JPS6312519A - Pneumatic transport device - Google Patents

Pneumatic transport device

Info

Publication number
JPS6312519A
JPS6312519A JP15291886A JP15291886A JPS6312519A JP S6312519 A JPS6312519 A JP S6312519A JP 15291886 A JP15291886 A JP 15291886A JP 15291886 A JP15291886 A JP 15291886A JP S6312519 A JPS6312519 A JP S6312519A
Authority
JP
Japan
Prior art keywords
pressure tank
compressed air
transport pipe
pipe
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15291886A
Other languages
Japanese (ja)
Other versions
JPH0479928B2 (en
Inventor
Teruo Horiuchi
堀内 輝男
Yoshiaki Okura
大倉 嘉昭
Takeyoshi Nonaka
野中 丈義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP15291886A priority Critical patent/JPS6312519A/en
Publication of JPS6312519A publication Critical patent/JPS6312519A/en
Publication of JPH0479928B2 publication Critical patent/JPH0479928B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To decrease the air amount till being emptied to a great extent by introducing compressed air along the inner walls of an enclosed pressure tank when this tank and an associate transport pipe are to be emptied, and by increasing the intra-pipe wind speed using a minor amount of air. CONSTITUTION:When an enclosed pressure tank 1 and an associate transport pipe are to be emptied, the pulverized/granular substance residual in said pressure tank 1 are exhausted to the transport pipe with the aid of compressed air from a piping 29. If, at this time, the compressed air fed from the piping 29 is introduced along the inner walls 1a of the pressure tank 1, the air advances along the inner walls 1a with acceleration toward the exhaust hole. This accelerated stream of compressed air serves exhaustion of the residual pulverized/ granular substance to the transport pipe, and the substance is transported in the pipe. This makes the intra-pipe wind speed much greater than in conventional construction, which allows perfect exhaustion of the residual pulverized/ granular substance to a collection tank with a remarkably smaller amount of compressed air than in conventional construction.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は粉粒材料をプラグ輸送する空気輸送装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a pneumatic transport device for plug transporting granular material.

〔従来の技術及びその問題点〕[Conventional technology and its problems]

密閉圧力タンク及びこれに接続される輸送管から成り、
該輸送管にパルス状に圧縮空気を供給することによって
前記密閉圧力タンクから排出される粉粒材料を前記輸送
管に市ってプラグ輸送するようにした空気輸送装置が知
られている。プラグ輸送とは、輸送管内に圧力空気i1
’+ (パルス)と粉粒体集合物層(プラグ)とを交互
に形成させ、プラグに隣接する2つのパルス間の圧力差
によってそのプラグを透過する圧力空気の作用力、すな
わち1くさび力”を利用して粉粒体を推進させる方法で
あるが、密閉圧力タンク内及び輸送管内の粉粒材料を完
全に排出する場合には密閉圧力タンク内に圧縮空気を導
入するようにしている。この空気輸送によシ残存粉粒状
材を外部に排出するのであるが圧縮空気量が多量に消費
されなければならない。
Consists of a closed pressure tank and a transport pipe connected to it,
A pneumatic transport device is known in which powder material discharged from the sealed pressure tank is transported into the transport pipe through a plug by supplying compressed air in pulses to the transport pipe. Plug transport means pressurized air i1 in the transport pipe.
'+ (pulses) and powder aggregate layers (plugs) are formed alternately, and the acting force of pressurized air passing through the plug due to the pressure difference between two pulses adjacent to the plug, that is, 1 wedge force.'' This is a method of propelling powder and granular materials using air, but when the powder and granular materials in the closed pressure tank and transport pipe are to be completely discharged, compressed air is introduced into the closed pressure tank. Although the remaining powder and granular material is discharged to the outside by pneumatic transportation, a large amount of compressed air must be consumed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は上記間趙に鑑みてなされ、密閉圧力タンク内及
び輸送管内を空にするだめの圧縮空気の量を減少させ得
る空気輸送装置を提供することを目的とする。
The present invention has been made in view of the above-mentioned problem, and an object of the present invention is to provide a pneumatic transport device capable of reducing the amount of compressed air required to empty a closed pressure tank and a transport pipe.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、密閉圧力タンク及びこれに接続される輸送
管から成シ、該輸送管にパルス状に圧縮空気を供給する
ことによって前記密閉圧力タンクから排出される粉粒材
料を前記輸送管に潜ってプラグ輸送するようにし、前記
密閉圧力タンク内及び前記輸送管内を空にする場合に前
記密閉圧力タンク内に圧縮空気を導入するようにした空
気輸送装置において、前記中にするための圧縮空気を前
記密閉圧力タンクの内壁面に清って尋人するようにした
ことを特徴とする空気輸送装置によって達成される。
The above object consists of a closed pressure tank and a transport pipe connected to the tank, and by supplying compressed air in pulses to the transport pipe, the powder material discharged from the closed pressure tank is absorbed into the transport pipe. In the pneumatic transport device, compressed air is introduced into the sealed pressure tank when the inside of the closed pressure tank and the inside of the transport pipe are emptied. This is achieved by a pneumatic transport device characterized in that the inner wall surface of the sealed pressure tank is air-filled.

