JPH046623B2 - - Google Patents

Info

Publication number
JPH046623B2
JPH046623B2 JP61157476A JP15747686A JPH046623B2 JP H046623 B2 JPH046623 B2 JP H046623B2 JP 61157476 A JP61157476 A JP 61157476A JP 15747686 A JP15747686 A JP 15747686A JP H046623 B2 JPH046623 B2 JP H046623B2
Authority
JP
Japan
Prior art keywords
transport pipe
air
compressed air
pressure
pressure tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61157476A
Other languages
Japanese (ja)
Other versions
JPS6312524A (en
Inventor
Teruo Horiuchi
Yoshiaki Ookura
Takeyoshi Nonaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP15747686A priority Critical patent/JPS6312524A/en
Publication of JPS6312524A publication Critical patent/JPS6312524A/en
Publication of JPH046623B2 publication Critical patent/JPH046623B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Air Transport Of Granular Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は粉粒材料をプラグ輸送する空気輸送装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a pneumatic transport device for plug transporting granular material.

〔従来の技術及びその問題点〕[Conventional technology and its problems]

密閉圧力タンク及びこれに接続される輸送管か
ら成り、該輸送管にパルス状に圧縮空気を供給す
ることによつて前記密閉圧力タンクから排出され
る粉粒材料を前記輸送管に沿つてプラグ輸送する
ようにした空気輸送装置が知られている。プラグ
輸送とは、輸送管内に圧力空気層(パルス)と粉
粒体集合物層(プラグ)とを交互に形成させ、プ
ラグに隣接する2つのパルス間の圧力差によつて
そのプラグを透過する圧力空気の作用力、すなわ
ち“くさび力”を利用して粉粒体を推進させる方
法であるが、何らかの原因で輸送管内に粉粒材料
が閉塞してしまうと上述のように通常輸送用のパ
ルス状の圧縮空気を送つているだけではこの閉塞
は解除できず、結局、輸送作用は停止してしま
う。
It consists of a closed pressure tank and a transport pipe connected to the tank, and by supplying compressed air in pulses to the transport pipe, the granular material discharged from the closed pressure tank is transported as a plug along the transport pipe. A pneumatic transport device is known. Plug transport involves forming pressure air layers (pulses) and powder aggregate layers (plugs) alternately in the transport pipe, and the pressure difference between two pulses adjacent to the plug causes the material to permeate through the plug. This method uses the acting force of pressurized air, or "wedge force," to propel the powder or granular material, but if the granular material becomes clogged in the transportation pipe for some reason, the pulse for normal transportation will be used as described above. This blockage cannot be cleared just by sending compressed air, and eventually the transport action stops.

本出願人は上記問題に鑑みて先に輸送管の粉粒
材料の閉塞を防止して粉粒材料の連続的な輸送作
用を保証する空気輸送装置を提供することを目的
として、密閉圧力タンクに接続される輸送管にパ
ルス状に圧縮空気を供給することによつて前記密
閉圧力タンクから排出される粉粒材料を前記輸送
管に沿つてプラグ輸送するようにし、前記輸送管
の少なくとも一箇所に圧力検出手段を備えた空気
導入手段を設けて、該箇所の管内圧力を検出する
ようにし、この圧力が所定値より高いときには前
記空気導入手段を介して前記輸送管内に圧縮空気
を導入することにより前記輸送管内の粉粒材料の
閉塞を防止するようにした空気輸送装置を提案し
た。然るに、上記密閉圧力タンク及び輸送管から
粉粒材料を完全に排出してしまう場合には、一般
に密閉圧力タンク内に残量排出用のエアが導入さ
れ、これが輸送管内を高速で流れるのであるが、
粉粒材料は浮遊状態にあつて一般に上記空気導入
手段には〓間があり、こゝを通つて、その凹所も
しくは、中空部に粉粒材料が侵入し、こゝに溜る
傾向がある。場合によつては、通常のプラグ輸送
時に、粉粒材料が閉塞せんとして、これを防止す
るために空気導入手段を介して空気を送り込んで
も、輸送管内には大きな流速で至らず、閉塞を防
止できないことがある。また、圧力検出手段が作
動せず、目的を達成しない場合もある。
In view of the above-mentioned problems, the present applicant first proposed a pneumatic conveying device that prevents the blockage of the granular material in the transport pipe and ensures continuous transport of the granular material. By supplying compressed air in pulses to a connected transport pipe, the powder material discharged from the closed pressure tank is transported along the transport pipe as a plug, and at least one part of the transport pipe is connected to the transport pipe. An air introduction means equipped with a pressure detection means is provided to detect the pressure inside the pipe at the location, and when this pressure is higher than a predetermined value, compressed air is introduced into the transport pipe via the air introduction means. A pneumatic transport device has been proposed which prevents clogging of the powder material in the transport pipe. However, when the granular material is completely discharged from the sealed pressure tank and transport pipe, air is generally introduced into the sealed pressure tank to discharge the remaining amount, and this air flows through the transport pipe at high speed. ,
The particulate material is in a suspended state, and the air introduction means generally has a gap, through which the particulate material tends to enter the recess or hollow part and accumulate there. In some cases, during normal plug transportation, the powder material may become clogged, and even if air is sent through the air introduction means to prevent this, the flow does not reach the inside of the transportation pipe at a large flow rate, preventing the blockage. There are things I can't do. Furthermore, the pressure detection means may not operate and the purpose may not be achieved.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は上記問題に鑑みてなされ、閉塞を防止
するための空気導入手段を常に正常に作動させ得
るようにした空気輸送装置を提供することを目的
とする。
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide an air transport device in which an air introduction means for preventing blockage can always operate normally.

