においては、Heはほと
んど発光しないため、図2において、窒素に固有の発光
が存在すれば、強度比が大きくなるはずである。しか
し、特開平11−188489号公報に記載されている
410.3nm、411.0nm、568.0nmを含
め、強度比が顕著に大きくなっている波長は認められ
ず、窒素固有の発光スペクトル線は確認できなかった。
In normal laser welding, He hardly emits light. Therefore, in FIG. 2, if light emission specific to nitrogen exists, the intensity ratio should increase. However, there is no wavelength at which the intensity ratio is remarkably increased, including 410.3 nm, 411.0 nm, and 568.0 nm described in JP-A-11-188489, and the emission spectrum line specific to nitrogen is I could not confirm.

【0030】ところで図2では、波長範囲450nm〜
470nm、570nm〜600nmなどで光の強度比
が大きくなっているが、この波長範囲ではシールドガス
種に関わらずプラズマ光の強度が極く弱く、ノイズレベ
ルと信号レベルが同程度となったことによる意味のない
変化である。
In FIG. 2, the wavelength range is 450 nm to 450 nm.
Although the light intensity ratio is large at 470 nm, 570 nm to 600 nm, etc., in this wavelength range, the intensity of the plasma light is extremely weak regardless of the shield gas type, and the noise level and the signal level are almost the same. It is a meaningless change.

【0031】この実験より、波長分解能が比較的低い安
価な測定器を用いる場合、波長範囲300nm〜600
nmにおいて、窒素に固有の発光スペクトル線を見つけ
ることはできなかった。
According to this experiment, when an inexpensive measuring instrument having a relatively low wavelength resolution is used, the wavelength range is 300 nm to 600 nm.
In nm, no emission line specific to nitrogen could be found.

【0032】図3は、図2より長波長側の波長範囲60
0〜800nmにおいて、図2と同様に窒素シールド時
のレーザ誘起プラズマの発光スペクトルと、窒素シール
ド時のプラズマ光の分光強度のHeシールド時のプラズ
マ光の分光強度に対する比を示している。
FIG. 3 shows a wavelength range 60 on the longer wavelength side than FIG.
At 0 to 800 nm, the emission spectrum of the laser-induced plasma in the nitrogen shield and the ratio of the spectral intensity of the plasma light in the nitrogen shield to the spectral intensity of the plasma light in the He shield are shown as in FIG.

【0033】図3をみると、波長742nm、747n
mにおいて強度比が高くなっていることが観察される。
文献情報とともに発光スペクトルを子細に観察すると、
これら強度比が高くなっているところは、波長742.
364nm、744.230nm、746.831nm
の各窒素の発光スペクトル線に対応しており、また測定
に用いた分光器の能力の問題から742.364nmと
744.230nmの発光スペクトル線が分光しきれず
に重なっており、波長746.831nmの発光スペク
トル線とあわせて強度比としては2つのピークが観察さ
れていることが判った。
Referring to FIG. 3, the wavelengths are 742 nm and 747 n.
It is observed that the intensity ratio is higher at m.
Observing the emission spectrum closely together with the literature information,
Where these intensity ratios are high, the wavelength 742.
364 nm, 744.230 nm, 746.831 nm
The emission spectral lines of 742.364 nm and 744.230 nm overlap without being able to completely separate the spectrum lines because of the problem of the performance of the spectroscope used for the measurement. It was found that two peaks were observed as the intensity ratio together with the emission spectrum line.

【0034】以上の知見から、比較的分解能が低い測定
装置(上記実験の場合は半値全幅で約2nm)を用いて
も、窒素の発光スペクトル線として742.364n
m、744.230nm、746.831nmの3波長
の光が利用できることが判った。
From the above findings, even if a measurement device having a relatively low resolution (about 2 nm in full width at half maximum in the case of the above experiment) is used, the emission spectrum line of nitrogen is 742.364n.
It was found that light of three wavelengths of m, 744.230 nm and 746.831 nm could be used.

【0035】次に、比較的分解能が低い測定装置を用い
て測定した、上記742.364nm、744.230
nm、746.831nmの3波長の窒素の発光スペク
トル線強度を用いて、ブローホールやピット欠陥の発生
有無を検知する方法について、更に実験を行って検討し
た。そこで先ず、上述の特開平11−188489号公
報に記載された、プラズマプルームあるいは窒素の発光
スペクトル線強度を用いた欠陥発生有無の判定方法の問
題点について検討した。
Next, the above-mentioned 742.364 nm and 744.230 were measured using a measuring device having a relatively low resolution.
The method of detecting the presence or absence of blowholes and pit defects using the emission spectral line intensities of nitrogen having three wavelengths of nm and 746.831 nm was further examined by experiments. Therefore, first, the problem of the method for determining the presence or absence of a defect using the plasma plume or the intensity of the emission spectral line of nitrogen described in Japanese Patent Application Laid-Open No. 11-188489 was examined.

【0036】図4は、板厚1.4mmの冷延鋼板を加工
点出力4kW、溶接速度2m/minで鋼板裏面をAr
シールドして突き合わせ溶接した場合と、鋼板裏面をA
r−25%N2でシールドして突き合わせ溶接した場合
に、鋼板裏面に生成したレーザ誘起プラズマの発光スペ
クトルを比較したものである。この時、鋼板表面のシー
ルドガスはともにArである。
FIG. 4 shows that the back surface of a cold rolled steel sheet having a thickness of 1.4 mm was Ar at a processing point output of 4 kW and a welding speed of 2 m / min.
Shielded and butt welded, A
FIG. 9 compares emission spectra of laser-induced plasma generated on the back surface of a steel plate when butt welding is performed with shielding with r-25% N 2 . At this time, the shielding gas on the surface of the steel sheet is both Ar.

【0037】上記2種類のシールド条件について溶接ビ
ードのX線透過試験を実施したところ、鋼板裏面をAr
シールドした場合には溶接ビードにブローホールは観察
されなかったが、鋼板裏面をAr−25%N2シールド
した場合は、溶接ビードにブローホールが観察された。
When an X-ray transmission test of the weld bead was performed under the above two types of shield conditions, the back surface of the steel plate was Ar
The blowholes in the weld bead when shield was not observed, when the steel sheet back surface and Ar-25% N 2 shield, blowholes were observed in the weld bead.

【0038】図4に示されているように、鋼板裏面雰囲
気が純Arの場合に比較して、Ar−25%N2の場合
はプラズマ光の強度は全体的に低くなっている。上記7
42.364nm、744.230nm、746.83
1nmの3波長の窒素の発光スペクトル線に対応した分
光強度についてみると、これら分光強度はプラズマ中に
窒素が混入した結果高くなるはずであるが、波長74
6.831nmの光の強度はあまり低下していないもの
の、他の2波長、742.364nm、744.230
nmの光の強度は低下してしまっている。
As shown in FIG. 4, the intensity of the plasma light is lower as a whole when the atmosphere of the back surface of the steel sheet is Ar-25% N 2 than in the case where the atmosphere of the back surface of the steel sheet is pure Ar. 7 above
42.364 nm, 744.230 nm, 746.83
Looking at the spectral intensities corresponding to the emission spectral lines of nitrogen having three wavelengths of 1 nm, these spectral intensities should be high as a result of nitrogen being mixed into the plasma.
Although the intensity of light at 6.831 nm is not so reduced, the other two wavelengths, 742.364 nm and 744.230, are used.
The intensity of the light of nm has been reduced.

【0039】従って、シールドガス中に窒素が混入した
ことを窒素の発光スペクトル線の強度上昇によって検知
しようとすることは不可能と判断された。
Therefore, it was determined that it was impossible to detect the contamination of the shielding gas with nitrogen by increasing the intensity of the emission spectrum line of nitrogen.

【0040】発明者らの調査の結果、上記窒素の発光ス
ペクトル線のある波長域には、Feの発光スペクトル線
(744.098nm、741.867nm、740.
169nmなど)が隣接しており、測定系の分解能が低
い(この場合、半値全幅で約2nm)場合、隣接するF
eの発光スペクトル線を分光しきれずに、ノイズとして
測定してしまうことが判った。
As a result of the investigation by the inventors, it was found that the emission spectrum lines of Fe (744.098 nm, 741.867 nm, 740.
169 nm) and the resolution of the measurement system is low (in this case, about 2 nm in full width at half maximum), the adjacent F
It was found that the emission spectrum line of e could not be completely separated and was measured as noise.

