JPS6312524A - Pneumatic transport device - Google Patents

Pneumatic transport device

Info

Publication number
JPS6312524A
JPS6312524A JP15747686A JP15747686A JPS6312524A JP S6312524 A JPS6312524 A JP S6312524A JP 15747686 A JP15747686 A JP 15747686A JP 15747686 A JP15747686 A JP 15747686A JP S6312524 A JPS6312524 A JP S6312524A
Authority
JP
Japan
Prior art keywords
transport pipe
air
compressed air
pressure
pressure tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15747686A
Other languages
Japanese (ja)
Other versions
JPH046623B2 (en
Inventor
Teruo Horiuchi
堀内 輝男
Yoshiaki Okura
大倉 嘉昭
Takeyoshi Nonaka
野中 丈義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP15747686A priority Critical patent/JPS6312524A/en
Publication of JPS6312524A publication Critical patent/JPS6312524A/en
Publication of JPH046623B2 publication Critical patent/JPH046623B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Air Transport Of Granular Materials (AREA)

Abstract

PURPOSE:To ensure smooth transport of pulverized/granular substance by introducing compressed air into a transport pipe via an air takein means when a pressure tank is to be fed with compressed air in order to exhaust the pulverized/granular substance entirely, and thereby preventing blocking of transport pipe. CONSTITUTION:When a pulverized/granular substance is to be exhausted entirely from a pressure tank 1 and a transport pipe 14, a full exhaust button of a control circuit 43 is pushed. Now drive signals for solenoids 54a, 55a, 56a are given to open solenoid valves 54, 55, 56 to allow compressed air to be passed to an air takein device 70 from a compression tank 57 via a conduit P. This is made at a high speed near the sonic speed from a gap into the transport pipe 14, so that there is no risk for the substance transported afloat at high speed to intrude through the gap. Thus the air takein device 70 functions normally, and the transport pipe 14 is surely prevented from blocking during plug transportation of conduction, which should ensure smooth transport operations.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は粉粒材料をプラグ輸送する空気輸送装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a pneumatic transport device for plug transporting granular material.

〔従来の技術及びその問題点〕[Conventional technology and its problems]

密閉圧力タンク及びこれに接続される輸送管から成シ、
該輸送管にパルス状に圧縮空気を供給することによって
前記密閉圧力タンクから排出される粉粒材料を前記輸送
管に宿ってプラグ輸送するようにした空気輸送装置が知
られている。プラグ輸送とは、輸送管内に圧力空気層(
パルス)と粉粒体集合物層(プラグ)とを交互に形成さ
せ、プラグに隣接する2つのパルス間の圧力差によって
そのプラグを透過する圧力空気の作用力、すなわち1く
さび力”を利用して粉粒体を推進させる方法であるが、
伺らかの原因で輸送管内に粉粒材料が閉塞し゛てしまり
と上述のように通常輸送用のパルス状の圧縮空気を送っ
ているだけではこの閉塞は解除できず、結局、輸送作用
は停止してしまう。
Consisting of a sealed pressure tank and a transport pipe connected to it,
A pneumatic transport device is known in which the powder material discharged from the sealed pressure tank is accommodated in the transport pipe and transported by plug by supplying compressed air in pulses to the transport pipe. Plug transport means a pressure air layer (
Pulses) and powder aggregate layers (plugs) are formed alternately, and the action force of the pressurized air that passes through the plug due to the pressure difference between two pulses adjacent to the plug, that is, 1 wedge force is utilized. This is a method of propelling powder and granules by
For some reason, the transport pipe becomes clogged with powder and granular material, and as mentioned above, simply sending pulsed compressed air for normal transport will not be able to relieve the blockage, and eventually the transport action will stop. Resulting in.

本出願人は上記問題に鑑みて先に輸送管の粉粒材料の閉
塞を防止して粉粒材料の連続的な輸送作用を保証する空
気輸送装置u’を提供することを目的として、密閉圧力
タンクに接続される輸送管にパルス状に圧縮空気を供給
することによって前記密閉圧力タンクから排出される粉
粒材料を前記輸送管に沿ってプラグ輸送・するようにし
、前記輸送管の少なくとも一箇所に圧力検出手段を備え
た空気導入手段を設けて、該箇所の管内圧力全検出する
ようにし、この圧力が所定値より高いときには前記空気
導入手段を介して前記輸送管内に圧縮空気を導入するこ
とにより前記輸送管内の粉粒材料の閉塞を防止するよう
にした空気輸送装置を提案した。然るに、上記密閉圧力
タンク及び輸送管から粉粒材料全完全に排出してしまう
場合には、一般に密閉圧力タンク内に残量排出用エアが
導入され、これが輸送管内を高速で流れるのであるが、
粉粒材料は浮遊状態におって一般に上記空気導入手段に
は隙間があり、こ\を通って、その凹所もしくは、中空
部に粉粒材料が侵入し、こ\に溜る傾向がある。場合に
よっては、通常のプラグ輸送時に、粉粒材料が閉塞せん
として、これを防止するために空気導入手段を介して空
気全送り込んでも、輸送管内には大きな流速で至らず、
閉塞を防止できないことがある。また、圧力検出手段が
作動せず、目的を達成しない場合もある。
In view of the above-mentioned problems, the present applicant has developed an air-tight pressure system for the purpose of providing a pneumatic conveying device u' that prevents the clogging of the granular material in the transport pipe and ensures continuous transport of the granular material. The granular material discharged from the sealed pressure tank is plug-transported along the transport pipe by supplying compressed air in pulses to a transport pipe connected to the tank, and at least one part of the transport pipe is provided. An air introduction means equipped with a pressure detection means is provided in the pipe to detect the total pressure inside the pipe at the location, and when this pressure is higher than a predetermined value, compressed air is introduced into the transport pipe via the air introduction means. We have proposed a pneumatic transport device that prevents clogging of powdery material in the transport pipe. However, when all of the powder material is completely discharged from the sealed pressure tank and transport pipe, air is generally introduced into the closed pressure tank to discharge the remaining amount, and this air flows at high speed inside the transport pipe.
When the particulate material is in a floating state, there is generally a gap in the air introduction means, and the particulate material tends to enter the recess or hollow space through the gap and accumulate there. In some cases, during normal plug transportation, the powdered material may become clogged, and even if all the air is sent through the air introduction means to prevent this, the flow rate will not reach the inside of the transportation pipe at a large flow rate.
It may not be possible to prevent occlusion. Furthermore, the pressure detection means may not operate and the purpose may not be achieved.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は上記問題に鑑みてなされ、閉塞を防止するため
の空気導入手段を常に正常に作動させ得るようにした空
気輸送装置を提供すること全目的とする。
The present invention has been made in view of the above-mentioned problems, and an object thereof is to provide an air transport device in which the air introduction means for preventing blockage can always operate normally.