〔問題点を解決するための手段〕[Means for solving problems]

以上の目的は、密閉圧力タンクに接続される輸
送管にパルス状に圧縮空気を供給することによつ
て前記密閉圧力タンクから排出される粉粒材料を
前記輸送管に沿つてプラグ輸送するようにし、前
記輸送管の少なくとも一箇所に圧力検出手段を備
えた空気導入手段を設けて、該箇所の管内圧力を
検出するようにし、この圧力が所定値より高いと
きには前記空気導入手段を介して前記輸送管内に
圧縮空気を導入することにより前記輸送管内の粉
粒材料の閉塞を防止するようにした空気輸送装置
において、前記空気導入手段は相当接する2つの
環状部材から成り、前記輸送管の各一部を成す上
流側輸送管部と下流側輸送管部との間に相整列さ
せ、かつこれら環状部材の端面間に環状のスリツ
トを形成させるように介在、固定し、前記密閉圧
力タンク及び輸送管から粉粒材料を完全に排出す
べく前記密閉圧力タンク及び前記輸送管内に圧縮
空気を送入するときには常時前記空気導入手段の
前記環状のスリツトを介して圧縮空気を前記輸送
管内に導入させるようにしたことを特徴とする空
気輸送装置によつて達成される。
The above object is to supply compressed air in pulses to a transport pipe connected to a closed pressure tank, thereby transporting the powder material discharged from the closed pressure tank along the transport pipe as a plug. , an air introduction means equipped with a pressure detection means is provided at at least one location of the transport pipe to detect the pressure inside the pipe at the location, and when this pressure is higher than a predetermined value, the transport is stopped via the air introduction means. In the air transport device, which prevents clogging of powdery material in the transport pipe by introducing compressed air into the pipe, the air introduction means is composed of two annular members that are in close contact with each other, and each part of the transport pipe is The annular member is interposed and fixed so as to be aligned between the upstream transport pipe part and the downstream transport pipe part forming an annular member, and to form an annular slit between the end faces of these annular members. When compressed air is introduced into the sealed pressure tank and the transport pipe in order to completely discharge the granular material, the compressed air is always introduced into the transport pipe through the annular slit of the air introducing means. This is achieved by a pneumatic transport device characterized by the following.

〔作用〕[Effect]

通常のプラグ輸送中に、輸送管に粉粒材料が閉
塞せんとするとこの管内圧力が上昇する。これが
圧力検出手段により検出される。この検出に基い
て圧縮空気が空気導入手段を介して輸送管内に導
入され、閉塞せんとしている粉粒材料をほぐすよ
うな働らきをする。よつて閉塞を防止する。
During normal plug transportation, if the transport pipe is clogged with granular material, the pressure inside the pipe increases. This is detected by the pressure detection means. Based on this detection, compressed air is introduced into the transport pipe via the air introduction means and acts to loosen the particulate material that is about to become clogged. This prevents blockage.