【0041】ところでN2やO2はArに比較してプラズ
マ化し難いため、シールドが不良となり窒素や酸素を巻
き込んでArの純度が低下するとプラズマ温度が低下
し、プラズマを構成する主たる元素である鉄の発光が弱
くなってプラズマの発光は全体的に弱くなる。
Since N 2 and O 2 are harder to be turned into plasma than Ar, the shield becomes defective and entrainment of nitrogen or oxygen lowers the purity of Ar, which lowers the plasma temperature and is the main element constituting the plasma. The emission of iron is weakened, and the emission of plasma is weakened as a whole.

【0042】鋼板裏面雰囲気がAr−25%N2となっ
た場合に、窒素の発光スペクトル線に対応した波長の光
の強度が純Arの場合に比較して低くなるのは、プラズ
マ中に窒素が混入して窒素が発光する以上に、ノイズと
して測定してしまう鉄の発光が弱くなった結果であると
考えられる。
When the atmosphere of the back surface of the steel sheet is Ar-25% N 2 , the intensity of light having a wavelength corresponding to the emission spectrum line of nitrogen is lower than that in the case of pure Ar because nitrogen in the plasma is low. This is considered to be the result of the fact that the emission of iron, which is measured as noise, became weaker than the emission of nitrogen due to contamination.

【0043】図5は、板厚1.4mmの冷延鋼板を加工
点出力:4.5kW、溶接速度4.5m/minで突き
合わせレーザ溶接した場合に、鋼板表面のシールドガス
としてHeを用いた場合とHe+50%N2を用いた場
合について、鋼板表面に生成したレーザ誘起プラズマの
発光スペクトルを比較したものである。なお、鋼板裏面
のシールドガスには、ともにArを用いているが、鋼板
表面のプラズマ光にArの発光スペクトル線は確認され
なかった。
FIG. 5 shows that when a cold-rolled steel sheet having a thickness of 1.4 mm was butted by laser welding at a processing point output of 4.5 kW and a welding speed of 4.5 m / min, He was used as a shielding gas on the steel sheet surface. FIG. 6 compares the emission spectra of laser-induced plasma generated on the steel sheet surface in the case of using He + 50% N 2 . In addition, although Ar was used for the shielding gas on the back surface of the steel plate, no emission spectrum line of Ar was confirmed in the plasma light on the front surface of the steel plate.

【0044】鋼板表面のシールドガスとしてHeを用い
た場合とHe+50%N2を用いた場合について、溶接
ビードのX線透過試験を実施した結果、前者ではブロー
ホールは認められなかったが後者の溶接ビードには多数
のブローホールが観察された。
An X-ray transmission test of the weld bead was carried out for the case where He was used as the shielding gas on the surface of the steel sheet and the case where He + 50% N 2 was used. Numerous blowholes were observed in the bead.

【0045】図5に示された測定結果では、He+50
%N2をシールドガスとした場合にはHeをシールドガ
スとした場合に比較して、窒素の発光スペクトル線に対
応する波長の分光強度が高くなっている。
In the measurement results shown in FIG.
When% N 2 is used as the shielding gas, the spectral intensity at the wavelength corresponding to the emission spectrum line of nitrogen is higher than when He is used as the shielding gas.

【0046】しかし、もともとHeをシールドガスとし
た場合においても窒素の発光スペクトル線に対応した波
長の分光強度は、隣接するFe(744.098nm、
741.867nm、740.169nmなど)の発光
スペクトル線を分光しきれずにノイズとして測定してし
まっていることから有意の値となっており、シールドガ
スに窒素が50%混入したことによる窒素の発光スペク
トル線に対応した分光強度の上昇を小さくしてしまって
いる。
However, even when He was originally used as the shielding gas, the spectral intensity of the wavelength corresponding to the emission spectrum line of nitrogen was smaller than that of the adjacent Fe (744.098 nm,
(E.g., 741.867 nm, 740.169 nm) is a significant value because it was measured as noise without being able to fully separate the spectrum, and the emission of nitrogen due to the fact that 50% of nitrogen was mixed into the shielding gas. The increase in the spectral intensity corresponding to the spectral line is reduced.

【0047】ところで、図5に示すように、全波長域に
わたってHe+50%N2をシールドガスとして溶接し
た場合のプラズマ光強度、Heをシールドガスとして溶
接した場合のプラズマ光強度に比較して高くなってい
る。これはHeがFeやN2に比較してプラズマ化し難
いため、HeにはFeが主構成元素であるレーザ誘起プ
ラズマを冷却する効果があるが、窒素が混入するとHe
純度が低下してプラズマの冷却効果が弱まり、その結果
プラズマの温度が上昇したことによる。
As shown in FIG. 5, the plasma light intensity when welding is performed over the entire wavelength range when He + 50% N 2 is used as a shielding gas, and is higher than the plasma light intensity when welding is performed using He as a shielding gas. ing. This is because He is less likely to be turned into plasma than Fe or N 2 , so He has the effect of cooling the laser-induced plasma in which Fe is the main constituent element.
This is because the purity is reduced and the cooling effect of the plasma is weakened, and as a result, the temperature of the plasma is increased.

【0048】こうした現象は、特開平11−18848
9号公報においても指摘されており、該公報に開示され
たブローホールやピット欠陥の検知方法は、この現象を
利用したものである。しかし、発明者らの実験によれ
ば、こうした全体的な発光強度の増大は、シールドガス
に窒素を巻き込まなくともHeの流量が若干低下するだ
けでも生じる現象であり、ブローホールやピット欠陥の
発生有無の検知方法として最適ではないと考えている。
Such a phenomenon is described in JP-A-11-18848.
It is pointed out in Japanese Patent Publication No. 9 and the method for detecting blowholes and pit defects disclosed in this publication utilizes this phenomenon. However, according to the experiments performed by the inventors, such an increase in the overall light emission intensity is a phenomenon that occurs even when the flow rate of He is slightly reduced without involving nitrogen in the shielding gas, and the occurrence of blowholes and pit defects occurs. We do not consider it to be the optimal method for detecting the presence or absence.

【0049】図6は、板厚1.4mmの冷延鋼板を加工
点出力4kW、溶接速度4m/minで突き合わせレー
ザ溶接する際、鋼板裏面のシールドガスとしてArに種
々の割合で窒素を混合した場合に鋼板裏面に生成したレ
ーザ誘起プラズマの発する光で、窒素固有の発光スペク
トル線に対応した光の強度を測定した結果を示してい
る。
FIG. 6 shows that when a 1.4 mm-thick cold-rolled steel plate was butt-laser-welded at a working point output of 4 kW and a welding speed of 4 m / min, nitrogen was mixed with Ar at various ratios as a shielding gas on the back surface of the steel plate. In this case, the results of measuring the intensity of light corresponding to the emission spectrum line specific to nitrogen in the light emitted from the laser-induced plasma generated on the back surface of the steel sheet are shown.

【0050】この実験では、波長分解能が半値全幅で2
nmの分光器を用いて746.83nmの光を測定する
場合(基準信号1)と、分解能が6nm程度の分光器を
用いて747nmの光を測定する場合(基準信号2)を
実施した。
In this experiment, the wavelength resolution was 2 at full width at half maximum.
A case where a light of 746.83 nm is measured using a spectrometer of nm (reference signal 1) and a case where a light of 747 nm is measured using a spectroscope having a resolution of about 6 nm (reference signal 2) were performed.

【0051】なお図6では、光の強度として、シールド
ガスが100%Arである場合の光の強度に対する比と
して得られる相対強度を用いており、またブローホール
やピット欠陥の有無を、X線透過試験により調査した結
果をあわせて示している。
In FIG. 6, a relative intensity obtained as a ratio with respect to the light intensity when the shielding gas is 100% Ar is used as the light intensity. Also shown are the results of the transmission test.