〔問題点を解決するための手段〕[Means for solving problems]

以上の目的は、密閉圧力タンクに接続される輸送管にパ
ルス状に圧縮空気を供給することによって前記密閉圧力
タンクから排出される粉粒材料を前記輸送管に沿ってプ
ラグ輸送するようにし、前記輸送管の少なくとも一箇所
に圧力検出手段金偏えた空気導入手段を設けて、該箇所
の管内圧力全検出するようにし、この圧力が所定値より
高いときには前記空気導入手段全弁して前記輸送管内に
圧縮空気を導入することにより前記輸送管内の粉粉材料
の閉塞全防止するようにし圧空気輸送装置において、前
記密閉圧力タンク及び輸送管から粉粒材料を完全に排出
すべく前記密閉圧力タンク内に圧縮空気を送入するとき
には常時前記空気導入手段を介して圧縮空気を前記輸送
管内に導入させるようにしたことを特徴とする空気輸送
装置によって達成される。
The above object is to supply compressed air in pulses to a transport pipe connected to a closed pressure tank, thereby transporting the granular material discharged from the closed pressure tank along the transport pipe as a plug; At least one part of the transport pipe is provided with an air introduction means having a biased pressure detection means so as to detect the entire pressure inside the pipe at that part, and when this pressure is higher than a predetermined value, all of the air introduction means are valved to detect the pressure inside the transport pipe. In the compressed air transport device, the compressed air is introduced into the sealed pressure tank to completely prevent the blockage of the powder material in the transport pipe. This is achieved by an air transport device characterized in that when compressed air is introduced into the transport pipe, the compressed air is always introduced into the transport pipe via the air introduction means.

〔作 用〕[For production]

通常のプラグ輸送中に、輸送管に粉粒材料が閉塞せんと
するとこの管内圧力が上昇する。これが圧力検出手段に
よp検出される。この検出に基いて圧縮空気が空気導入
中R’を介して輸送管内に導入され、閉塞せんとしてい
る粉粒材料をほぐすような働らきをする。よって閉塞全
防止する。
During normal plug transportation, if the transport pipe is clogged with granular material, the pressure inside the pipe increases. This is detected by the pressure detection means. Based on this detection, compressed air is introduced into the transport pipe via R' during air introduction and acts to loosen the particulate material that is about to become clogged. Therefore, blockage is completely prevented.

密閉圧力タンク及び輸送管を空にするべく密閉圧力タン
ク内へ圧縮空気が送入されると、粉粒材料は粉遊状態で
高速で空気により輸送管中を輸送される。このとき常時
、空気導入手段を介して圧縮空気が輸送管内に導入され
るので、空気導入手段の凹所や中空部に粉粒材料が溜ろ
うとしても、これは直ちにこ\を通る圧縮空気により除
去され輸送管内へと吹きとばされる。従って、空気導入
手段は常に正常に働らくことができ、通常のプラグ輸送
時の輸送管中閉塞を確実に防止することができる。また
空気導入手段に備えられる圧力検出手段は常に正確にこ
れが設けられている箇所の輸送管内の圧力を検出するこ
とができる。
When compressed air is introduced into the closed pressure tank to empty the closed pressure tank and the transport pipe, the particulate material is transported by air at high speed through the transport pipe in a loose powder state. At this time, compressed air is always introduced into the transport pipe via the air introduction means, so even if powdery material tries to accumulate in the recesses or hollow parts of the air introduction means, it will be immediately removed by the compressed air passing through it. It is removed and blown into the transport pipe. Therefore, the air introduction means can always function normally, and blockage in the transportation pipe during normal plug transportation can be reliably prevented. Further, the pressure detection means provided in the air introduction means can always accurately detect the pressure within the transport pipe where it is installed.

〔実施例〕〔Example〕

以下、本発明の実施例による空気輸送装置について図面
全参照して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A pneumatic transportation device according to an embodiment of the present invention will be described below with reference to all the drawings.

図において、圧力タンク(1)は本体(2)と蓋体(3
)とから成夛蓋体(3)によつて気密に本体(2)の開
口が被覆されている。蓋体(3)と一体内にダクト(4
)が形成され、これは下側パルプ(5)、中間ダクト(
6)、上側パルプ(7)、フレキシブルジヨイント(8
)ヲ介してホッパ(9)の排出開口に接続される。ホッ
パ(9)は地上に適宜、部材を介して支持される。
In the figure, the pressure tank (1) has a main body (2) and a lid (3).
), the opening of the main body (2) is hermetically covered by a cover (3). A duct (4) is integrated with the lid (3).
) is formed, which consists of a lower pulp (5), an intermediate duct (
6), upper pulp (7), flexible joint (8)
) to the discharge opening of the hopper (9). The hopper (9) is supported on the ground via appropriate members.