〔作 用〕[For production]

密閉圧力タンク内及び輸送管内を空にする場合には、圧
縮空気は上記密閉圧力タンクの内壁面に溢って導入され
るので、該タンクの底部に向うにつれ段々、加速されて
輸送管内へと噴出される。
When the inside of the closed pressure tank and the transport pipe are emptied, the compressed air overflows the inner wall of the closed pressure tank and is introduced, so that it is gradually accelerated toward the bottom of the tank and flows into the transport pipe. It is squirted.

従って、従来よシ少ない空気量で輸送管内の風速を大き
くすることができ、結局、空にするまでに要する空気量
を大巾に減少させることができる。
Therefore, it is possible to increase the wind speed in the transport pipe with a smaller amount of air than in the past, and as a result, the amount of air required to empty the pipe can be greatly reduced.

〔実施例〕〔Example〕

以下、本発明の実施例による空気輸送装置について図面
を参照して説明する。
EMBODIMENT OF THE INVENTION Hereinafter, a pneumatic transportation device according to an embodiment of the present invention will be described with reference to the drawings.

図において、圧力タンク(1)は本体(2)と蓋体(3
)とから成り蓋体(3)によって気密に本体(2)の開
口が被覆されている。蓋体(3)と一体的にダクト(4
)が形成され、これは下側バルブ(5)、中間ダクト(
6)、−上側バルブ(7)、フレキシブルジヨイント(
8)を介してホッパ(9)の排出開口に接続される。ホ
ッパ(9)は地上に適宜、部材を介して支持される。
In the figure, the pressure tank (1) has a main body (2) and a lid (3).
), and the opening of the main body (2) is hermetically covered by the lid (3). The duct (4) is integrated with the lid (3).
) is formed, which consists of a lower valve (5), an intermediate duct (
6), - Upper valve (7), flexible joint (
8) to the discharge opening of the hopper (9). The hopper (9) is supported on the ground via appropriate members.

圧力タンク(1)の本体(2)の下部に形成される排出
口部Qi)は排出ダク) C11)に接続され、とれは
エアナイフ装置四及びフレキシブルジヨイント03を介
シて長い輸送管αΦに接続される。輸送管α蜀はフレキ
シブルではなく剛体であるが、捕集タンクα力へと延び
ており、適所で文法Qυ(4)によシ地上に支持されて
いる。捕集タンク07)の上部にはエアフィルタ(至)
が設けられ、排出開口部にはバルブ四が配設され、作動
装置(4)によう開閉されるようになっている。
The discharge port Qi) formed at the lower part of the main body (2) of the pressure tank (1) is connected to the discharge duct C11), and the outlet is connected to the long transport pipe αΦ via the air knife device 4 and the flexible joint 03. Connected. The transport pipe α is rigid rather than flexible, but it extends to the collection tank α and is supported on the ground in place according to the grammar Qυ (4). There is an air filter (to) on the top of the collection tank 07).
A valve 4 is provided at the discharge opening and is opened and closed by an actuating device (4).