【0052】図6に示すように、測定した光の強度は、
鋼板裏面のシールドガス中の窒素濃度が0〜25%の範
囲において変わらないか(基準信号1)または徐々に低
下(基準信号2)し、窒素濃度が25〜35%の範囲に
おいて急激に低下してその後ほぼ一定となった。一方、
溶接欠陥は窒素濃度が5〜30の範囲と95〜100%
の範囲において発生した。溶接欠陥が発生した窒素濃度
のこれら2領域において、測定した光の強度は1:10
0程度の違いがあり、光の強度と溶接欠陥の発生有無と
の間には相関がないことが判る。
As shown in FIG. 6, the measured light intensity is
The nitrogen concentration in the shielding gas on the back surface of the steel sheet does not change in the range of 0 to 25% (reference signal 1) or gradually decreases (reference signal 2), and rapidly decreases in the range of 25 to 35%. After that, it became almost constant. on the other hand,
Weld defects include nitrogen concentration in the range of 5-30 and 95-100%
Occurred in the range. In these two regions of the nitrogen concentration where welding defects occurred, the measured light intensity was 1:10
There is a difference of about 0, and it is understood that there is no correlation between the light intensity and the presence or absence of a welding defect.

【0053】上述のように、Arに比較してプラズマ化
し難い窒素がシールドガスに混入するとプラズマ温度が
低下し、プラズマを構成する主たる元素である鉄の発光
が弱くなる。図6に示したように溶接欠陥が発生してい
る窒素濃度95〜100%の範囲において、窒素の発光
スペクトル線に対応した光の強度の測定値(基準信号
1、基準信号2)が、窒素濃度35〜95%の範囲と同
程度の値となっているのは、測定値が窒素の発光スペク
トル線の強度以上にノイズとして測定してしまっている
鉄の発光に著しく影響されているためである。
As described above, when nitrogen, which is harder to be turned into plasma than Ar, is mixed into the shielding gas, the plasma temperature is lowered, and the emission of iron, which is a main element constituting the plasma, is weakened. As shown in FIG. 6, in the range of nitrogen concentration of 95 to 100% where a welding defect occurs, the measured value of the light intensity (reference signal 1 and reference signal 2) corresponding to the emission spectrum line of nitrogen is nitrogen. The reason why the concentration is about the same as the range of 35 to 95% is that the measured value is significantly affected by the emission of iron which is measured as noise more than the intensity of the emission spectrum line of nitrogen. is there.

【0054】以上の図4〜図6等による知見から、発明
者らは、比較的分解能の低い測定装置を用いる場合、窒
素の発光スペクトル線強度のみを測定することによりレ
ーザ溶接部のブローホールやピット欠陥の発生有無を検
知することは困難であると判断し、窒素の発光スペクト
ル線に隣接する鉄の発光スペクトル線に影響されず、レ
ーザ溶接部のブローホールやピット欠陥の発生有無と良
い相関を示す信号の処理方法を検討した。
From the findings shown in FIGS. 4 to 6 and the like, when using a measuring device having a relatively low resolution, the inventors measure only the emission spectral line intensity of nitrogen to reduce the blowhole or the like in the laser weld. Judging that it is difficult to detect the presence or absence of pit defects, it is not affected by the emission spectrum of iron adjacent to the emission spectrum of nitrogen, and has a good correlation with the presence or absence of blowholes and pit defects in the laser weld. The method of processing the signal indicating

【0055】その結果、窒素の発光スペクトル線を含む
所定の光の強度を基準信号とし、これとともに参照用と
してArの発光がなく、鉄の発光スペクトル線を含む所
定の光の強度を測定し、前者(基準信号)を後者(参照
用信号)で除した強度比を判定信号とすれば、この信号
は欠陥発生の有無と良い相関を示すことが判った。
As a result, the intensity of the predetermined light including the emission spectrum line of nitrogen is used as a reference signal, and the intensity of the predetermined light including the emission spectrum line of iron without emission of Ar is measured for reference. If the intensity ratio obtained by dividing the former (reference signal) by the latter (reference signal) is used as the determination signal, it was found that this signal shows a good correlation with the presence or absence of a defect.

【0056】以下、具体的に説明する。Hereinafter, a specific description will be given.

【0057】測定された光の強度のうち、同時に測定し
てしまっている隣接した鉄の発光スペクトル線の影響を
除去できればよいのであるが、窒素の発光スペクトル線
だけを測定することができないのと同様、鉄の発光スペ
クトル線だけを測定しようとすると、隣接した窒素の発
光スペクトル線を同時に測定してしまう。
It suffices that the effect of the emission spectrum of the adjacent iron, which has been measured simultaneously, can be removed from the measured light intensities, but it is impossible to measure only the emission spectrum of nitrogen. Similarly, if only the emission spectrum of iron is measured, the emission spectrum of adjacent nitrogen is measured at the same time.

【0058】しかし、発明者らの実験の結果、個々の鉄
の発光スペクトル線間の強度比率は、溶接条件によって
あまり変化せず、窒素の発光スペクトル線とは離れた鉄
の発光スペクトル線の強度を用いて、窒素の発光スペク
トル線に隣接した鉄の発光スペクトル線の強度を推定で
きることが判った。
However, as a result of the experiments by the inventors, the intensity ratio between the emission spectrum lines of the individual irons did not change much depending on the welding conditions, and the intensity of the emission spectrum line of the iron was separated from the emission spectrum line of nitrogen. It was found that the intensity of the emission spectrum line of iron adjacent to the emission spectrum line of nitrogen can be estimated by using.

【0059】そこで、窒素の発光スペクトル線を含む所
定の光の強度である基準信号とともに、参照用信号とし
て鉄の発光スペクトル線を含む所定の光の強度を用い
る。但し、参照用信号の測定波長領域にArの発光スペ
クトル線が含まれると、ブローホールやピット発生の有
無と良い相関を示す判定信号は得られない。これはAr
の発光スペクトル線の強度が溶接条件によって著しく変
化する一方、窒素の発光スペクトル線を含む所定の光の
測定において、Arの発光スペクトル線が直接ノイズと
して計測されていないためである。
Therefore, the intensity of the predetermined light including the emission spectrum line of iron is used as the reference signal together with the reference signal which is the intensity of the predetermined light including the emission spectrum line of nitrogen. However, when the emission spectrum line of Ar is included in the measurement wavelength region of the reference signal, a determination signal showing a good correlation with the presence or absence of blow holes or pits cannot be obtained. This is Ar
This is because, while the intensity of the emission spectrum line of (1) significantly changes depending on the welding conditions, in the measurement of predetermined light including the emission spectrum line of nitrogen, the emission spectrum line of Ar is not directly measured as noise.

【0060】このような参照用信号の測定波長の決定方
法は、以下の通りである。
The method for determining the measurement wavelength of such a reference signal is as follows.

【0061】すなわち、鋼板をHeガスでシールドして
溶接したときのレーザ誘起プラズマ光の分光計測と、A
rガス中でレーザ誘起プラズマを形成しArプラズマの
出す光の分光計測を実施し、鉄の発光スペクトル線のう
ち、Arの発光スペクトル線と十分区別できるものを選
ぶ。
That is, spectroscopic measurement of laser-induced plasma light when a steel sheet is welded with shielding with He gas, and A
A laser-induced plasma is formed in the r gas and spectroscopic measurement of the light emitted by the Ar plasma is performed, and among the emission spectrum lines of iron, those that can be sufficiently distinguished from the emission spectrum lines of Ar are selected.

【0062】ここで通常のレーザ溶接ではHeはプラズ
マ化せず、明確な発光をしないため、Heシールドによ
る鋼板のレーザ溶接におけるレーザ誘起プラズマの発光
は鉄によるものである。
Here, in normal laser welding, He does not turn into plasma and does not emit clear light, so that the laser-induced plasma emission in laser welding of a steel plate with a He shield is due to iron.

【0063】図8は、波長範囲300nmから600n
mの範囲での分光計測結果を表す。黒く塗りつぶしたも
のが鉄の発光スペクトルであり、白抜きで表示したもの
がArの発光スペクトルである。
FIG. 8 shows a wavelength range from 300 nm to 600 n.
It shows the spectroscopic measurement results in the range of m. The black one is the emission spectrum of iron, and the white one is the emission spectrum of Ar.

【0064】図9は、波長範囲600nmから800n
mの範囲での、鉄の発光スペクトル(黒色塗りつぶし)
とArの発光スペクトル(白抜きで表示)である。
FIG. 9 shows a wavelength range from 600 nm to 800 n.
The emission spectrum of iron in the range of m (black fill)
And Ar emission spectra (shown in white).