圧力タンク(1)の本体(2)の下部に形成される排出
口部(IIは排出ダク)C1ηに接続され、これはエア
ナイフ装置(2)及びフレキシブルジョイン) C13
に介して長い輸送管(ロ)に接続される。輸送管CA4
1は7レキシプルではなく剛体であるが、捕集タンク(
I″i)へと延びており、適所で支柱(至)史やにより
地上に支持されている。捕集タンク(I71の上部には
エアフィルタ(ト)が設けられ、排出開口部にはバルブ
四が配設され、作動装置allGQにより開閉されるよ
うになっている。
It is connected to the discharge port (II is the discharge duct) C1η formed at the bottom of the main body (2) of the pressure tank (1), and this is connected to the air knife device (2) and the flexible joint (C13).
It is connected to a long transport pipe (b) through. Transport pipe CA4
1 is a rigid body rather than a 7-lexiple, but the collection tank (
I"i), and is supported on the ground by struts at appropriate locations. An air filter (g) is provided at the top of the collection tank (I71), and a valve is installed at the discharge opening. 4 are arranged and are opened and closed by an actuating device allGQ.

圧力タンク(1)は−llI壁似でヒンジ1211で地
上に支持されており、他gA壁側でロードセル@で地上
に支持されている。すなわち、圧力タンク(1)はロー
ドセルのにより全重量が1tiiされるようになってい
る。圧力タンク(1)は地上からは7レキシプルジヨイ
ント(8)(2)により浮いた状態にあp、その全重量
がバルブ(5) (7)、ダクト(4) (6) (I
I、1.エアナイフ装置(2)と共にロードセル@で1
11されるようになっている。これら及び圧力タンク(
1)の本体(2)や蓋体(3)は予め重量が知られてい
るので、結局、ロードセルのの出力から圧力タンク(1
)内の粉粒材料の重量を知ることができる。tた、圧力
タンク(1)の側壁部にはバイブレータ(ハ)が*り付
けられておシ、この振動により圧力タンク(1)内で仮
に粉粒材料がブリッヂを形成せんとしてもこれは破かい
され、内部は常に良好な流動状態全保持することができ
るようになっている。
The pressure tank (1) is supported on the ground by a hinge 1211 similar to the -llI wall, and is supported on the ground by a load cell @ on the other gA wall side. That is, the total weight of the pressure tank (1) is 1tii due to the load cell. The pressure tank (1) is suspended from the ground by 7 lexipul joints (8) (2), and its total weight is the valve (5) (7), duct (4) (6) (I
I, 1. Load cell @1 with air knife device (2)
11. These and pressure tanks (
Since the weight of the main body (2) and lid body (3) of 1) is known in advance, the weight of the pressure tank (1) is determined from the output of the load cell.
) can know the weight of the powder material. In addition, a vibrator (c) is attached to the side wall of the pressure tank (1), and this vibration will cause the granular material to break if it does not form a bridge within the pressure tank (1). This allows the inside to maintain a good fluid state at all times.

次に圧力タンク(1)への配管系統について説明する。Next, the piping system to the pressure tank (1) will be explained.

圧縮空気源としてのタンク(至)からは配管Gを介して
圧縮空気が圧力タンク(1)の上部に供給される。
Compressed air is supplied to the upper part of the pressure tank (1) via a pipe G from a tank (to) serving as a compressed air source.

配管(ハ)にはバルブのが接続され、これにより圧力タ
ンク(1)内に供給される圧力が例えばゲージ圧で0.
5〜0.6気圧に調節される。空気流量では約5rrv
/SeCとされる。このために配管(ハ)には史に流量
計c!G及び圧力計面が接続される。配管価)から圧力
タンク(1)の上部に供給される圧縮空気により圧力タ
ンク(1)内の粉粒材料は全体として下方へと押圧され
る。
A valve is connected to the pipe (c), so that the pressure supplied to the pressure tank (1) can be adjusted to 0.000, for example, in terms of gauge pressure.
The pressure is adjusted to 5 to 0.6 atmospheres. Air flow rate is approximately 5rrv
/SeC. For this reason, the piping (c) is equipped with a flowmeter c! G and pressure gauge face are connected. The granular material in the pressure tank (1) is pressed downward as a whole by compressed air supplied to the upper part of the pressure tank (1) from the pressure tank (1).

配管[有]からは更に配管■(支)国μs)が分岐して
おシ、配管c!■には電磁バルブ6uが接続され、これ
から圧縮空気がやはり圧力タンク(1)の上部に供給さ
れるようになっているが、通常の空気輸送時、すなわち
圧力タンク(1)の下限レベル以上に粉粒材料が存在し
ているときは電磁バルブ■は閉じてお9、上述のバルブ
(2)が開いている。圧力タンク(1)を空にすべく、
そして輸送管(ロ)から完全に粉粒材料を排出したいと
きには電磁バルブqが開かれ、上述のバルブ(至)は閉
じられ、モしてよp高い圧力で例えば15〜20 V′
secの流量で圧縮空気が圧力タンク(1)内へ送られ
るようになっている。
From the piping [Yes], the piping ■ (branch) country μs) further branches off, and the piping c! A solenoid valve 6u is connected to ■, so that compressed air is supplied to the upper part of the pressure tank (1). When granular material is present, the electromagnetic valve (9) is closed and the above-mentioned valve (2) is open. To empty the pressure tank (1),
Then, when it is desired to completely discharge the granular material from the transport pipe (b), the electromagnetic valve q is opened, the above-mentioned valve (to) is closed, and the pressure is increased to a higher level, e.g., 15 to 20 V'.
Compressed air is sent into the pressure tank (1) at a flow rate of sec.