圧力タンク(1)は−側壁側でヒンジ+2tlで地上に
支持されており、他側壁側でa−ドセルので地上に支持
されている。すなわち、圧力タンク(1)はa−ドセル
(22によ)全重量が計重されるようになっている。圧
力タンク(1)は地上からはフレキシブルジヨイント(
8)C4によシ浮いた状態におり、その全重量がバルブ
(51(7)、ダクト(4)(6)(1υ、工γナイフ
装置Q4と共にロードセル123で計重されるようにな
っている。これら及び圧力タンク(1)の本体(2)や
蓋体(3)は予め車量が知られているので、結局、ロー
ドセル+22の出力から圧力タンク(1)内の粉粒材料
の重量を知ることができる。また、圧力タンク(1)の
側壁部にはパイブレーメ(ハ)が取シ付けられておシ、
この振動によジ圧カタンク(1)内で仮に粉粒月料がブ
IJ ノヂを形成せんとしてもこれは破かいされ、内部
は常に良好な流動状態全保持することができるようにな
っている。
The pressure tank (1) is supported on the ground by a hinge +2tl on the negative side wall side, and is supported on the ground by a hinge on the other side wall side. That is, the entire weight of the pressure tank (1) is measured by the a-docel (22). The pressure tank (1) can be seen from the ground using a flexible joint (
8) It is in a state of floating on C4, and its total weight is measured by the load cell 123 along with the valve (51 (7), duct (4) (6) (1υ), and the mechanical gamma knife device Q4. Since the weight of these and the body (2) and lid (3) of the pressure tank (1) is known in advance, the weight of the granular material in the pressure tank (1) can be determined from the output of the load cell +22. In addition, a pipe frame (c) is attached to the side wall of the pressure tank (1).
Due to this vibration, even if the powder particles do not form a bubble in the pressure tank (1), this will be ruptured, and the inside will always be able to maintain a good fluid state. There is.

次に圧力タンク(1)への配′U系統について説明する
Next, the distribution system to the pressure tank (1) will be explained.

圧縮空気源としてのタンク(2巾からtよ配・il、、
!51を介して圧縮空気が圧力タンク(1)の上部に供
給される。
A tank as a source of compressed air (2 width to
! Via 51 compressed air is supplied to the upper part of the pressure tank (1).

配管C9にはバルブ(讃が接続され、これによシ圧力タ
ンク(1)内に供給される圧力が例えばゲージ圧で0.
5〜0.6気圧に調節される。空気流量では約5Vse
cとされる。このために配管(2jには更に流量計(至
)及び圧力t#f@が接続される。配管(25+から圧
力タンク(1)の上部に供給される圧縮空気によp圧力
タンク(1)内の粉粒材料は全体として下方へと押圧さ
れる。
A valve is connected to the pipe C9, which allows the pressure supplied to the pressure tank (1) to be adjusted to, for example, 0.0 gauge pressure.
The pressure is adjusted to 5 to 0.6 atmospheres. Approximately 5Vse for air flow rate
c. For this purpose, a flow meter (to) and a pressure t#f@ are further connected to the pipe (2j). The granular material inside is pressed downward as a whole.

配管t251からは更に配管C29) G33(至)が
分岐して幹J、本発明に係わる配管(291には電磁パ
ルプ叩が接続され、これから圧縮空気がやはり圧力タン
ク(1)の上部に供給されるようになっているが、通常
の空気輸送時、すなわち圧力タンク(1)の下限レベル
以上に粉粒材料が存在しているときは電磁バルブ(7)
は閉じておυ、上述のバルブC81が開いている。圧力
タンク(1)を空にすべく、そして輸送管α蜀から完全
に粉粒材料を排出したいときには電磁バルブ叩が開かれ
、上述のバルブ(至)は閉じられ、セしてよシ高い圧力
で例えば15〜20m/鯰の流量で圧縮空気が圧力タン
ク(1)内へ送られるようになっている。
From pipe t251, pipe G33 (to C29) branches off to trunk J, which is the pipe related to the present invention (291 is connected to an electromagnetic pulp drum, from which compressed air is also supplied to the upper part of the pressure tank (1). However, during normal pneumatic transportation, that is, when granular material is present above the lower limit level of the pressure tank (1), the solenoid valve (7)
is closed and the above-mentioned valve C81 is open. In order to empty the pressure tank (1) and to completely discharge the granular material from the transport pipe α, the solenoid valve is opened, and the above-mentioned valve is closed, allowing a higher pressure to be released. Compressed air is sent into the pressure tank (1) at a flow rate of, for example, 15 to 20 m/catfish.