【0065】図8、図9より、参照用信号として使える
波長範囲として、例えば300〜340nm、520〜
570nm、620nm〜690nmなどがある。ま
た、鉄の発光スペクトル線718.734nmと72
0.741nmを含む710〜730nmや、鉄の発光
スペクトル線783.22nmを含む780〜790n
mなどの波長範囲が、参照用信号として使えることが判
る。
FIGS. 8 and 9 show that the wavelength range usable as a reference signal is, for example, 300 to 340 nm, 520 to 520 nm.
570 nm and 620 nm to 690 nm. Also, the emission spectrum lines of iron 718.734 nm and 72
710 to 730 nm including 0.741 nm, and 780 to 790 n including 783.22 nm of iron emission spectrum line
It can be seen that a wavelength range such as m can be used as a reference signal.

【0066】更に、シールドガスにArを用いていない
場合には全体の発光強度、例えば波長範囲300nm以
上800nm以下の光を測定し、参照用信号とすること
ができる。
Further, when Ar is not used as the shielding gas, the entire emission intensity, for example, light in a wavelength range of 300 nm to 800 nm can be measured and used as a reference signal.

【0067】上記のように決定した参照用信号を用い
て、窒素の発光スペクトル線を含み、隣接した鉄の発光
スペクトル線を分光しきれていない光の強度である基準
信号から、ブローホールやピット欠陥の発生有無を検知
できる判定信号を作るために、2種類の信号処理方法が
考えられる。
Using the reference signal determined as described above, a blowhole or a pit is obtained from a reference signal that includes the emission spectrum of nitrogen and the intensity of light that has not completely separated the emission spectrum of an adjacent iron. In order to generate a determination signal that can detect the presence or absence of a defect, two types of signal processing methods are conceivable.

【0068】1つは、基準信号を参照用信号で除した値
を判定信号とする方法であり、今1つは、基準信号より
参照用信号の一定係数倍を減算することによって判定信
号を作る方法である。本発明者らの検討結果では、前者
の信号処理方法、すなわち基準信号の判定信号に対する
比として得られた判定信号の方が、後者の信号処理方
法、すなわち基準信号より参照用信号の一定係数倍を減
算することによって得られた判定信号より、幅広い溶接
条件にわたってブローホールやピット欠陥と良い相関が
得られた。
One is a method in which a value obtained by dividing a reference signal by a reference signal is used as a determination signal. Another method is to generate a determination signal by subtracting a constant coefficient times the reference signal from the reference signal. Is the way. According to the study results of the present inventors, the former signal processing method, that is, the determination signal obtained as a ratio of the reference signal to the determination signal is more constant coefficient of the reference signal than the latter signal processing method, that is, the reference signal. A good correlation with blowholes and pit defects was obtained over a wide range of welding conditions from the judgment signal obtained by subtracting.

【0069】表1は、加工点出力4kW、溶接速度が4
m/minおよび6m/min、板厚1.4mmの冷延
鋼板の突き合わせレーザ溶接を行った場合に、鋼板裏面
に生成したレーザ誘起プラズマの分光計測結果を示して
いる。ここで鋼板表面のシールドガスにはArを用い、
鋼板裏面のシールドガスとしては、シールド不良を再現
するために種々の混合割合でAr+N2混合ガスを用い
ている。また、集光光学系の焦点距離は10インチであ
り、集光点でのビーム直径(86%強度)は約0.45
mmである。
Table 1 shows that the processing point output was 4 kW and the welding speed was 4
The figure shows the results of spectroscopic measurement of laser-induced plasma generated on the rear surface of a cold-rolled steel plate having a m / min of 6 m / min and a plate thickness of 1.4 mm when butt laser welding was performed. Here, Ar is used as the shielding gas on the steel sheet surface,
As a shielding gas on the back surface of the steel sheet, an Ar + N 2 mixed gas is used in various mixing ratios in order to reproduce a shielding failure. The focal length of the focusing optical system is 10 inches, and the beam diameter (86% intensity) at the focusing point is about 0.45.
mm.

【0070】表1では、窒素の発光スペクトル線を含む
光の強度である基準信号として、波長分解能が半値全幅
で2nmの分光器を用いて747nmの光を測定した場
合(基準信号1)と、分解能が6nm程度の分光器を用
いて747nmの光を測定する場合(基準信号2)につ
いて検討した。
Table 1 shows the case where a light of 747 nm was measured using a spectroscope having a wavelength resolution of 2 nm at full width at half maximum (reference signal 1) as a reference signal indicating the intensity of light including the emission spectrum line of nitrogen. The case of measuring 747 nm light using a spectroscope having a resolution of about 6 nm (reference signal 2) was studied.

【0071】参照用信号としては、Feの発光スペクト
ル線783.2nmを含む光を、中心波長783nm、
分解能6nm程度の分光器を用いて測定した値を示して
いる。
As the reference signal, light containing an emission spectrum line 783.2 nm of Fe, a center wavelength 783 nm,
The values measured using a spectroscope having a resolution of about 6 nm are shown.

【0072】[0072]

【表1】 [Table 1]

【0073】上記、基準信号1および基準信号2を参照
用信号で除して判定信号1および判定信号2をそれぞれ
構成した。
The judgment signal 1 and the judgment signal 2 are respectively formed by dividing the reference signal 1 and the reference signal 2 by the reference signal.

【0074】図7は、前記判定信号1および判定信号2
の強度が、鋼板裏面のAr+N2混合ガスの窒素濃度に
対しどのように変化したかを示しており、図6の基準信
号1および基準信号2を判定信号1および判定信号2と
して描き直したものに相当する。
FIG. 7 shows the judgment signals 1 and 2
6 shows how the intensity of the reference signal has changed with respect to the nitrogen concentration of the Ar + N 2 mixed gas on the back surface of the steel sheet, and the reference signal 1 and the reference signal 2 in FIG. Equivalent to.

【0075】なお図7では、図6の場合と同様、判定信
号強度として、シールドガスが100%Arである場合
の判定信号強度に対する比である相対強度を用いてお
り、またブローホールやピット欠陥の有無を、X線透過
試験により調査した結果をあわせて示している。
In FIG. 7, as in the case of FIG. 6, the relative intensity which is the ratio to the determination signal intensity when the shielding gas is 100% Ar is used as the determination signal intensity. Is also shown with the result of the investigation by the X-ray transmission test.

【0076】図7から判るように、溶接欠陥が発生して
いる窒素濃度5〜30%の範囲と95〜100%の範囲
において判定信号が高くなっている一方、それ以外の窒
素濃度では判定信号が低くなり、判定信号と溶接欠陥発
生の有無が良い相関を示すことが判る。
As can be seen from FIG. 7, the judgment signal is high in the range of 5 to 30% and 95 to 100% of the nitrogen concentration where the welding defect occurs, while the judgment signal is high in the other nitrogen concentrations. It can be seen that the determination signal and the presence or absence of the occurrence of a welding defect show a good correlation.

【0077】図6に示した基準信号は、窒素濃度が0〜
30%の範囲においてほとんど変化しないか低下する傾
向を示したのに対し、図7に示した判定信号は、窒素濃
度が0〜30%の範囲において高くなる傾向を示してい
るのは、以下の理由による。すなわち、Arに比較して
プラズマ化し難いN2がArシールドガス中に混入した
場合、プラズマの温度は徐々に低下するものの窒素濃度
30%未満では大きくは変わらない。このためプラズマ
中で窒素分子の原子状に解離する割合がほぼ一定に保た
れ、窒素濃度が高くなるに従って原子状に解離して発光
する窒素原子の数が増加して窒素の発光スペクトル線に
対応した光の強度は高くなる。しかし、基準信号は隣接
する鉄の発光スペクトル線を同時に計測してしまってい
るので、プラズマ温度の低下とともにほとんど変化しな
いか低下する傾向を示す。これに対し判定信号は、隣接
した鉄の発光スペクトル線の影響を取り除いているの
で、徐々に低下しているプラズマ温度の影響を受けず
に、高くなる傾向を示す。また、窒素濃度が5〜30%
の範囲においては、レーザ誘起プラズマ中に多量の原子
状窒素が生成されていることから多量の窒素が溶鋼へ溶
解し、凝固に際してブローホールやピットを形成する。
The reference signal shown in FIG.
While the determination signal shown in FIG. 7 showed a tendency to hardly change or decrease in the range of 30%, whereas the determination signal shown in FIG. It depends on the reason. That is, when N 2, which is harder to be turned into plasma than Ar, is mixed into the Ar shielding gas, the temperature of the plasma gradually decreases, but does not significantly change when the nitrogen concentration is less than 30%. As a result, the rate of atomic dissociation of nitrogen molecules in the plasma is kept almost constant, and as the nitrogen concentration increases, the number of nitrogen atoms that dissociate atomically and emit light increases, corresponding to the emission spectrum of nitrogen. The intensity of the emitted light increases. However, since the reference signal has simultaneously measured the emission spectrum lines of the adjacent iron, it hardly changes or tends to decrease as the plasma temperature decreases. On the other hand, the determination signal has a tendency to increase without being affected by the gradually decreasing plasma temperature because the influence of the emission spectrum line of the adjacent iron is removed. The nitrogen concentration is 5 to 30%
In the range, since a large amount of atomic nitrogen is generated in the laser-induced plasma, a large amount of nitrogen dissolves in molten steel and forms blowholes and pits upon solidification.