分岐配管の4はバルブ(351ヲ介して圧力タンク(1
)の排出口部(10に接続される。こ\から吹き込まれ
る圧縮空気により圧カタンク(1)内に存在する粉粒材
料は流動化され、輸送管(ロ)への排出を容易なものと
している。流量it(至)、圧力針(ロ)により適切に
流動化されるように圧縮空気の流量及び圧力を調節する
ようになっている。
Branch piping 4 connects to the pressure tank (1) via the valve (351).
) is connected to the discharge port (10). The compressed air blown from this fluidizes the granular material present in the pressure tank (1), making it easy to discharge into the transport pipe (b). The flow rate and pressure of the compressed air are adjusted by the flow rate IT (to) and pressure needle (B) so that the compressed air is properly fluidized.

分岐配管間はバルブ彌及び電磁バルブ(4G ?介して
エアナイフ装置(6)に接続されている。エアナイフ装
fit(2)は公知のように管の外周のせまい隙間から
圧縮空気を噴出してこの部分の粉粒材料全ナイフで切る
ような働らきをする。電磁バルブ+41は自動的にオン
オフを繰返し、パルス状の圧縮空気を供給する。流量肚
場η、圧力計間によりこの圧縮空気の圧力及び流量が適
宜調節される。
The branch pipes are connected to an air knife device (6) via a valve shaft and a solenoid valve (4G?).The air knife device (2), as is well known, blows out compressed air from a narrow gap on the outer periphery of the pipe. It acts like cutting all the part of the granular material with a knife.The electromagnetic valve +41 automatically repeats on and off and supplies pulsed compressed air.The pressure of this compressed air is determined by the flow rate field η and the pressure gauge. and the flow rate is adjusted accordingly.

電磁バルブ(5) (7)■t41のソレノイド部け4
) (4E9 Gυ(4υはそれぞれ制御−路(41の
出力端子に接続されている。
Solenoid valve (5) (7) ■T41 solenoid part 4
) (4E9 Gυ (4υ are each connected to the output terminal of the control path (41).

またロードセルのの出力端子は制御(gl路(43の入
力端子に接続される。
Further, the output terminal of the load cell is connected to the input terminal of the control (GL path).

なおタンクc!41には圧力計04が接続され、タンク
c!滲内の圧力全検出し、この圧力が所定範囲内におる
ようにコンプレッサ(図示せず)から圧縮空気がこ\に
供給されるようになっているものとする。
Furthermore, tank c! 41 is connected to the pressure gauge 04, and the tank c! It is assumed that the total pressure within the sludge is detected and compressed air is supplied from a compressor (not shown) to keep this pressure within a predetermined range.

輸送管(ロ)は上述したようにフレキシブルジヨイント
(2)から捕集タンクaηまで延びているのであるが、
3箇所に圧力検出器6υ0521531を備えた空気導
入器σCが設けられ、検出器61) 621(ト)によ
り対応する管内の圧力を検出するようになっている。圧
縮空気タンクC57]からはそれぞれ配管5Q (59
1(601及び電磁バルブC541551(561’t
−介して圧縮空気が空気導入器(7αに供給されるよう
になっている。圧力検出器(5υ(52153)は所定
値以上の圧力を検出すると励磁信号を発生し、これ全電
磁バルブt541(至)(8)のソレノイド部(54a
)(55a)(56a)に供給して、これらを開状態に
するようになっている。ソレノイド部(54a)(55
1)(+568)には更に制御回路(43の出力端子が
接続されている。
As mentioned above, the transport pipe (b) extends from the flexible joint (2) to the collection tank aη,
Air introducers σC equipped with pressure detectors 6υ0521531 are provided at three locations, and the pressure in the corresponding pipes is detected by the detectors 61) 621 (g). Compressed air tank C57] is connected to piping 5Q (59
1 (601 and solenoid valve C541551 (561't
- Compressed air is supplied to the air introducer (7α) through the pressure detector (5υ (52153)) which generates an excitation signal when it detects a pressure above a predetermined value. To) Solenoid part (54a) of (8)
) (55a) and (56a) to open them. Solenoid part (54a) (55
1) (+568) is further connected to the output terminal of the control circuit (43).

第2図は空気導入器qαの詳iを示すが、次にこれにつ
いて説明する。
FIG. 2 shows details of the air introducer qα, which will now be described.

点線で示すように空気導入器σαは上記側輸送管(ロ)
の7ランク部(14a)と下流側輸送管α尋の7ランク
部(tea)との間に図示せずともボルト等により固定
されている。
As shown by the dotted line, the air introducer σα is connected to the above side transport pipe (b).
It is fixed by bolts or the like, although not shown, between the seventh rank part (14a) of 14a and the seventh rank part (tea) of the downstream transport pipe α fathom.

空気導入器(7■は2つの環状部材σ11σ渇から成9
゜それらの中央開口(71M)(72a)は輸送管α4
の孔(14a)(14b)と整列しており、またその内
径は相等しい。
Air introducer (7) consists of two annular members σ11σ
゜Those central openings (71M) (72a) are transport pipes α4
The holes (14a) and (14b) are aligned with each other, and their inner diameters are the same.