更にまた、本発明によれば配管telは第2図に示され
るように、そのタンク(1)内にめる開口端部(29a
)がタンク(1)の内壁面(1a)に沿っているように
タンク(1)に固定されている。従って、こ\から噴出
される圧縮空気は矢印で示すように内壁面(Ia)に沿
って導入されることになる。
Furthermore, according to the present invention, the pipe tel has an open end (29a) to be inserted into the tank (1), as shown in FIG.
) is fixed to the tank (1) along the inner wall surface (1a) of the tank (1). Therefore, the compressed air blown out from here will be introduced along the inner wall surface (Ia) as shown by the arrow.

分岐配管C3はバルブ(ト)を介して圧力タンク(1)
の排出口部θQに接続される。こ\から吹き込まれる圧
縮空気によシ圧カタンク(1)内に存在する粉粒材料は
流動化され、輸送管α荀への排出を答易なものとしてい
る。流量#(ト)、圧力計(ト)によシ適切に流動化さ
れるように圧縮空気の流量及び圧力を調節するようにな
っている。
Branch pipe C3 connects to pressure tank (1) via valve (G)
It is connected to the discharge port θQ of. The powder material present in the pressure tank (1) is fluidized by the compressed air blown in from this, making it easy to discharge into the transport pipe α. The flow rate and pressure of the compressed air are adjusted using the flow rate # (g) and the pressure gauge (g) so that the compressed air is properly fluidized.

分岐配管(ト)はバルブ国及び電磁バルブ+41を介し
てエアナイフ装置(6)に接続されている。エアナイフ
装置a4は公知のように管の外周のせまい隙間から圧縮
空気を噴出してこの部分の粉粒材料をナイフで切るよう
な働らきをする。電磁バルブ(4(1は自動的にオンオ
フを繰返し、パルス状の圧縮空気を供給する。流量計6
η、圧力計(至)によシこの圧縮空気の圧力及び流量が
適宜調節される。
The branch pipe (G) is connected to the air knife device (6) via a valve and a solenoid valve +41. As is well known, the air knife device a4 blows out compressed air from a narrow gap on the outer periphery of the tube to cut the powder material in this area with a knife. Solenoid valve (4 (1) automatically repeats on and off and supplies pulsed compressed air. Flow meter 6
The pressure and flow rate of this compressed air are adjusted appropriately using a pressure gauge.

電磁バルブ(5) (7) C301(40(D ソv
 / (ド部t44) t451 C3υ(41)はそ
れぞれ制御回路(43の出力端子に接続されている。
Solenoid valve (5) (7) C301 (40 (D
/ (Do portion t44) t451 C3υ (41) are each connected to the output terminal of the control circuit (43).

またロードセル(22の出力端子は制御回路(43の入
力端子に接続される。
Further, the output terminal of the load cell (22) is connected to the input terminal of the control circuit (43).

なおタンク(241には圧力針(4々が接続され、タン
ク 1+241内の圧力を検出し、この圧力が所定範囲
内にあるようにコンプレッサ(図示せず)から圧縮空気
がこ\に供給されるようになっているものとする。
Note that pressure needles (4) are connected to the tank (241) to detect the pressure inside the tank (1+241), and compressed air is supplied to it from a compressor (not shown) so that this pressure is within a predetermined range. It is assumed that

本実施例は以上のように構成されるが、次にこの作用に
ついて説明する。
The present embodiment is configured as described above, and its operation will be explained next.

まず、通常の輸送状態について説明する。圧力タンク(
1)内には下限レベル以上に粉粒材料が貯蔵されている
。これはロードセル(221によシ検出される。すなわ
ち、粉粒材料の比重は予め測定されておシ、この値と検
知材料重量とから材料レベルが制御回路(43内で演算
される。この結果から下限レベル以上に粉粒材料が圧力
タンク(1)内に存在すると判断されてソレノイド部t
44J (451C!υは励磁されないが、電磁バルブ
(4【浄のソレノイド部(4υにはパルス状のt流が流
される。すなわち電磁バルブ(4(珍は開閉を繰り返し
エアナイフ装置(ロ)にパルス状の圧縮空気が供給され
る。
First, normal transportation conditions will be explained. Pressure tank (
1) Powder material is stored in the container above the lower limit level. This is detected by the load cell (221).In other words, the specific gravity of the powder material is measured in advance, and the material level is calculated in the control circuit (43) from this value and the detected material weight. It is determined that granular material exists in the pressure tank (1) at a level higher than the lower limit level, and the solenoid section t
44J (451C!υ is not energized, but a pulse-like flow is passed through the solenoid part (4υ) of the electromagnetic valve (4). compressed air is supplied.