密閉圧力タンク及び輸送管を空にするべく密閉
圧力タンク内へ圧縮空気が送入されると、粉粒材
料は粉遊状態で高速で空気により輸送管中を輸送
される。このとき常時、空気導入手段の環状のス
リツトを介して圧縮空気が輸送管内に導入される
ので、空気導入手段の凹所や中空部に粉粒材料が
侵入せんとしても、環状のスリツトから噴出する
高束の空気流で輸送管内へと吹きとばされる。従
つて、空気導入手段は常に正常に働らくことがで
き、通常のプラグ輸送時の輸送管中閉塞を確実に
防止することができる。また空気導入手段に備え
られる圧力検出手段は常に正確にこれが設けられ
ている箇所の輸送管内の圧力を検出することがで
きる。
When compressed air is introduced into the closed pressure tank to empty the closed pressure tank and the transport pipe, the particulate material is transported by air at high speed through the transport pipe in a loose powder state. At this time, compressed air is always introduced into the transport pipe through the annular slit of the air introduction means, so even if the powder material does not enter the recess or hollow part of the air introduction means, it will be ejected from the annular slit. It is blown away into the transport pipe by a high-flux air flow. Therefore, the air introduction means can always function normally, and blockage in the transportation pipe during normal plug transportation can be reliably prevented. Further, the pressure detection means provided in the air introduction means can always accurately detect the pressure within the transport pipe where it is installed.

〔実施例〕〔Example〕

以下、本発明の実施例による空気輸送装置につ
いて図面を参照して説明する。
EMBODIMENT OF THE INVENTION Hereinafter, a pneumatic transportation device according to an embodiment of the present invention will be described with reference to the drawings.

図において、圧力タンク1は本体2と蓋体3と
から成り蓋体3によつて気密に本体2の開口が被
覆されている。蓋体3と一体的にダクト4が形成
され、これは下側バルブ5、中間ダクト6、上側
バルブ7、フレキシブルジヨイント8を介してホ
ツパ9の排出開口に接続される。ホツパ9は地上
に適宜、部材を介して支持される。
In the figure, a pressure tank 1 consists of a main body 2 and a lid 3, and the opening of the main body 2 is hermetically covered by the lid 3. A duct 4 is integrally formed with the lid 3 and is connected to the discharge opening of the hopper 9 via a lower valve 5, an intermediate duct 6, an upper valve 7 and a flexible joint 8. The hopper 9 is supported on the ground via appropriate members.

圧力タンク1の本体2の下部に形成される排出
口部10は排出ダクト11に接続され、これはエ
アナイフ装置12及びフレキシブルジヨイント1
3を介して長い輸送管14に接続される。輸送管
14はフレキシブルではなく剛体であるが、捕集
タンク17へと延びており、適所で支柱15,1
6により地上に支持されている。捕集タンク17
の上部にはエアフイルタ18が設けられ、排出開
口部にはバルブ19が配設され、作動装置20に
より開閉されるようになつている。
A discharge port 10 formed at the lower part of the main body 2 of the pressure tank 1 is connected to a discharge duct 11, which is connected to an air knife device 12 and a flexible joint 1.
3 to a long transport pipe 14. The transport pipe 14 is rigid rather than flexible, but extends to the collection tank 17, and in place supports 15, 1
It is supported on the ground by 6. Collection tank 17
An air filter 18 is provided at the upper part of the air filter 18, and a valve 19 is provided at the discharge opening, and the valve 19 is opened and closed by an actuating device 20.

圧力タンク1は一側璧側でヒンジ21で地上に
支持されており、他側璧側でロードセル22で地
上に支持されている。すなわち、圧力タンク1は
ロードセル22により全重量が計重されるように
なつている。圧力タンク1は地上からはフレキシ
ブルジヨイント8,13により浮いた状態にあ
り、その全重量がバルブ5,7ダクト4,6,1
1、エアナイフ装置12と共にロードセル22で
計重されるようになつている。これら及び圧力タ
ンク1の本体2や蓋体3は予め重量が知られてい
るので、結局、ロードセル22の出力から圧力タ
ンク1内の粉粒材料の重量を知ることができる。
また、圧力タンク1の側璧部にはバイブレータ2
3が取り付けられており、この振動により圧力タ
ンク1内で仮に粉粒材料がブリツヂを形成せんと
してもこれは破かいされ、内部は常に良好な流動
状態を保持することができるようになつている。
The pressure tank 1 is supported on the ground by a hinge 21 on one wall side, and supported on the ground by a load cell 22 on the other wall side. That is, the entire weight of the pressure tank 1 is measured by the load cell 22. The pressure tank 1 is suspended from the ground by flexible joints 8 and 13, and its total weight is distributed between the valves 5 and 7 and the ducts 4, 6, and 1.
1. It is designed to be weighed together with the air knife device 12 by a load cell 22. Since the weights of these and the main body 2 and lid 3 of the pressure tank 1 are known in advance, the weight of the granular material in the pressure tank 1 can be known from the output of the load cell 22.
In addition, a vibrator 2 is installed on the side wall of the pressure tank 1.
3 is attached, and even if the granular material forms a bridge in the pressure tank 1 due to this vibration, this will be broken and a good fluid state can always be maintained inside. .