一方の環状部材συの周壁部には圧力検出器621(代
表的に示す。他の検出器Co11 C531についても
同様)が収夛付けられる孔(7th)及び圧縮空気供給
用孔(71C)が形成されている。孔(71C)には圧
縮空気金送る導管Pが取9付けられる。環状部材(71
)は段付孔を有し、これと他方の環状部材(7りとの間
に環状空間aが形成される。これは、内環状部材(71
) (7Zの両端面間の隙間Q311t−ブtして内環
状部材t71) (721の中央開口(71a)(72
a)、すなわち輸送管α4の孔(t4b)内と連通して
いる。このような隙間を通ることによって環状部材σ勘
の孔(71c)から供給される圧縮空気はノズル効果で
更に流速は大きくなって、殆んど音速に近い速さで輸送
管α4内に導入される。
A hole (7th) in which a pressure detector 621 (representatively shown; the same applies to other detectors Co11 C531) is installed and a compressed air supply hole (71C) are formed in the peripheral wall of one annular member συ. has been done. A conduit P for feeding compressed air is attached to the hole (71C). Annular member (71
) has a stepped hole, and an annular space a is formed between this and the other annular member (71).
) (Gap Q311t between both end faces of 7Z and inner annular member t71) (Central opening (71a) of 721 (72
a), that is, communicates with the inside of the hole (t4b) of the transport pipe α4. By passing through such a gap, the compressed air supplied from the hole (71c) in the annular member σ has a flow velocity further increased by the nozzle effect, and is introduced into the transport pipe α4 at a speed almost close to the speed of sound. Ru.

本実施例は以上のように構成されるが、次にこの作用に
ついて説明する。
The present embodiment is configured as described above, and its operation will be explained next.

まず、通常の輸送状態について説明する。圧力タンク(
1)内には下限レベル以上に粉粒材料が貯蔵されている
。これはロードセルのにより検出される。すなわち、粉
粒材料の比重は予め測定されておシ、この値と検知材料
重量とから材料レベルが制御回路局内で演算される。こ
の結果から下限レベル以上に粉粒材料が圧力タンク(1
)内に存在すると判断されてソレノイド部(44115
C3υは励磁されないが、電磁バルブ(41のソレノイ
ド部(4υにはパルス状の電流が流される。すなわち電
磁バルブ+41は開閉10返しエアナイフ装置にパルス
状の圧縮空気が供給される。
First, normal transportation conditions will be explained. Pressure tank (
1) Powder material is stored in the container above the lower limit level. This is detected by the load cell. That is, the specific gravity of the powder material is measured in advance, and the material level is calculated within the control circuit station from this value and the detected material weight. This result shows that the powder material exceeds the lower limit level in the pressure tank (1
) and the solenoid part (44115
C3υ is not excited, but a pulsed current is passed through the solenoid part (4υ) of the electromagnetic valve (41). That is, the electromagnetic valve +41 opens and closes 10 times to supply pulsed compressed air to the air knife device.

他方、圧力タンク(1)内の上部では圧縮空気が配管(
251、バルブ(至)を介して供給され、圧力タンク(
1)内に存在する粉粒材料は全体的に下方へと押圧され
る。一方、排出口部Q(>からも圧縮空気が供給されて
粉粒材料は流動状態におかれる。バイブレータ0の振動
により圧力タンク(1)内では粉粒材料のブリッヂが形
成されることは未然に防止され、良好で、一様な材料の
流動状態が得られる。圧力タンク(1)の内壁に材料が
付着してブリッヂ金生成させんとするような傾向は防止
される。
On the other hand, in the upper part of the pressure tank (1), compressed air is piped (
251, supplied through the valve (to) and pressure tank (
1) The granular material present within is pressed downwards as a whole. On the other hand, compressed air is also supplied from the discharge port Q (>) and the granular material is kept in a fluid state. It is inevitable that a bridge of the granular material will be formed in the pressure tank (1) due to the vibration of the vibrator 0. A good and uniform flow condition of the material is obtained.The tendency of material to adhere to the inner walls of the pressure tank (1) and form bridge gold is prevented.

圧力タンク(1)からは滑らかに粉粒材料がダクトaυ
を通ってエアナイフ装置111(2)内へと導かれる。
The powder material flows smoothly from the pressure tank (1) into the duct aυ
and into the air knife device 111(2).

こ\で連続的に供給される粉粒材料は断続的圧縮空気に
よυナイフで切られる如く分断され、図示する如くプラ
グ状に輸送管(ロ)中を移送される。(4ηは粉粒材料
であp、(4)9は空気である。なお、空気導入器ff
l内には隙間tabがあるが、プラグ輸送では粉粒材料
はこ\から殆んど空間用に漏れることはない。
The continuously supplied granular material is divided by intermittent compressed air as if cut by a υ knife, and is transported through the transport pipe (b) in the form of a plug as shown in the figure. (4η is the powder material p, (4) 9 is air. Note that the air introducer ff
Although there is a gap TAB inside L, almost no powder material leaks from this space during plug transportation.

捕集タンク(17)には粉粒桐材が集積され、空気はフ
ィルタ0均全通って外部に排気される。フィルタ(ト)
によって粉粒材料が外部に漏れることは防止される。
Powdered paulownia wood is collected in the collection tank (17), and the air passes through a filter and is exhausted to the outside. Filter (g)
This prevents the powder material from leaking to the outside.

圧力タンク(1)内の粉粒材料が減少し、所定の下限レ
ベルに達したことをロードセル021が検知すると制御
回路(ハ)が電磁バルブ(5) (7)のソレノイド部
(41(441ffi交互に励磁する信号全発生する。
When the load cell 021 detects that the granular material in the pressure tank (1) has decreased and reached a predetermined lower limit level, the control circuit (c) activates the solenoid parts (41 (441ffi) of the electromagnetic valves (5) and (7) alternately. All the signals to excite are generated.