他方、圧力タンク(1)内の上部では圧縮空気が配管(
251、バルブe印を介して供給され、圧力タンク(]
)内に存在する粉粒材料は全体的に下方へと押圧される
。一方、排出口部αQからも圧縮空気が供給されて粉粒
材料は流動状態におかれる。バイブレータG!31の振
動によシ圧カタンク(1)内では粉粒材料のブリッヂが
形成されることは未然に防止され、良好で一様な材料の
流動状態が得られる。圧力タンク(1)の内壁に材料が
付着してブリッヂを生成させんとするような傾向は防止
される。
On the other hand, in the upper part of the pressure tank (1), compressed air is piped (
251, supplied via valve e mark, pressure tank (]
) is pressed downwards as a whole. On the other hand, compressed air is also supplied from the discharge port αQ to keep the powder material in a fluid state. Vibrator G! The vibration of 31 prevents the formation of bridges of granular material in the pressure tank (1), resulting in a good and uniform flow state of the material. The tendency for material to adhere to the inner walls of the pressure tank (1) and create bridges is prevented.

圧力タンク(1)からは滑らかに粉粒材料がダクトQη
を通ってエアナイフ装置(2)内へと専かれる。こ\で
連続的に供給される粉粒材料は断続的圧縮空気によ)ナ
イフで切られる如く分断され、図示する如くプラグ状に
輸送管H中を移送される。(4ηは粉粒材料でsb、(
481は空気である。
Powder material flows smoothly from the pressure tank (1) into the duct Qη
and into the air knife device (2). The continuously supplied granular material is divided into parts (by intermittent compressed air) as if cut by a knife, and is transferred through the transport pipe H in the form of a plug as shown. (4η is the powder material sb, (
481 is air.

捕集タンク<171には粉粒材料が集積され、空気はフ
ィルタ(ト)を通って外部に排気される。フィルタ(至
)によって粉1粒材料が外部に漏れることは防止される
Particulate material is accumulated in the collection tank <171, and air is exhausted to the outside through a filter (g). The filter prevents the powder material from leaking to the outside.

圧力タンク(1)内の粉粒材料が減少し、所定の下限レ
ベルに達したことをロードセルのが検知すると制御回路
(43が電磁バルブ(5) (7)のソレノイド部(4
1(44Iを交互に励磁する信号を発生する。
When the load cell detects that the granular material in the pressure tank (1) has decreased and reached a predetermined lower limit level, the control circuit (43) activates the solenoid section (43) of the electromagnetic valve (5) (7).
1 (generates a signal that alternately excites 44I).

すなわち、上方の電磁バルブ(7)が開かれてホッパ(
9)から粉粒材料がダクト(6)内へ排出される。こ\
に所定量排出されると、もしくは所定時間、排出される
と、ソレノイド部(44Jは消磁されて電磁バルブ(7
)は閉じる。次いで電磁バルブ(5)はソレノイド部(
451が励磁されて開となシダクト(6)内の粉粒材料
は圧力タンク(1)内へと排出される。所定時間、排出
すると、もしくはダクト(6)が空になるとソレノイド
部(4っけ消磁され電磁バルブ(5)は閉じられる。
That is, the upper solenoid valve (7) is opened and the hopper (
9), the granular material is discharged into the duct (6). child\
When a predetermined amount or a predetermined period of time is discharged, the solenoid section (44J is demagnetized and the solenoid valve (7
) is closed. Next, the electromagnetic valve (5) is connected to the solenoid part (
451 is energized and opened, the powder material in the side duct (6) is discharged into the pressure tank (1). When the water is discharged for a predetermined period of time or when the duct (6) is empty, the solenoid section (4) is demagnetized and the electromagnetic valve (5) is closed.