次に圧力タンク1への配管系統について説明す
る。
Next, the piping system to the pressure tank 1 will be explained.

圧縮空気源としてのタンク24からは配管25
を介して圧縮空気が圧力タンク1の上部に供給さ
れる。配管25にはバルブ28が接続され、これ
により圧力タンク1内に供給される圧力が例えば
ゲージ圧で0.5〜0.6気圧に調節される。空気流量
では約5m/secとされる。このために配管25
には更に流量計26及び圧力計27が接続され
る。配管25から圧力タンク1の上部に供給され
る圧縮空気により圧力タンク1内の粉粒材料は全
体として下方へと押圧される。
A pipe 25 is connected to the tank 24 as a source of compressed air.
Compressed air is supplied to the upper part of the pressure tank 1 via. A valve 28 is connected to the pipe 25, whereby the pressure supplied into the pressure tank 1 is adjusted to, for example, 0.5 to 0.6 atmospheres in gauge pressure. The air flow rate is approximately 5 m/sec. For this purpose, pipe 25
Further, a flow meter 26 and a pressure gauge 27 are connected to. Compressed air supplied to the upper part of the pressure tank 1 from the piping 25 presses the powder material in the pressure tank 1 downward as a whole.

配管25からは更に配管29,32,36が分
岐しており、配管29には電磁バルブ30が接続
され、これから圧縮空気がやはり圧力タンク1の
上部に供給されるようになつているが、通常の空
気輸送時、すなわち圧力タンク1の下限レベル以
上に粉粒材料が存在しているときは電磁バルブ3
0は閉じており、上述のバルブ28が開いてい
る。圧力タンク1を空にすべく、そして輸送管1
4から完全に粉粒材料を排出したいときには電磁
バルブ30が開かれ、上述のバルブ28は閉じら
れ、そしてより高い圧力で例えば15〜20m/sec
流量で圧縮空気が圧力タンク1内へ送られるよう
になつている。
Pipes 29, 32, and 36 further branch out from the pipe 25, and a solenoid valve 30 is connected to the pipe 29, from which compressed air is also supplied to the upper part of the pressure tank 1. When the granular material is transported by air, that is, when the particulate material is present above the lower limit level of the pressure tank 1, the electromagnetic valve 3
0 is closed and the valve 28 mentioned above is open. To empty the pressure tank 1, and transport pipe 1
When it is desired to completely discharge the granular material from 4, the solenoid valve 30 is opened, the above-mentioned valve 28 is closed, and at a higher pressure, for example 15-20 m/sec.
Compressed air is sent into the pressure tank 1 at a flow rate.

分岐配管32はバルブ35を介して圧力タンク
1の排出口部10に接続される。こゝから吹き込
まれる圧縮空気により圧力タンク1内に存在する
粉粒材料は流動化され、輸送管14への排出を容
易なものとしている。流量計33、圧力計34に
より適切に流動化されるように圧縮空気の流量及
び圧力を調節するようになつている。
The branch pipe 32 is connected to the outlet section 10 of the pressure tank 1 via a valve 35. The compressed air blown in from this fluidizes the powder material present in the pressure tank 1, making it easy to discharge into the transport pipe 14. A flow meter 33 and a pressure gauge 34 are used to adjust the flow rate and pressure of the compressed air so that it is appropriately fluidized.

分岐配管36はバルブ39及び電磁バルブ40
を介してエアナイフ装置12に接続されている。
エアナイフ装置12は公知のように管の外周のせ
まい〓間から圧縮空気を噴出してこの部分の粉粒
材料をナイフで切るような働らきをする。電磁バ
ルブ40は自動的にオンオフを繰返し、パルス状
の圧縮空気を供給する。流量計37、圧力計38
によりこの圧縮空気の圧力及び流量が適宜調節さ
れる。
The branch pipe 36 has a valve 39 and a solenoid valve 40.
It is connected to the air knife device 12 via.
As is well known, the air knife device 12 functions to blow out compressed air from a narrow gap on the outer periphery of the tube to cut the powder material in this area with a knife. The electromagnetic valve 40 automatically repeats on and off to supply pulsed compressed air. Flow meter 37, pressure gauge 38
The pressure and flow rate of this compressed air are adjusted as appropriate.

電磁バルブ5,7,30,40のソレノイド部
44,45,31,41はそれぞれ制御回路43
の出力端子に接続されている。またロードセル2
2の出力端子は制御回路43の入力端子に接続さ
れる。
The solenoid parts 44, 45, 31, 41 of the electromagnetic valves 5, 7, 30, 40 are connected to a control circuit 43, respectively.
is connected to the output terminal of Also load cell 2
The output terminal of No. 2 is connected to the input terminal of the control circuit 43.