すなわち、上方の電磁バルブ(7)が開かれてホッパ(
9)から粉粒材料がダクト(6)内へ排出される。こ\
に所定量排出されると、もしくは所定時間、排出される
と、ソレノイド部(441は消磁されて電磁バルブ(7
)は閉じる。次いで電磁バルブ(5)はソレノイド部(
θが励磁されて開となシダクト(6)内の粉粒材料は圧
力タンク(1)内へと排出される。所定時間、排出する
と、もしくはダクト(6)が空になるとソレノイド部け
1は消磁され電磁バルブ(5)は閉じられる。
That is, the upper solenoid valve (7) is opened and the hopper (
9), the granular material is discharged into the duct (6). child\
When a predetermined amount or a predetermined period of time is discharged, the solenoid part (441 is demagnetized and the solenoid valve (7
) is closed. Next, the electromagnetic valve (5) is connected to the solenoid part (
The granular material in the open side duct (6) is discharged into the pressure tank (1) when θ is excited. When the water is discharged for a predetermined period of time or when the duct (6) is empty, the solenoid part 1 is deenergized and the electromagnetic valve (5) is closed.

次いで上側の電磁バルブ(7)がソレノイド部(441
の励磁によp開となりホッパ(9)からダクト(6)内
に材料が供給される。
Next, the upper electromagnetic valve (7) is connected to the solenoid part (441
The p-opening is caused by the excitation of the hopper (9), and material is supplied from the hopper (9) into the duct (6).

以上のようにして電磁バルブ(5) (7)が交互に開
閉を繰り返してホッパ(9)から粉粒材料が中間ダクト
(6)ヲ介して圧力タンク(1)内に補給される。この
補給中も圧力タンク(1)からは連続的に輸送管α◆へ
材料が供給されパルス状の圧縮空気にょクプラグ輸送さ
れている。圧力タンク(1]の上部には配管Gがら連続
的に圧縮空気が供給されているが、上述のように電磁バ
ルブ(5) (7) ?交互に開閉することにょpこの
圧縮空気がホッパ(9)から大気中に排気されることが
極力防止される。すなわち補給中の圧損全極力防止して
いる。
As described above, the electromagnetic valves (5) and (7) are alternately opened and closed, and the granular material is replenished from the hopper (9) into the pressure tank (1) via the intermediate duct (6). Even during this replenishment, the material is continuously supplied from the pressure tank (1) to the transport pipe α◆, and the material is transported by a pulsed compressed air plug. Compressed air is continuously supplied to the upper part of the pressure tank (1) through the pipe G, but as mentioned above, this compressed air is supplied to the hopper ( 9) Exhaust into the atmosphere is prevented as much as possible.In other words, pressure loss during replenishment is prevented as much as possible.

圧力タンク(1)内の粉粒材料が所定の上限レベルまで
供給されたことt−ロードセルのが検知すると、電磁バ
ルブ(5) (7)の交互の励磁は中止され、再び両パ
ルプ(5) (7)は閉となる。
When the t-load cell detects that the granular material in the pressure tank (1) has been supplied to the predetermined upper limit level, the alternate excitation of the electromagnetic valves (5) and (7) is stopped, and both pulps (5) are (7) is closed.

次に圧力タンク(1) ′fc空にし、輸送管(ll蜀
からも粉粒材料金完全に排出してしまう場合について説
明する。
Next, we will explain the case where the pressure tank (1) is emptied and the powdered material is completely discharged from the transport pipe.

この場合には、図示せずとも制御回路(43に設けられ
た完全排出ボタンを押すものとする。ロードセルのが圧
力タンク(1)内の粉粒材料が下限レベルに達したこと
を検知してもこの場合は’miバルブ(5) (nは作
動せず、電磁バルブ(7)(4Gのソレノイド部C31
)(4υがそれぞれ、励磁及び消磁され−る。すなわち
電磁バルブ■が開き大きな圧力で流量の圧縮空気が圧力
タンク(1)内に導かれる。また電磁バルブ(40は常
時閉とな夛パルス状の圧縮空気の供給は停止する。
In this case, the complete discharge button provided in the control circuit (43) shall be pressed even though it is not shown in the figure.The load cell detects that the granular material in the pressure tank (1) has reached the lower limit level. In this case, 'mi valve (5) (n does not operate, solenoid valve (7) (4G solenoid part C31
) (4υ are respectively excited and demagnetized. In other words, the electromagnetic valve ■ opens and a large flow of compressed air is guided into the pressure tank (1). Also, the electromagnetic valve (40 is normally closed and the pulsed The supply of compressed air will be stopped.

連続的な高い圧力の圧縮空気により圧カタンク(1)内
の材料は輸送管α彎へと排出され、また輸送管(ロ)内
の材料はこの圧縮空気により捕集タンクa?)内へと排
出される。なおバイブレータ(ハ)の振動にょシ圧カタ
ンク(1)内壁に付着せんとする材料は極力減少させら
れる。
Continuously high-pressure compressed air discharges the material in the pressure tank (1) into the transport pipe α, and the material in the transport pipe (b) is discharged into the collection tank a? by this compressed air. ) is discharged into the body. Furthermore, the amount of material adhering to the inner wall of the pressure tank (1) due to the vibration of the vibrator (c) is reduced as much as possible.

輸送管(ロ)内では粉粒材料は浮遊状態で輸送されるが
、本実施例では空気導入器+71)内の隙間@Dがら空
間鵜内に粉粒材料が侵入することは殆んどない。
The powdery material is transported in a suspended state in the transport pipe (b), but in this example, the powdery material hardly enters into the space D due to the gap in the air introducer +71). .