次いで上側の電磁バルブ(7)がソレノイド部(旬の励
磁により開となシホッパ(9)からダクト(6)内に材
料が供給される。
Next, the upper electromagnetic valve (7) is opened by excitation of the solenoid part (the solenoid part), and the material is supplied from the hopper (9) into the duct (6).

以上のようにして電磁バルブ(5) (7)が交互に開
閉金繰り返してホッパ(9)から粉粒材料が中間ダクト
(6)を介して圧力タンク(1)内に補給される。この
補給中も圧力タンク(1)からは連続的に輸送管←4へ
材料が供給されパルス状の圧縮空気によりプラグ輸送さ
れている。圧力タンク(1)の上部には配管(ハ)から
連続的に圧縮空気が供給されているが、上述のように1
1L磁バルブ(51(7) k交互に開閉することによ
りこの圧縮空気がホッパ(9)から大気中に排気される
ことが極力防止される。すなわち、補給中の圧損を極力
防止している。
As described above, the electromagnetic valves (5) and (7) are alternately opened and closed to supply powdered material from the hopper (9) into the pressure tank (1) via the intermediate duct (6). Even during this replenishment, the material is continuously supplied from the pressure tank (1) to the transport pipe ←4, and the material is transported by a plug using pulsed compressed air. Compressed air is continuously supplied to the upper part of the pressure tank (1) from the pipe (c), but as mentioned above,
By alternately opening and closing the 1L magnetic valve (51(7)), this compressed air is prevented as much as possible from being exhausted from the hopper (9) into the atmosphere. That is, pressure loss during replenishment is prevented as much as possible.

圧力タンク(1)内の粉粒材料が所定の上限レベルまで
供給されたこと金ロードセル+2Zが検知すると、電磁
バルブ(5) (7)の交互の励磁は中止され、再び両
バルブ(5) (7)は閉となる。
When the gold load cell +2Z detects that the granular material in the pressure tank (1) has been supplied to the predetermined upper limit level, the alternate excitation of the electromagnetic valves (5) (7) is stopped and both valves (5) ( 7) is closed.

次に圧力タンク(1)ヲ空にし、輸送管CIΦからも粉
粒材料を完全に排出してしまう場合について説明する。
Next, a case will be described in which the pressure tank (1) is emptied and the granular material is completely discharged from the transport pipe CIΦ.

この場合には、図示せずとも制御N路(4りに設けられ
た完全排出ボタンを押すものとする。ロードセルC21
が圧力タンク(1)内の粉粒材料が下限レベルに達した
ことを検知してもこの場合は電磁バルブ(5) (7)
は作動せず、電磁バルブ(31t41のソレノイド部6
υ(41)がそれぞれ、励磁及び消磁される。すなわち
電磁バルブ(2))が開き大きな圧力で流量の圧縮空気
が圧力タンク(1)内に導かれる。また電磁バルブ(4
(1は常時閉となシパルス状の圧縮空気の供給は停止す
る。
In this case, it is assumed that the complete ejection button provided on the control path N (4) is pressed even though it is not shown in the figure.Load cell C21
Even if it detects that the granular material in the pressure tank (1) has reached the lower limit level, in this case, the solenoid valves (5) (7)
does not operate, and the solenoid valve (solenoid part 6 of 31t41
υ(41) are respectively excited and demagnetized. That is, the electromagnetic valve (2) opens and a large flow of compressed air is introduced into the pressure tank (1). Also, the electromagnetic valve (4
(No. 1 is normally closed, and the supply of compressed air in the form of a cipher is stopped.

連続的な高い圧力の圧縮空気によシ圧カタンク(1)内
の材料は輸送管α美へと排出され、また輸送管α蜀内の
材料はこの圧縮空気によp捕集タンクαη内へと排出さ
れる。なおバイブレータ(231の振動によシ圧カタン
ク(1)内壁に付着せんとする材料は極力減少させられ
る。
The material in the pressure tank (1) is discharged into the transport pipe α by continuous high-pressure compressed air, and the material in the transport pipe α is discharged by this compressed air into the p collection tank αη. is discharged. Furthermore, due to the vibration of the vibrator (231), the amount of material adhering to the inner wall of the pressure tank (1) is reduced as much as possible.