なおタンク24には圧力計42が接続され、タ
ンク24内の圧力を検出し、この圧力が所定範囲
内にあるようにコンプレツサ(図示せず)から圧
縮空気がこゝに供給されるようになつているもの
とする。
A pressure gauge 42 is connected to the tank 24 to detect the pressure inside the tank 24, and compressed air is supplied to it from a compressor (not shown) so that the pressure is within a predetermined range. It is assumed that

輸送管14は上述したようにフレキシブルジヨ
イント13から捕集タンク17まで延びているの
であるが、3箇所に圧力検出器51,52,53
を備えた空気導入器70が設けられ、検出器5
1,52,53により対応する管内の圧力を検出
するようになつている。圧縮空気タンク57から
はそれぞれ配管58,59,60及び電磁バルブ
54,55,56を介して圧縮空気が空気導入器
70に供給されるようになつている。圧力検出器
51,52,53は所定値以上の圧力を検出する
と励磁信号を発生し、これを電磁バルブ54,5
5,56のソレノイド部54a,55a,56a
に供給して、これらを開状態にするようになつて
いる。ソレノイド部54a,55a,56aには
更に制御回路43の出力端子が接続されている。
As mentioned above, the transport pipe 14 extends from the flexible joint 13 to the collection tank 17, and pressure detectors 51, 52, 53 are installed at three locations.
An air inlet 70 with a detector 5 is provided.
1, 52, and 53, the pressure inside the corresponding pipe is detected. Compressed air is supplied from the compressed air tank 57 to the air introduction device 70 via piping 58, 59, 60 and electromagnetic valves 54, 55, 56, respectively. When the pressure detectors 51, 52, 53 detect a pressure higher than a predetermined value, they generate an excitation signal, which is sent to the electromagnetic valves 54, 5.
5, 56 solenoid parts 54a, 55a, 56a
are supplied to open them. The output terminals of the control circuit 43 are further connected to the solenoid parts 54a, 55a, and 56a.

第2図は空気導入器70の詳細を示すが、次に
これについて説明する。
FIG. 2 shows details of the air introducer 70, which will now be described.

点線で示すように空気導入器70は上流側輸送
管14のフランジ部14aと下流側輸送管14の
フランジ部14aとの間に図示せずともボルト等
により固定されている。
As shown by the dotted line, the air introducer 70 is fixed between the flange portion 14a of the upstream transport pipe 14 and the flange portion 14a of the downstream transport pipe 14 by bolts or the like (not shown).

空気導入器70は2つの環状部材71,72か
ら成り、それらの中央開口71a,72aは輸送
管14の孔14a,14bと整列しており、また
その内径は相等しい。一方の環状部材71の周壁
部には圧力検出器52(代表的に示す。他の検出
器51,53についても同様)が取り付けられる
孔71b及び圧縮空気供給用孔71cが形成され
ている。孔71cには圧縮空気を送る導管Pが取
り付けられる。環状部材71は段付孔を有し、こ
れと他方の環状部材72との間に環状空間80が
形成される。これは、両環状部材71,72の両
端面間の環状のスリツト状の〓間81を介して両
環状部材71,72の中央開口71a,72a、
すなわち輸送管14の孔14b内と連通してい
る。このような〓間を通ることによつて環状部材
71の孔71cから供給される圧縮空気はノズル
効果で更に流速は大きくなつて、殆んど音速に近
い速さで輸送管14内に導入される。
The air introducer 70 consists of two annular members 71, 72 whose central openings 71a, 72a are aligned with the holes 14a, 14b of the transport tube 14 and whose inner diameters are equal. A hole 71b to which a pressure detector 52 (representatively shown; the same applies to the other detectors 51 and 53) is formed in the peripheral wall of one of the annular members 71, and a compressed air supply hole 71c. A conduit P for sending compressed air is attached to the hole 71c. The annular member 71 has a stepped hole, and an annular space 80 is formed between this and the other annular member 72. This opens the central openings 71a, 72a of both annular members 71, 72 through an annular slit-shaped gap 81 between both end faces of both annular members 71, 72,
That is, it communicates with the inside of the hole 14b of the transport pipe 14. By passing through such a space, the flow velocity of the compressed air supplied from the hole 71c of the annular member 71 is further increased due to the nozzle effect, and the compressed air is introduced into the transport pipe 14 at a speed almost close to the speed of sound. Ru.