すなわち、完全排出ボタンを押すと共に制御回路(43
からはソレノイド部(54a)(55a)(56a)へ
駆動信号が供給される。これによって電磁バルブt54
J5515fElは開となって圧縮空気タンク6ηから
圧縮空気が導管Pf:通って空気導入器f701に供給
される。これは音速に近い高速で隙間(811から輸送
管α◆内へ導入されるので、輸送管α尋内を浮遊して高
速で輸送されてくる粉粒材料は隙間(ハ)Dがら空気導
入器17CI内の空間団に侵入せんとしても、押さえら
れ侵入することはない。よりて空間■に粉粒材料が閉塞
されてしまうということは防止される。
That is, while pressing the complete ejection button, the control circuit (43
A drive signal is supplied from the solenoid parts (54a), (55a), and (56a). As a result, the electromagnetic valve t54
J5515fEl is opened and compressed air is supplied from the compressed air tank 6η to the air inlet f701 through the conduit Pf:. This is introduced from the gap (811) into the transportation pipe α Even if it tries to invade the space group in 17CI, it will not be suppressed and will not be able to do so.Therefore, the granular material is prevented from being blocked in space (2).

捕集タンク(l′i)内に集積された粉粒材料は作動装
置四の駆動によりバルプ四が開かれ次工程へと供給され
る。
The granular material accumulated in the collection tank (l'i) is supplied to the next process by driving the actuating device 4 to open the valve 4.

以上のプラグ輸送では粉粒桐材が輸送管α4中を)@詞
に流れた場合を説明し九が何らかの原因で粉粒材料が輸
送管C141のどこかで閉塞せんとすることがある。本
実施例によれはこれを未然に防止して常に順調な流れを
保証することができる。
In the above plug transportation, a case will be explained in which the powdered paulownia material flows through the transport pipe α4, and the powdered material may try to block somewhere in the transport pipe C141 for some reason. According to this embodiment, this can be prevented and a smooth flow can always be guaranteed.

一般には輸送管α◆の曲部の直前で粉粒材料が閉塞しや
すいのであるが、今、圧力検出器T5Bが設けられてい
る箇所で閉塞が生じんものとする。するとこの部分の管
内の圧力が上昇し、これが所定値以上になると圧力検出
器6υは励g1信号を発生し、これを電磁バルブt54
1のソレノイド部(54a)に供給する。これにより今
まで閉であったt磁パルプ制は開となp1タンク6ηか
ら配管(581を介して圧縮空気が圧力検出器5Bの取
付個所の管部に供給される。
Generally, granular materials tend to become clogged immediately before the curved portion of the transport pipe α◆, but let us now assume that no blockage occurs at the location where the pressure detector T5B is installed. Then, the pressure inside the pipe in this part increases, and when this exceeds a predetermined value, the pressure detector 6υ generates an excitation g1 signal, which is sent to the electromagnetic valve t54.
1 solenoid section (54a). As a result, the t-magnetic pulp system, which had been closed until now, is opened and compressed air is supplied from the p1 tank 6η via the pipe (581) to the pipe section where the pressure detector 5B is attached.

この圧縮空気によってこ\で閉塞せんとしていた粉粒材
料はほぐされるような状態となり再び滑らかに下流側へ
と移送される。これによってこの管内の圧力が再び所定
値以下にまで低下し圧力検出器6υの励磁信号は消滅し
、電磁バルブ541は再び閉じる。
The compressed air loosens the particulate material that was about to become clogged, and it is smoothly transferred to the downstream side again. As a result, the pressure inside this pipe decreases to below the predetermined value again, the excitation signal of the pressure detector 6υ disappears, and the electromagnetic valve 541 closes again.

以上は、圧力検出器6D全備えた空気導入器(7Q1m
設けた近辺で粉粒材料が閉塞せんとした場合を説明した
が、他の圧力検出器のt53)ffi設けた箇所に関し
ても同様にして閉塞が防止される。なお、空気導入器(
701には粉粒材料が閉塞しないので、常に正確な圧力
全圧力検出器により検出することができる。
The above is an air introduction device (7Q1m) equipped with a pressure detector 6D.
Although a case has been described in which the particulate material is likely to block the area near where the pressure sensor is provided, blockage is similarly prevented at the location where the t53)ffi of other pressure detectors are provided. Please note that the air inlet device (
Since 701 is not clogged with powder material, the pressure can always be accurately detected by the total pressure detector.

以上、本発明の実施例について説明したが、勿論、本発
明はこれに限定されることなく、本発明の技術的思想に
基づいて種々の変形が可能である。
The embodiments of the present invention have been described above, but of course the present invention is not limited thereto, and various modifications can be made based on the technical idea of the present invention.

例えば、以上の実施例では輸送管αΦの3箇所に圧力検
出器151)〜C53に備えた空気導入器(7αを設け
たが、更に増加させてもよい。あるいは減少させて例え
ば−箇所としてもよい。然しなから、流体の圧力伝播に
は相当な時間遅れがあるので、圧力検出器を備えた空気
導入器Ctαの個数全増加させた方が好゛ましく、ある
箇所で閉塞が生じんとすれば、直ちにこれを解除するこ
とができる。また上述したように一般の輸送管Q4の曲
部の少し上流側で粉粒材料は閉塞しやすいので、できる
だけこのような箇所に圧力検出器金偏え′fc空気導入
器嶽を設けることが望ましい。
For example, in the above embodiment, the air introducers (7α) for the pressure detectors 151) to C53 were provided at three locations on the transport pipe αΦ, but they may be further increased. Or they may be decreased, for example, at − locations. However, since there is a considerable time delay in the pressure propagation of the fluid, it is preferable to increase the total number of air introducers Ctα equipped with pressure detectors to prevent blockage from occurring at a certain point. If so, this can be immediately released.Also, as mentioned above, powder and granular materials tend to become clogged slightly upstream of the bend in the general transport pipe Q4, so place the pressure detector in such a location as much as possible. It is desirable to provide a biased 'fc air inlet box.