【0078】窒素濃度が35〜95%の範囲において、
基準信号、判定信号とも低下するが、この窒素濃度範囲
では窒素濃度0〜30%の範囲に比較してプラズマの温
度が大きく低下しており、窒素分子の解離する割合が小
さくなることから、十分な数の窒素分子があるにもかか
わらず、発光に寄与する窒素原子の数は窒素濃度5〜3
0%の範囲に比較して少なく、その結果基準信号、判定
信号とも小さくなる。また、窒素原子の数が少ないこと
から溶鋼に溶解する窒素量も少なく、溶接欠陥も発生し
ない。
When the nitrogen concentration is in the range of 35 to 95%,
Although both the reference signal and the judgment signal decrease, the temperature of the plasma is greatly reduced in this nitrogen concentration range as compared with the range of the nitrogen concentration of 0 to 30%, and the dissociation ratio of nitrogen molecules is small. Despite the large number of nitrogen molecules, the number of nitrogen atoms contributing to emission is
The number is smaller than the range of 0%, and as a result, both the reference signal and the determination signal become smaller. Further, since the number of nitrogen atoms is small, the amount of nitrogen dissolved in the molten steel is small, and no welding defects occur.

【0079】窒素濃度95〜100%の範囲では、窒素
濃度35〜95%と比較して、プラズマの温度や窒素分
子の原子への解離割合はほとんど同じであるものの、も
ともとの窒素分子量が多いため、プラズマ中の窒素原子
の数が増加し、その結果窒素の発光スペクトル線に対応
した光の強度は高くなる。基準信号は、隣接する鉄の発
光スペクトル線を同時に計測してしまうので、低いプラ
ズマ温度に主として影響されてほとんど変化しないのに
対し、判定信号は、隣接した鉄の発光スペクトル線の影
響を取り除いているので、プラズマ中の窒素原子量の増
加に対応して高くなる。またこのとき、レーザ誘起プラ
ズマ中に多量の原子状窒素が生成されているため溶鋼へ
溶解する窒素量が増加し、凝固に際してブローホールや
ピットを形成する。
In the range of nitrogen concentration of 95 to 100%, as compared with the nitrogen concentration of 35 to 95%, the plasma temperature and the dissociation ratio of nitrogen molecules to atoms are almost the same, but the original nitrogen molecular weight is large. As a result, the number of nitrogen atoms in the plasma increases, and as a result, the light intensity corresponding to the emission spectrum line of nitrogen increases. Since the reference signal simultaneously measures the emission spectrum of the adjacent iron, it hardly changes, mainly due to the low plasma temperature, whereas the judgment signal removes the influence of the emission spectrum of the adjacent iron. Therefore, it becomes higher in response to the increase in the amount of nitrogen atoms in the plasma. At this time, since a large amount of atomic nitrogen is generated in the laser-induced plasma, the amount of nitrogen dissolved in the molten steel increases, and blow holes and pits are formed during solidification.

【0080】表1に示す判定信号2を用いる場合、判定
信号2の強度とレーザ溶接部の欠陥発生有無の関係か
ら、溶接速度が4m/minの場合には溶接欠陥発生有
無の判定値として2.8を用い、溶接速度が6m/mi
nの場合にはその判定値として3.9を用いれば、ブロ
ーホールやピット欠陥の発生有無を検知できることが判
る。
When the determination signal 2 shown in Table 1 is used, from the relationship between the intensity of the determination signal 2 and the presence / absence of a defect in the laser weld, when the welding speed is 4 m / min, the determination value of the presence / absence of a weld defect is 2 And welding speed of 6 m / mi
In the case of n, it can be seen that if 3.9 is used as the determination value, the presence or absence of a blowhole or a pit defect can be detected.

【0081】なお、この判定値は、例えば、このように
実験的に故意にシールド不良状態を作り、ブローホール
やピット欠陥の発生があった場合の判定信号の最低値
と、無かった場合の判定信号の最大値との中間の値とす
ることで選定できる。
The judgment value is, for example, the lowest value of the judgment signal when there is a blowhole or a pit defect, and the judgment value when there is no blowhole or pit defect. The value can be selected by setting the value to an intermediate value from the maximum value of the signal.

【0082】また、溶接速度が変わるとブローホールや
ピット欠陥発生の判定値が変動するため、溶接速度の設
定に応じて判定値を変える必要があるが、表1に示すよ
うに判定信号を溶接速度で除した値を新たな判定信号
(判定信号3)とすることにより、溶接速度に関わら
ず、一定の判定値(表1では、0.65)で溶接欠陥の
判定を行うことができる。
Further, when the welding speed changes, the judgment value of the occurrence of blowholes and pit defects changes. Therefore, it is necessary to change the judgment value in accordance with the setting of the welding speed. By using the value divided by the speed as a new determination signal (determination signal 3), it is possible to determine a welding defect with a constant determination value (0.65 in Table 1) regardless of the welding speed.

【0083】以上のように本発明では、被接合材の表面
または裏面の溶接部をHeガスでシールドしてレーザ溶
接を行う際に、Heガスでシールドされた前記溶接部の
レーザ加工点近傍に発生するレーザ誘起プラズマの発す
る光のうちで、窒素の発光スペクトル線を含む波長範囲
741〜748nmにある所定の光の強度と鉄の発光ス
ペクトル線を含む所定の光の強度をそれぞれ測定し、前
者を後者で除した光の強度比を判定信号として、この判
定信号と予め実験により定めた判定値とを比較すること
により比較的分解能が低い(半値全幅で6nm程度)測
定装置を使用する場合においても、溶接欠陥の発生有無
を精度良く検知することが可能である。
As described above, in the present invention, when laser welding is performed by shielding the welded portion on the front surface or the back surface of the material to be joined with He gas, the welded portion is shielded by He gas near the laser processing point of the welded portion. Of the light emitted from the generated laser-induced plasma, the intensity of the predetermined light in the wavelength range of 741 to 748 nm including the emission spectrum line of nitrogen and the intensity of the predetermined light including the emission spectrum line of iron are measured. In the case of using a measuring device having a relatively low resolution (about 6 nm at full width at half maximum) by comparing this determination signal with a determination value determined in advance by experiment, using the intensity ratio of light obtained by dividing the above by the latter as a determination signal, Also, it is possible to accurately detect the occurrence of welding defects.

【0084】また、被接合材の表面または裏面の溶接部
をArガスまたは、Arを含む混合ガスでシールドして
レーザ溶接を行う際に、Arガスを含むシールドガスで
シールドされた前記溶接部のレーザ加工点近傍に発生す
るレーザ誘起プラズマの発する光のうちで、窒素の発光
スペクトル線を含む波長範囲741〜748nmにある
所定の光の強度と鉄の発光スペクトル線を含み、かつA
rの発光スペクトル線を含まない所定の光の強度をそれ
ぞれ測定し、前者を後者で除した光の強度比を判定信号
として、この判定信号と予め実験により定めた判定値と
を比較することにより比較的分解能が低い(半値全幅で
6nm程度)測定装置を使用する場合においても、溶接
欠陥の発生有無を精度良く検知することが可能である。
Further, when laser welding is performed by shielding the welded portion on the front or back surface of the material to be joined with Ar gas or a mixed gas containing Ar, when the welded portion is shielded with a shield gas containing Ar gas. Among the light emitted by the laser-induced plasma generated in the vicinity of the laser processing point, the light includes a predetermined light intensity in a wavelength range of 741 to 748 nm including a nitrogen emission spectrum line and an emission spectrum line of iron, and A
r by measuring the intensity of predetermined light that does not include the emission spectrum line of r, and comparing the intensity of light obtained by dividing the former by the latter as a determination signal, and comparing the determination signal with a determination value determined in advance by experiment. Even when using a measuring device having a relatively low resolution (about 6 nm in full width at half maximum), it is possible to accurately detect the presence or absence of a welding defect.