本実施例は以上のように構成されるが、次にこ
の作用について説明する。
The present embodiment is configured as described above, and its operation will be explained next.

まず、通常の輸送状態について説明する。圧力
タンク1内には下限レベル以上に粉粒材料が貯蔵
されている。これはロードセル22により検出さ
れる。すなわち、粉粒材料の比重は予め測定され
ており、この値と検知材料重量とから材料レベル
が制御回路43内で演算される。この結果から下
限レベル以上に粉粒材料が圧力タンク1内に存在
すると判断されてソレノイド部44,45,31
は励磁されないが、電磁バルブ40のソレノイド
部41にはパルス状の電流が流される。すなわち
電磁バルブ40は開閉を繰り返しエアナイフ装置
にパルス状の圧縮空気が供給される。
First, normal transportation conditions will be explained. Inside the pressure tank 1, granular material is stored at a level above the lower limit level. This is detected by the load cell 22. That is, the specific gravity of the granular material is measured in advance, and the material level is calculated within the control circuit 43 from this value and the detected material weight. From this result, it is determined that the granular material exists in the pressure tank 1 at a level higher than the lower limit level, and the solenoid parts 44, 45, 31
is not excited, but a pulsed current is passed through the solenoid section 41 of the electromagnetic valve 40. That is, the electromagnetic valve 40 is repeatedly opened and closed to supply pulsed compressed air to the air knife device.

他方、圧力タンク1内の上部では圧縮空気が配
管25、バルブ28を介して供給され、圧力タン
ク1内に存在する粉粒材料は全体的に下方へと押
圧される。一方、排出口部10からも圧縮空気が
供給されて粉粒材料は流動状態におかれる。バイ
ブレータ23の振動により圧力タンク1内では粉
粒材料のブリツヂが形成されることは未然に防止
され、良好で、一様な材料の流動状態が得られ
る。圧力タンク1の内壁に材料が付着してブリツ
ヂを生成させんとするような傾向は防止される。
On the other hand, compressed air is supplied to the upper part of the pressure tank 1 through a pipe 25 and a valve 28, and the granular material present in the pressure tank 1 is entirely pressed downward. On the other hand, compressed air is also supplied from the discharge port 10 to keep the powder material in a fluid state. The vibration of the vibrator 23 prevents the formation of bridges of the powdered material in the pressure tank 1, and provides a good and uniform flow state of the material. The tendency for material to adhere to the inner walls of the pressure tank 1 and create bridging is prevented.

圧力タンク1からは滑らかに粉粒材料がダクト
11を通つてエアナイフ装置12内へと導かれ
る。こゝで連続的に供給される粉粒材料は断続的
圧縮空気によりナイフで切られる如く分断され、
図示する如くプラグ状に輸送管14中を移送され
る。47は粉粒材料であり、48は空気である。
なお、空気導入器70内には〓間81があるが、
プラグ輸送では粉粒材料はこゝから殆んど空間8
0に漏れることはない。
From the pressure tank 1, the granular material is smoothly guided through the duct 11 into the air knife device 12. Here, the continuously supplied powder material is divided by intermittent compressed air as if it were cut with a knife.
As shown in the figure, it is transported in the transport pipe 14 in the form of a plug. 47 is a powder material, and 48 is air.
Note that there is a gap 81 inside the air introducer 70,
In plug transportation, powder and granule materials are transported almost entirely through space 8.
It never leaks to 0.

捕集タンク17には粉粒材料が集積され、空気
はフイルタ18を通つて外部に排気される。フイ
ルタ18によつて粉粒材料が外部に漏れることは
防止される。
Particulate material is collected in the collection tank 17, and air is exhausted to the outside through a filter 18. The filter 18 prevents the powder material from leaking to the outside.

圧力タンク1内の粉粒材料が減少し、所定の下
限レベルに達したことをロードセル22が検知す
ると制御回路43が電磁バルブ5,7のソレノイ
ド部45,44を交互に励磁する信号を発生す
る。
When the load cell 22 detects that the granular material in the pressure tank 1 has decreased and reached a predetermined lower limit level, the control circuit 43 generates a signal to alternately energize the solenoids 45 and 44 of the electromagnetic valves 5 and 7. .