捕集タンクθ′t)内に集積された粉粒材料は作動装置
(ホ)の駆動によりバルブ01が開かれ次工程へと供給
される。
The particulate material accumulated in the collection tank θ't) is supplied to the next process by driving the actuating device (e) to open the valve 01.

本発明の実施例は以上のような作用を行うのである、特
に次のような効果を奏するものである。
The embodiments of the present invention perform the functions described above, and particularly have the following effects.

すなわち、配管(ハ)からの圧縮空気により圧力タンク
(1)内に残存している粉粒材料は輸送管α膏へと排出
されるのであるが、このとき配管(至)からの圧縮空気
は第2図に示すように圧力タンク(1)の内壁面(1a
)に清って導入される。内壁面(1a)をつたわって進
行し排出口部(Lt)に向うにつれ、加速される。
In other words, the granular material remaining in the pressure tank (1) is discharged into the transport pipe by the compressed air from the pipe (c), but at this time, the compressed air from the pipe (to) As shown in Figure 2, the inner wall surface (1a) of the pressure tank (1)
) will be introduced cleanly. As it progresses along the inner wall surface (1a) and toward the discharge port (Lt), it is accelerated.

この加速された圧縮空気流で残存粉粒材料は輸送管04
1へと排出され、この管α4内を輸送される。管内風速
は従来より一段と太きい。結局、従来より−yと少ない
圧縮空気量で圧力タンク(1)及び輸送管0勺の残存粉
粒材料を完全に捕集タンク(171へと排出することが
できる。
This accelerated compressed air flow removes the remaining powder material from the transport pipe 04.
1 and transported within this pipe α4. The air velocity inside the pipe is much higher than before. As a result, the remaining particulate material in the pressure tank (1) and transport pipes can be completely discharged to the collection tank (171) with an amount of compressed air that is -y smaller than the conventional method.

以上、本発明の実施例について説明したが、勿論、本発
明はこれに限定されることなく、本発明の技術的思想に
基づいて種々の変形が可能でおる。
The embodiments of the present invention have been described above, but of course the present invention is not limited thereto, and various modifications can be made based on the technical idea of the present invention.

例えば以上の実施例では圧力タンク(1)の全重量をロ
ードセルので検知し、この検知信号で各ノ(ルブを制御
するようにしたが、このような制御を行わない空気輸送
装置にも本発明は適用可能である。
For example, in the above embodiment, the total weight of the pressure tank (1) is detected by the load cell, and each knob is controlled using this detection signal, but the present invention can also be applied to a pneumatic transport device that does not perform such control. is applicable.

また以上の実施例では配管(至)を圧力タンク(1)の
比較的上部に取りつけるようにしたが、史に下部に取り
つけるようにしてもよい。また圧力タンク(1)の形状
も図示のものに限定されることはない。
Further, in the above embodiments, the piping (toward) is attached to a relatively upper portion of the pressure tank (1), but it may be attached to a lower portion. Furthermore, the shape of the pressure tank (1) is not limited to that shown in the drawings.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明の空気輸送装置によれば、密閉
圧力タンク内及び輸送管内の粉粒材料を空にするための
圧縮空気の量を従来より一段と減少させることができる
As described above, according to the pneumatic transport device of the present invention, the amount of compressed air for emptying the granular material in the closed pressure tank and the transport pipe can be further reduced compared to the conventional method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例による空気輸送装置の部分破断
側面図及び第2図は第1図における■−■線方向拡大断
面図でおる。 なお図において、
FIG. 1 is a partially cutaway side view of a pneumatic transport device according to an embodiment of the present invention, and FIG. 2 is an enlarged cross-sectional view taken along line 1--2 in FIG. In the figure,

Claims (1)