【0085】更に本発明では、上記のように窒素の発光
スペクトル線を含む光の強度を測定した基準信号と、鉄
の発光スペクトル線を含む光の強度を測定した参照用信
号の比(相対強度)を判定信号としたことから、それぞれ
の光の受光部を図1に示す如く一致させ、その後分光す
ることにすれば、例えば光ファイバの受光部に若干の煤
が付着して、検出器に導かれる光量が低下しとしても、
判定信号強度と溶接欠陥の発生有無との間には良好な相
関が経時的に保たれ、工業的利用という側面からは非常
に有用である。
Further, in the present invention, the ratio (relative intensity) of the reference signal obtained by measuring the intensity of light including the emission spectrum line of nitrogen to the reference signal obtained by measuring the intensity of light including the emission spectrum line of iron as described above. ) Was used as the determination signal, so that the light receiving portions of the respective lights were matched as shown in FIG. 1 and then spectrally separated. Even if the amount of light guided decreases,
A good correlation is maintained with time between the determination signal intensity and the presence or absence of a welding defect, which is very useful from the aspect of industrial use.

【0086】基準信号として強度を測定する所定の光と
しては、窒素の発光スペクトル線を含んだ波長範囲を選
択する。測定できる窒素の発光スペクトル線の波長とし
ては、前述の通り、742.364nm、744.23
nm、746.831nmであるが、波長分解能として
2nm程度以下を確保できる場合には、744.23n
mまたは746.83nmのの光を測定する。また、6
nm程度の分解能しか確保できない場合には、744.
23nmの光を中心に741以上748nmの光を計測
することとする。
As the predetermined light whose intensity is measured as the reference signal, a wavelength range including the emission spectrum line of nitrogen is selected. As described above, the wavelength of the nitrogen emission spectrum line that can be measured is 742.364 nm and 744.23.
nm and 746.831 nm, and when the wavelength resolution can be secured to about 2 nm or less, 744.23 n
Measure the light at m or 746.83 nm. Also, 6
If only a resolution of about nm can be secured, 744.
It is assumed that light of 741 nm or more and 748 nm is measured around the light of 23 nm.

【0087】また判定信号を構成するための参照用信号
とする鉄の発光スペクトル線を含む所定の光として、例
えば波長範囲300〜340nm、520〜570n
m、620〜690nmの光などがある。また、鉄の発
光スペクトル線718.734nm、720.741n
mを含む波長範囲710〜730nmの光や、783.
22nmを含む波長範囲780〜790nmの光が、参
照用信号として使える。
As the predetermined light including an emission spectrum line of iron as a reference signal for forming a determination signal, for example, a wavelength range of 300 to 340 nm, 520 to 570 n
m, light of 620 to 690 nm. In addition, an emission spectrum line of iron 718.834 nm,
m in the wavelength range of 710 to 730 nm, and 783.
Light having a wavelength range of 780 to 790 nm including 22 nm can be used as a reference signal.

【0088】更に、シールドガスにArを用いていない
場合には全体の発光強度、例えば波長範囲300nm以
上800nm以下の光を測定し、参照用信号とすること
ができる。
Further, when Ar is not used as the shielding gas, the entire luminous intensity, for example, light having a wavelength range of 300 nm or more and 800 nm or less can be measured and used as a reference signal.

【0089】[0089]

【実施例】図1は、本発明になる実施状態の一例を示す
模式図である。
FIG. 1 is a schematic diagram showing an example of an embodiment according to the present invention.

【0090】図1において、図中の矢符方向に所定の速
度で搬送される被溶接材料1は上方より照射されるレー
ザビーム2によって貫通溶接されるようになっている。
その溶接部の表裏面にはレーザ誘起プラズマ3が生成し
ている。なお、溶接部の表側はHeあるいはArガス、
またはHeとArの混合ガスでシールドされており、裏
側はArガスでシールドされている。
In FIG. 1, a material 1 to be welded, which is conveyed at a predetermined speed in the direction of the arrow in the figure, is welded through by a laser beam 2 irradiated from above.
Laser-induced plasma 3 is generated on the front and back surfaces of the weld. The front side of the weld is He or Ar gas,
Alternatively, it is shielded by a mixed gas of He and Ar, and the back side is shielded by Ar gas.

【0091】ここでは鋼板裏面の監視を例にとって説明
するが、表側についても同様である。また、鋼板裏側の
シールドガスがHeになった場合も同様である。
Here, monitoring of the back surface of the steel sheet will be described as an example, but the same applies to the front side. The same applies to the case where the shield gas on the back side of the steel plate becomes He.

【0092】上記プラズマ3の光は一方の開口面がプラ
ズマに向けて設けられた光ファイバ4によって光分割器
6に伝送される。ここで受光面積を大きく取るために、
プラズマ光は受光レンズ5を通して光ファイバの開口面
に集められている。
The light of the plasma 3 is transmitted to the optical splitter 6 by an optical fiber 4 having one opening face directed toward the plasma. Here, in order to increase the light receiving area,
The plasma light is collected on the opening surface of the optical fiber through the light receiving lens 5.

【0093】光分割器6により分割されたプラズマ光
は、特定の光のみを透過する分光器、例えば所定の光の
みを透過させるフィルター7A、7Bなどにより、所定
の光のみが光検出器、例えばホトダイオード8A、8B
によって、光の強度に応じた電気信号に順次変換され
る。
The plasma light split by the light splitter 6 is converted into a photodetector, for example, by a spectroscope that transmits only specific light, for example, filters 7A and 7B that transmit only predetermined light. Photo diodes 8A and 8B
Thus, the light is sequentially converted into an electric signal corresponding to the light intensity.

【0094】ここで光検出器7Aおよび7Bによって、
レーザ誘起プラズマの発光のうち、窒素の発光スペクト
ル線を含んだ波長範囲の光の強度および、鉄の発光スペ
クトル線を含んだ波長範囲の光の強度がそれぞれ基準信
号および参照用信号となる。
Here, the light detectors 7A and 7B
Of the laser-induced plasma emission, the light intensity in the wavelength range including the emission spectrum line of nitrogen and the light intensity in the wavelength range including the emission spectrum line of iron are the reference signal and the reference signal, respectively.

【0095】得られた電気信号は、ノイズカットフィル
ター付き電圧増幅器9A、9BとAD変換器を経由して
コンピュータ10に取り込まれる。ノイズカットフィル
ターは、急激な意味のない発光強度の変化を殺すために
必要であり、10〜1Hz以下の信号を通すローパスフ
ィルターが好ましい。また、コンピュータでは、基準信
号と参照信号の比を取り、更に溶接速度で除した判定信
号を算出し、溶接欠陥発生有無の判定基準である判定値
と比較して、溶接ビードの良否判定を行うとともに、C
RTなどの表示装置に逐次判定結果と判定信号が表示さ
れるようになっている。
The obtained electric signal is taken into the computer 10 via the voltage amplifiers 9A and 9B with the noise cut filter and the AD converter. The noise cut filter is necessary to kill a sudden and meaningless change in the light emission intensity, and a low-pass filter that passes a signal of 10 to 1 Hz or less is preferable. The computer calculates the ratio of the reference signal to the reference signal, calculates a determination signal obtained by dividing the ratio by the welding speed, and compares the calculated signal with a determination value that is a determination criterion for determining whether or not a welding defect has occurred. With C
The judgment result and the judgment signal are sequentially displayed on a display device such as an RT.

【0096】なお、溶接欠陥発生有無の判定とともに、
ブザーなどで警報を発したり、鋼板の表や裏に異常部の
マーキングを施すようにしても良い。また、モニターへ
の出力信号を光ディスクなどの適宜な記録装置に記録保
存するようにしても良い。
In addition to determining whether or not a welding defect has occurred,
An alarm may be issued by a buzzer or the like, or an abnormal portion may be marked on the front and back of the steel plate. Further, the output signal to the monitor may be recorded and stored in an appropriate recording device such as an optical disk.

【0097】本発明の効果を実証するために、図1に示
す構成の測定装置を用い、以下に示す実際のレーザ溶接
時にレーザ溶接部の裏面に発生するレーザ誘起プラズマ
の発光強度を測定した。
In order to demonstrate the effect of the present invention, the emission intensity of laser-induced plasma generated on the back surface of the laser welded portion during actual laser welding was measured using a measuring device having the configuration shown in FIG.