すなわち、上方の電磁バルブ7が開かれてホツ
パ9から粉粒材料がダクト6内へ排出される。
こゝに所定量排出されると、もしくは所定時間、
排出されると、ソレノイド部44は消磁されて電
磁バルブ7は閉じる。次いで電磁バルブ5はソレ
ノイド部45が励磁されて開となりダクト6内の
粉粒材料は圧力タンク1内へと排出される。所定
時間、排出すると、もしくはダクト6が空になる
とソレノイド部45は消磁され電磁バルブ5は閉
じられる。次いで上側の電磁バルブ7がソレノイ
ド部44の励磁により開となりホツパ9からダク
ト6内に材料が供給される。
That is, the upper electromagnetic valve 7 is opened and the powder material is discharged from the hopper 9 into the duct 6.
When a predetermined amount is discharged or for a predetermined time,
When discharged, the solenoid section 44 is demagnetized and the electromagnetic valve 7 is closed. Next, the solenoid portion 45 of the electromagnetic valve 5 is energized and opened, and the powder material in the duct 6 is discharged into the pressure tank 1. When the gas is discharged for a predetermined period of time or when the duct 6 becomes empty, the solenoid section 45 is demagnetized and the electromagnetic valve 5 is closed. Next, the upper electromagnetic valve 7 is opened by the excitation of the solenoid section 44, and the material is supplied from the hopper 9 into the duct 6.

以上のようにして電磁バルブ5,7が交互に開
閉を繰り返してホツパ9から粉粒材料が中間ダク
ト6を介して圧力タンク1内に補給される。この
補給中も圧力タンク1からは連続的に輸送管14
へ材料が供給されパルス状の圧縮空気によりプラ
グ輸送されている。圧力タンク1の上部には配管
25から連続的に圧縮空気が供給されているが、
上述のように電磁バルブ5,7を交互に開閉する
ことによりこの圧縮空気がホツパ9から大気中に
排出されることが極力防止される。すなわち補給
中の圧損を極力防止している。
As described above, the electromagnetic valves 5 and 7 are alternately opened and closed, and the granular material is replenished from the hopper 9 into the pressure tank 1 via the intermediate duct 6. Even during this replenishment, the pressure tank 1 is continuously connected to the transport pipe 14.
The material is supplied to the plug and transported by pulsed compressed air. Compressed air is continuously supplied to the upper part of the pressure tank 1 from a pipe 25.
By alternately opening and closing the electromagnetic valves 5 and 7 as described above, this compressed air is prevented from being discharged from the hopper 9 into the atmosphere as much as possible. In other words, pressure loss during replenishment is prevented as much as possible.

圧力タンク1内の粉粒材料が所定の上限レベル
まで供給されたことをロードセル22が検知する
と、電磁バルブ5,7の交互の励磁は中止され、
再び両バルブ5,7は閉となる。
When the load cell 22 detects that the granular material in the pressure tank 1 has been supplied to a predetermined upper limit level, the alternate excitation of the electromagnetic valves 5 and 7 is stopped.
Both valves 5 and 7 are closed again.

次に圧力タンク1を空にし、輸送管14からも
粉粒材料を完全に排出してしまう場合について説
明する。
Next, a case where the pressure tank 1 is emptied and the granular material is completely discharged from the transport pipe 14 will be explained.

この場合には、図示せずとも制御回路43に設
けられた完全排出ボタンを押すものとする。ロー
ドセル22が圧力タンク1内の粉粒材料が下限レ
ベルに達したことを検知してもこの場合は電磁バ
ルブ5,7は作動せず、電磁バルブ30,40の
ソレノイド部31,41がそれぞれ、励磁及び消
磁される。すなわち電磁バルブ30が開き大きな
圧力で流量の圧縮空気が圧力タンク1内に導かれ
る。また電磁バルブ40は常時閉となりパルス状
の圧縮空気の供給は停止する。
In this case, a complete ejection button provided in the control circuit 43 is pressed even though it is not shown. Even if the load cell 22 detects that the granular material in the pressure tank 1 has reached the lower limit level, in this case, the electromagnetic valves 5 and 7 will not operate, and the solenoid parts 31 and 41 of the electromagnetic valves 30 and 40 will Excited and demagnetized. That is, the electromagnetic valve 30 opens and compressed air is introduced into the pressure tank 1 at a high pressure and flow rate. Further, the electromagnetic valve 40 is normally closed and the supply of pulsed compressed air is stopped.

連続的な高い圧力の圧縮空気により圧力タンク
1内の材料は輸送管14へと排出され、また輸送
管14内の材料はこの圧縮空気により捕集タンク
17内へと排出される。なおバイブレータ23の
振動により圧力タンク1内壁に付着せんとする材
料は極力減少させられる。
The material in the pressure tank 1 is discharged into the transport pipe 14 by continuous high-pressure compressed air, and the material in the transport pipe 14 is discharged by the compressed air into the collection tank 17. Note that due to the vibration of the vibrator 23, the amount of material adhering to the inner wall of the pressure tank 1 is reduced as much as possible.