【特許請求の範囲】[Claims] 密閉圧力タンク及びこれに接続される輸送管から成り、
該輸送管にパルス状に圧縮空気を供給することによつて
前記密閉圧力タンクから排出される粉粒材料を前記輸送
管に沿つてプラグ輸送するようにし、前記密閉圧力タン
ク内及び前記輸送管内を空にする場合に前記密閉圧力タ
ンク内に圧縮空気を導入するようにした空気輸送装置に
おいて、前記空にするための圧縮空気を前記密閉圧力タ
ンクの内壁面に沿つて導入するようにしたことを特徴と
する空気輸送装置。
Consists of a closed pressure tank and a transport pipe connected to it,
By supplying compressed air in pulses to the transport pipe, the powder material discharged from the closed pressure tank is transported along the transport pipe as a plug, and the inside of the closed pressure tank and the transport pipe are In a pneumatic transport device that introduces compressed air into the sealed pressure tank when emptying the tank, the compressed air for emptying is introduced along the inner wall surface of the sealed pressure tank. Characteristic pneumatic transportation device.
JP15291886A 1986-06-30 1986-06-30 Pneumatic transport device Granted JPS6312519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15291886A JPS6312519A (en) 1986-06-30 1986-06-30 Pneumatic transport device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15291886A JPS6312519A (en) 1986-06-30 1986-06-30 Pneumatic transport device

Publications (2)

Publication Number Publication Date
JPS6312519A true JPS6312519A (en) 1988-01-19
JPH0479928B2 JPH0479928B2 (en) 1992-12-17

Family

ID=15550994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15291886A Granted JPS6312519A (en) 1986-06-30 1986-06-30 Pneumatic transport device

Country Status (1)

Country Link
JP (1) JPS6312519A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0537770U (en) * 1991-10-25 1993-05-21 宇部興産株式会社 Pneumatic transport device
JP2002068474A (en) * 2000-08-31 2002-03-08 Pauretsuku:Kk Powder and grain supply device
WO2002024558A1 (en) * 2000-09-20 2002-03-28 Nihon Parkerizing Co., Ltd. Powder weight or volumetric or counting feeder
JP2011207624A (en) * 2011-07-25 2011-10-20 Kaneka Corp Pressurizing transport method of powder and pressurizing transport device of powder

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0537770U (en) * 1991-10-25 1993-05-21 宇部興産株式会社 Pneumatic transport device
JP2002068474A (en) * 2000-08-31 2002-03-08 Pauretsuku:Kk Powder and grain supply device
WO2002024558A1 (en) * 2000-09-20 2002-03-28 Nihon Parkerizing Co., Ltd. Powder weight or volumetric or counting feeder
JP2002096930A (en) * 2000-09-20 2002-04-02 Nippon Parkerizing Co Ltd Powder fixed quantity supply device
JP2011207624A (en) * 2011-07-25 2011-10-20 Kaneka Corp Pressurizing transport method of powder and pressurizing transport device of powder

Also Published As

Publication number Publication date
JPH0479928B2 (en) 1992-12-17

Similar Documents

Publication Publication Date Title
US6679301B2 (en) Powder packing method and apparatus therefor
US4264243A (en) Constant vacuum barge unloading system
US7850047B2 (en) System and method for transporting measured amounts of bulk materials
RU2005106239A (en) METHOD AND DEVICE FOR SUBMITTING DUSTY MATERIAL
CA1163290A (en) Venturi barge unloading system
JPS6312519A (en) Pneumatic transport device
JP2007246218A (en) Air transport device for powder and granule
JPH11130257A (en) Pneumatic carrier device for powder and grain
JP4307975B2 (en) Method and apparatus for filling fine powder
JPS6312523A (en) Pneumatic transport device
JPS6312521A (en) Pneumatic transport device
JPS62259920A (en) Pneumatic transport device
JPS6312524A (en) Pneumatic transport device
JPS62255318A (en) Pneumatic conveyance device
JP3602739B2 (en) Pneumatic transport type powder storage and supply device
JPH08113369A (en) Granule supplying device
US3357748A (en) Material feed regulator
JPH11301783A (en) Earth and sand improvement plant
JPS6312520A (en) Pneumatic transport device
JP2001031246A (en) Granular and powdery material intermittent discharge apparatus
JP4290507B2 (en) Powder filling method, filling device and filling nozzle
JPH07109018A (en) Powder carrying chute equipment having porous inner tube
JPH07113567B2 (en) Measuring device for powder and granular material
JP2002187592A (en) Fine particle carrying vessel
JP2005067653A (en) Method for filling powder and system for filling powder