【0098】レーザの加工点出力は4.5kWであり、
板厚0.7mmの冷延鋼板の突き合わせて溶接を行っ
た。溶接速度は5m/minである。溶接中表に示すよ
うに突き合わせ状況と裏面のシールドガスのAr純度を
故意に劣化させて判定信号とブローホールやピット欠陥
発生の有無との関係を調べた。
The processing point output of the laser is 4.5 kW,
A 0.7 mm thick cold-rolled steel plate was butted and welded. The welding speed is 5 m / min. As shown in the table during welding, the relationship between the determination signal and the presence or absence of blow holes and pit defects was examined by intentionally deteriorating the butting condition and the Ar purity of the shielding gas on the back surface.

【0099】測定した判定信号を図10に示す。ここで
は、窒素の発光スペクトル線を含む基準信号として波長
分解能4nmの分光器を用いて中心波長745nmの光
を計測し、参照用の光として波長分解能785nmの分
光器を用いて中心波長785nmの光を計測し、ローパ
スフィルターとして2Hzのものを用いている。
FIG. 10 shows the measured judgment signal. Here, a light having a center wavelength of 745 nm is measured using a spectroscope having a wavelength resolution of 4 nm as a reference signal including a nitrogen emission spectrum line, and a light having a center wavelength of 785 nm is used as a reference light using a spectrometer having a wavelength resolution of 785 nm. And a 2 Hz low-pass filter is used.

【0100】図10より明らかなように、本実施例にお
ける測定系の感度では、品質判定の基準として2.2を
用いることによりレーザ溶接部の欠陥発生有無の判定を
行うことができることが判る。
As is evident from FIG. 10, in the sensitivity of the measuring system in the present embodiment, it is possible to determine whether or not a defect has occurred in the laser welded portion by using 2.2 as a quality determination criterion.

【0101】[0101]

【発明の効果】本発明によれば、レーザ溶接時に比較的
分解能が低い測定器を用い、測定器の受光面が経時的な
汚損により信号強度が低下した場合においても、ブロー
ホールやピット欠陥の発生有無と安定して良好な相関が
得られる溶接欠陥の検知方法または溶接部の品質監視方
法を提供することができる。
According to the present invention, a measuring instrument having a relatively low resolution is used at the time of laser welding, and even if the signal intensity decreases due to the contamination of the light receiving surface of the measuring instrument over time, blowholes and pit defects can be prevented. It is possible to provide a method for detecting a welding defect or a method for monitoring the quality of a welded portion, which can obtain a good correlation stably with the presence or absence of occurrence.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明になる実施状態の一例を示す模式図であ
る。
FIG. 1 is a schematic diagram showing an example of an embodiment according to the present invention.

【図2】窒素シールド溶接とHeシールド溶接での鋼板
表面のレーザ誘起プラズマの発光の分光計測例と、分光
発光強度比の波長範囲300nmから600nmの例を
示す模式図である。
FIG. 2 is a schematic diagram showing an example of spectral measurement of laser-induced plasma emission on a steel sheet surface in nitrogen shield welding and He shield welding, and an example of a spectral emission intensity ratio in a wavelength range of 300 nm to 600 nm.

【図3】窒素シールド溶接とHeシールド溶接での鋼板
表面のレーザ誘起プラズマの発光の分光計測例と、分光
発光強度比の波長範囲600nmから800nmの例を
示す模式図である。
FIG. 3 is a schematic diagram showing an example of spectral measurement of light emission of laser-induced plasma on a steel sheet surface in nitrogen shield welding and He shield welding, and an example of a spectral emission intensity ratio in a wavelength range of 600 nm to 800 nm.

【図4】Arと窒素の混合ガスでシールドしたときと、
Arシールドでレーザ溶接したときの鋼板表面のレーザ
誘起プラズマの分光計測結果の一例を示す模式図であ
る。
FIG. 4 shows a case where shielding is performed with a mixed gas of Ar and nitrogen;
It is a schematic diagram which shows an example of the spectrum measurement result of the laser induced plasma of the steel plate surface at the time of laser welding with an Ar shield.

【図5】Heと窒素の混合ガスで鋼板裏面をシールドし
たときと、Heで鋼板裏面をシールドしてレーザ溶接し
たときの鋼板裏面のレーザ誘起プラズマの分光計測結果
の一例を示す模式図である。
FIG. 5 is a schematic diagram showing an example of spectral measurement results of laser-induced plasma on the back surface of a steel plate when the back surface of the steel plate is shielded with a mixed gas of He and nitrogen and when the back surface of the steel plate is shielded with He and laser-welded. .

【図6】鋼板裏面に生成したレーザ誘起プラズマを本願
発明になる方法で監視したときの判定信号の経時変化の
一例を示す模式図である。
FIG. 6 is a schematic diagram showing an example of a temporal change of a determination signal when a laser-induced plasma generated on a back surface of a steel sheet is monitored by a method according to the present invention.

【図7】前記判定信号1および判定信号2の強度が、鋼
板裏面のAr+N2混合ガスの窒素濃度に対しどのよう
に変化したかを示す図である。
FIG. 7 is a diagram showing how the intensities of the determination signal 1 and the determination signal 2 change with respect to the nitrogen concentration of the Ar + N 2 mixed gas on the back surface of the steel sheet.

【図8】波長範囲300nmから600nmの範囲での
分光計測結果を表す図である。。
FIG. 8 is a diagram illustrating spectroscopic measurement results in a wavelength range of 300 nm to 600 nm. .

【図9】波長範囲600nmから800nmの範囲で
の、鉄の発光スペクトル(黒色塗りつぶし)とArの発
光スペクトル(白抜きで表示)を示す図である。
FIG. 9 is a diagram showing an emission spectrum of iron (filled black) and an emission spectrum of Ar (shown in white) in a wavelength range of 600 nm to 800 nm.

【図10】レーザ溶接時にレーザ溶接部の裏面に発生す
るレーザ誘起プラズマの発光強度を測定した判定信号を
示す図である。
FIG. 10 is a diagram showing a determination signal obtained by measuring the emission intensity of laser-induced plasma generated on the back surface of a laser weld during laser welding.

【符号の説明】[Explanation of symbols]

1 被溶接材料 2 レーザビーム 3 レーザ誘起プラズマ 4 光ファイバ 5 受光レンズ 6 光分割器 7A、7B 分光器(フィルター) 8A、8B 光検出器(フォトダイオード) 9A、9B ノイズカットフィルター付き電圧増幅器 10 AD変換ボード付き計測コンピュータ REFERENCE SIGNS LIST 1 welding material 2 laser beam 3 laser induced plasma 4 optical fiber 5 light receiving lens 6 light splitter 7A, 7B spectroscope (filter) 8A, 8B photodetector (photodiode) 9A, 9B voltage amplifier with noise cut filter 10 AD Measurement computer with conversion board