また空気導入手段としては第2図に示す構成のものに限
らず、この楯の公知の空気導入器がすべて適用可能でお
る。
Further, the air introducing means is not limited to the one having the configuration shown in FIG. 2, and all known air introducing devices for this shield can be applied.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明の空気輸送装置によれば、空気
導入手段内に粉粒材料が閉塞することはないので、輸送
管内の粉粒材料の閉塞全確実に防止することができ常に
円fWな輸送を保証することができる。
As described above, according to the pneumatic transport device of the present invention, the particulate material does not block the air introduction means, so that it is possible to reliably prevent any particulate material from clogging in the transport pipe, and to always keep the circle fW transportation can be guaranteed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図に本発明の実施例による空気輸送装置の部分破断
側面図及び第2図は第1図における要部の拡大断面図で
ある。 なお図において、
FIG. 1 is a partially cutaway side view of a pneumatic transport device according to an embodiment of the present invention, and FIG. 2 is an enlarged sectional view of the main part in FIG. 1. In the figure,

Claims (1)

【特許請求の範囲】[Claims] 密閉圧力タンクに接続される輸送管にパルス状に圧縮空
気を供給することによつて前記密閉圧力タンクから排出
される粉粒材料を前記輸送管に沿つてプラグ輸送するよ
うにし、前記輸送管の少なくとも一箇所に圧力検出手段
を備えた空気導入手段を設けて、該箇所の管内圧力を検
出するようにし、この圧力が所定値より高いときには前
記空気導入手段を介して前記輸送管内に圧縮空気を導入
することにより前記輸送管内の粉粒材料の閉塞を防止す
るようにした空気輸送装置において、前記密閉圧力タン
ク及び輸送管から粉粒材料を完全に排出すべく前記密閉
圧力タンク内に圧縮空気を送入するときには常時前記空
気導入手段を介して圧縮空気を前記輸送管内に導入させ
るようにしたことを特徴とする空気輸送装置。
By supplying compressed air in pulses to a transport pipe connected to a closed pressure tank, the granular material discharged from the closed pressure tank is transported along the transport pipe as a plug, An air introduction means equipped with a pressure detection means is provided at least at one location to detect the pressure inside the pipe at the location, and when this pressure is higher than a predetermined value, compressed air is introduced into the transport pipe via the air introduction means. In the pneumatic conveying device, which prevents clogging of powdery material in the transport pipe by introducing compressed air into the sealed pressure tank to completely discharge the powdery material from the sealed pressure tank and the transport pipe. A pneumatic transportation device characterized in that compressed air is always introduced into the transport pipe via the air introduction means when the air is introduced.
JP15747686A 1986-07-03 1986-07-03 Pneumatic transport device Granted JPS6312524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15747686A JPS6312524A (en) 1986-07-03 1986-07-03 Pneumatic transport device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15747686A JPS6312524A (en) 1986-07-03 1986-07-03 Pneumatic transport device

Publications (2)

Publication Number Publication Date
JPS6312524A true JPS6312524A (en) 1988-01-19
JPH046623B2 JPH046623B2 (en) 1992-02-06

Family

ID=15650514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15747686A Granted JPS6312524A (en) 1986-07-03 1986-07-03 Pneumatic transport device

Country Status (1)

Country Link
JP (1) JPS6312524A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106573741A (en) * 2014-07-17 2017-04-19 申克加工英国有限公司 Pneumatic conveying apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60223720A (en) * 1984-04-20 1985-11-08 Ebara Corp Plug conveying apparatus for powdery and granular material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60223720A (en) * 1984-04-20 1985-11-08 Ebara Corp Plug conveying apparatus for powdery and granular material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106573741A (en) * 2014-07-17 2017-04-19 申克加工英国有限公司 Pneumatic conveying apparatus
CN106573741B (en) * 2014-07-17 2019-10-25 申克加工英国有限公司 Pneumatic conveyor

Also Published As

Publication number Publication date
JPH046623B2 (en) 1992-02-06

Similar Documents

Publication Publication Date Title
US4111492A (en) Pneumatic conveying apparatus and method
US6679301B2 (en) Powder packing method and apparatus therefor
US7850047B2 (en) System and method for transporting measured amounts of bulk materials
EP0210873B2 (en) Control system for a continuous process venturi accelerated pneumatic pump
US3489464A (en) Fluidizing discharge apparatus for removal of fluidized material from a conveying system
EP0371464B1 (en) Pneumatic conveyor for grainy material and suction nozzle for use in such conveyor
US4264243A (en) Constant vacuum barge unloading system
BR112017025226B1 (en) Conveyor system, and method of breaking a link of a transportable material in a gravity hopper
EP0988243A1 (en) A method and a device for transporting bulk material, granular material or powdery material
US4362442A (en) Venturi barge unloading system
US4220426A (en) Tubular pneumatic conveyor pipeline
CZ20032826A3 (en) Process and apparatus for distribution of fluidizable materials
JPH05229657A (en) Device and method to carry powder
JPS6312524A (en) Pneumatic transport device
US20040005849A1 (en) Method for filling a pressure container and device for producing a jet of a suspension
JPH0479928B2 (en)
JPS62259920A (en) Pneumatic transport device
JPS6312521A (en) Pneumatic transport device
JPS60223720A (en) Plug conveying apparatus for powdery and granular material
JPH085548B2 (en) High-pressure transportation equipment for powders
JPS6312522A (en) Pneumatic transport device
JPS59500712A (en) Equipment for handling granular materials
JPS6312523A (en) Pneumatic transport device
JPS62255318A (en) Pneumatic conveyance device
US5967704A (en) Pneumatic apparatus for conveying a dry granular material