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // B23K 31/00 B23K 31/00 L (72)発明者 田中 隆 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 (72)発明者 小原 昌弘 大分市大字西ノ州1番地 新日本製鐵株式 会社大分製鐵所内 Fターム(参考) 2G043 AA03 BA02 BA07 CA02 CA05 EA10 FA05 HA05 HA09 JA02 KA01 KA05 KA09 LA01 NA01 2G051 AA90 AB02 AB20 AC30 BA10 CC07 CC17 EA11 2G055 AA08 BA07 FA02 4E068 BA00 CA17 CC01 CJ01 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) // B23K 31/00 B23K 31/00 L (72) Inventor Takashi Tanaka 20-1 Shintomi, Futtsu Nippon Steel Corporation Within the Technology Development Headquarters (72) Inventor Masahiro Ohara No. 1, Nishinoshu, Oita City Nippon Steel Corporation Oita Works F-term (Reference) 2G043 AA03 BA02 BA07 CA02 CA05 EA10 FA05 HA05 HA09 JA02 KA01 KA05 KA09 LA01 NA01 2G051 AA90 AB02 AB20 AC30 BA10 CC07 CC17 EA11 2G055 AA08 BA07 FA02 4E068 BA00 CA17 CC01 CJ01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被接合材の表面及び裏面の内の何れか一
方の溶接部をHeガスでシールドしてレーザ溶接を行う
際に、Heガスでシールドされた前記溶接部のレーザ加
工点近傍に発生するレーザ誘起プラズマの発する光のう
ちで、窒素の発光スペクトル線を含む波長範囲741〜
748nmにある所定の光の強度と鉄の発光スペクトル
線を含む所定の光の強度をそれぞれ測定し、前者を後者
で除した光の強度比を判定信号として、この判定信号と
予め実験により定めた判定値とを比較することにより溶
接欠陥の発生有無を判定することを特徴とするレーザ溶
接における溶接欠陥の検知方法。
When performing laser welding by shielding one of a front surface and a back surface of a material to be joined with He gas, a portion near a laser processing point of the weld portion shielded with He gas is provided. Of the light emitted by the laser-induced plasma, the wavelength range 741 to
The intensity of the predetermined light at 748 nm and the intensity of the predetermined light including the emission spectrum line of iron were measured, and the intensity ratio of light obtained by dividing the former by the latter was used as a judgment signal. A method for detecting a welding defect in laser welding, comprising determining whether or not a welding defect has occurred by comparing a determination value.
【請求項2】 被接合材の表面及び裏面の内の何れか一
方の溶接部をArガスまたは、Arを含む混合ガスでシ
ールドしてレーザ溶接を行う際に、ArガスまたはAr
ガスを含むシールドガスでシールドされた前記溶接部の
レーザ加工点近傍に発生するレーザ誘起プラズマの発す
る光のうちで、窒素の発光スペクトル線を含む波長範囲
741〜748nmにある所定の光の強度と鉄の発光ス
ペクトル線を含み、かつArの発光スペクトル線を含ま
ない所定の光の強度をそれぞれ測定し、前者を後者で除
した光の強度比を判定信号として、この判定信号と予め
実験により定めた判定値とを比較することにより溶接欠
陥の発生有無を判定することを特徴とするレーザ溶接に
おける溶接欠陥の検知方法。
2. A laser welding method in which one of a front surface and a back surface of a material to be joined is shielded with Ar gas or a mixed gas containing Ar to perform laser welding.
Among the light emitted by the laser-induced plasma generated near the laser processing point of the welded portion shielded by the shielding gas containing gas, the intensity of the predetermined light in the wavelength range 741 to 748 nm including the emission spectrum line of nitrogen and The intensity of predetermined light that includes the emission spectrum line of iron and does not include the emission spectrum line of Ar is measured, and the intensity ratio of light obtained by dividing the former by the latter is used as a determination signal. A method for detecting a welding defect in laser welding, comprising determining whether or not a welding defect has occurred by comparing the detected value with a determined value.
JP2000271714A 2000-09-07 2000-09-07 Method for detecting weld defect in laser beam welding Withdrawn JP2002079386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000271714A JP2002079386A (en) 2000-09-07 2000-09-07 Method for detecting weld defect in laser beam welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000271714A JP2002079386A (en) 2000-09-07 2000-09-07 Method for detecting weld defect in laser beam welding

Publications (1)

Publication Number Publication Date
JP2002079386A true JP2002079386A (en) 2002-03-19

Family

ID=18757959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000271714A Withdrawn JP2002079386A (en) 2000-09-07 2000-09-07 Method for detecting weld defect in laser beam welding

Country Status (1)

Country Link
JP (1) JP2002079386A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006075853A (en) * 2004-09-08 2006-03-23 Sumitomo Metal Ind Ltd Laser-welded joint of austenitic alloy steel and its production method
EP1987910A1 (en) * 2007-05-02 2008-11-05 T.E.R.N.I. Research Ionizing Radiations S.p.A. A method for instantly evaluating the quality of a weld
US20140149075A1 (en) * 2010-08-31 2014-05-29 Consiglio Nazionale Delle Ricerche Method for detecting flaws in the process for the continuous laser welding of metallic portions
JP2016087635A (en) * 2014-10-31 2016-05-23 Jfeスチール株式会社 Laser welding apparatus and laser welding method
WO2017194460A1 (en) * 2016-05-13 2017-11-16 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Method and apparatus for monitoring, in particular controlling, a cutting process
CN111372715A (en) * 2017-11-21 2020-07-03 辛诺瓦有限公司 Device for measuring a fluid jet which guides a laser beam
CN113751921A (en) * 2021-09-28 2021-12-07 长春一汽宝友钢材加工配送有限公司 Automatic detection system for air hole defects of laser tailor-welded blank
GB2628393A (en) * 2023-03-22 2024-09-25 Univ Cranfield A welding sensing system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006075853A (en) * 2004-09-08 2006-03-23 Sumitomo Metal Ind Ltd Laser-welded joint of austenitic alloy steel and its production method
EP1987910A1 (en) * 2007-05-02 2008-11-05 T.E.R.N.I. Research Ionizing Radiations S.p.A. A method for instantly evaluating the quality of a weld
US20140149075A1 (en) * 2010-08-31 2014-05-29 Consiglio Nazionale Delle Ricerche Method for detecting flaws in the process for the continuous laser welding of metallic portions
US9505086B2 (en) * 2010-08-31 2016-11-29 Consiglio Nazionale Delle Ricerche Method for detecting flaws in the process for the continuous laser welding of metallic portions
JP2016087635A (en) * 2014-10-31 2016-05-23 Jfeスチール株式会社 Laser welding apparatus and laser welding method
CN109475981A (en) * 2016-05-13 2019-03-15 通快机床两合公司 Method and apparatus for monitoring, particularly for adjusting cutting process
WO2017194460A1 (en) * 2016-05-13 2017-11-16 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Method and apparatus for monitoring, in particular controlling, a cutting process
EP3455028B1 (en) 2016-05-13 2020-03-18 Trumpf Werkzeugmaschinen GmbH + Co. KG Method and apparatus for monitoring, in particular controlling, a cutting process
CN109475981B (en) * 2016-05-13 2021-10-15 通快机床两合公司 Method and device for monitoring, in particular for regulating, a cutting process
US11491583B2 (en) 2016-05-13 2022-11-08 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Methods and apparatuses for controlling cutting processes
CN111372715A (en) * 2017-11-21 2020-07-03 辛诺瓦有限公司 Device for measuring a fluid jet which guides a laser beam
CN111372715B (en) * 2017-11-21 2022-10-18 辛诺瓦有限公司 Device for measuring a fluid jet which guides a laser beam
CN113751921A (en) * 2021-09-28 2021-12-07 长春一汽宝友钢材加工配送有限公司 Automatic detection system for air hole defects of laser tailor-welded blank
GB2628393A (en) * 2023-03-22 2024-09-25 Univ Cranfield A welding sensing system

Similar Documents

Publication Publication Date Title
US6060685A (en) Method for monitoring laser weld quality via plasma light intensity measurements
Sforza et al. On-line optical monitoring system for arc welding
US6399915B1 (en) Method and apparatus for determining quality of welding at weld between working material pieces
US9527166B2 (en) Welding portion inspection device and inspection method therefore, with extracting portion for extracting evaporation luminescence and thermal radiation
US4446354A (en) Optoelectronic weld evaluation system
CA2663314A1 (en) Method and device for the optical assessment of welding quality during welding
JPH03504214A (en) Quality confirmation method and equipment when welding or cutting with laser
US20240261907A1 (en) Laser welding quality inspection method and laser welding quality inspection apparatus
Beersiek et al. On-line monitoring of penetration depth in laser beam welding
JP2002079386A (en) Method for detecting weld defect in laser beam welding
Sibillano et al. Correlation analysis in laser welding plasma
JP2023514403A (en) How to Analyze Welded Connections During Laser Welding of Workpieces
JPH106051A (en) Quality inspecting method in laser beam welding and its equipment
Ancona et al. A sensing torch for on-line monitoring of the gas tungsten arc welding process of steel pipes
Valdiande et al. On-line monitoring and defect detection of arc-welding via plasma optical spectroscopy and LIBS
JP2683874B2 (en) Welding state detection method and device for laser welding
US20220347789A1 (en) Laser processing monitoring method and laser processing monitoring device
JP3238352B2 (en) Method and apparatus for monitoring welding status
JPH11188489A (en) Laser welding zone quality-monitoring method
JP2005095942A (en) Laser welding quality inspection method and device
JP4045424B2 (en) Laser welding quality inspection method and apparatus
JP3385502B2 (en) Laser welding defect detection apparatus and detection method
JP2001219287A (en) Monitoring method of laser beam welding
JP2000061672A (en) Laser welding state detecting method
JPH08267241A (en) Judging method of back bead forming condition at welding

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071204