輸送管14内では粉粒材料は浮遊状態で輸送さ
れるが、本実施例では空気導入器70内の〓間8
1から空間80内に粉粒材料が侵入することは殆
んどない。すなわち、完全排出ボタンを押すと共
に制御回路43からはソレノイド部54a,55
a,56aへ駆動信号が供給される。これによつ
て電磁バルブ54,55,56は開となつて圧縮
空気タンク57から圧縮空気が導管Pを通つて空
気導入器70に供給される。これは音速に近い高
速で〓間81から輸送管14内へ導入されるの
で、輸送管14を浮遊して高速で輸送されてくる
粉粒材料は〓間81から空気導入器70内の空間
80に侵入せんとしても、押さえられ侵入するこ
とはない。よつて空間80に粉粒材料が閉塞され
てしまうということは防止される。
The powder material is transported in a suspended state within the transport pipe 14, but in this embodiment, the granular material is transported between
1 into the space 80 is almost impossible. That is, when the complete ejection button is pressed, the control circuit 43 releases solenoids 54a and 55.
A drive signal is supplied to a and 56a. As a result, the electromagnetic valves 54, 55, and 56 are opened, and compressed air is supplied from the compressed air tank 57 to the air introduction device 70 through the conduit P. Since this is introduced into the transport pipe 14 from the space 81 at a high speed close to the speed of sound, the powder material floating in the transport pipe 14 and transported at high speed is transported from the space 81 to the space 80 in the air introducing device 70. Even if you try to invade, you will be held down and will not be able to invade. This prevents the space 80 from being clogged with particulate material.

捕集タンク17内に集積された粉粒材料は作動
装置20の駆動によりバルブ19が開かれ次工程
へと供給される。
The granular material accumulated in the collecting tank 17 is supplied to the next process by opening the valve 19 by driving the actuating device 20.

以上のプラグ輸送では粉粒材料が輸送管14中
を順調に流れた場合を説明したが何らかの原因で
粉粒材料が輸送管14のどこかで閉塞せんとする
ことがある。本実施例によればこれを未然に防止
して常に順調の流れを保証することができる。
In the above plug transportation, the case where the granular material flows smoothly through the transport pipe 14 has been explained, but the granular material may try to block somewhere in the transport pipe 14 for some reason. According to this embodiment, this can be prevented and smooth flow can be guaranteed at all times.

一般には輸送管14の曲部の直前で粉粒材料が
閉塞しやすいのであるが、今、圧力検出器51が
設けられている箇所で閉塞が生じんものとする。
するとこの部分の管内の圧力が上昇し、これが所
定値以上になると圧力検出器51は励磁信号を発
生し、これを電磁バルブ54のソレノイド部54
aに供給する。これにより今まで閉であつた電磁
バルブ54は開となり、タンク57から配管58
を介して圧縮空気が圧力検出器51の取付個所の
管部に供給される。この圧縮空気によつてこゝで
閉塞せんとしていた粉粒材料はほぐされるような
状態となり再び滑らかに下流側へと移送される。
これによつてこの管内の圧力が再び所定値以下に
まで低下し圧力検出器51の励磁信号は消滅し、
電磁バルブ54は再び閉じる。
Generally, the particulate material tends to become clogged immediately before the bend of the transport pipe 14, but let us now assume that no blockage occurs at the location where the pressure detector 51 is installed.
Then, the pressure inside the pipe in this part increases, and when this exceeds a predetermined value, the pressure detector 51 generates an excitation signal, which is sent to the solenoid part 54 of the electromagnetic valve 54.
supply to a. As a result, the electromagnetic valve 54, which had been closed until now, is opened, and the pipe 58 is connected to the tank 57.
Compressed air is supplied to the pipe section where the pressure detector 51 is attached. The compressed air loosens the powdery material that was about to become clogged, and it is smoothly transferred to the downstream side again.
As a result, the pressure inside this pipe drops to below the predetermined value again, and the excitation signal of the pressure detector 51 disappears.
Solenoid valve 54 closes again.

以上は、圧力検出器51を備えた空気導入器7
0を設けた近辺で粉粒材料が閉塞せんとした場合
を説明したが、他の圧力検出器52,53を設け
た箇所に関しても同様にして閉塞が防止される。
なお、空気導入器70には粉粒材料が閉塞しない
ので、常に正確な圧力を圧力検出器により検出す
ることができる。
The above is the air introduction device 7 equipped with the pressure detector 51.
Although a case has been described in which the particulate material is likely to blockage in the vicinity where pressure sensor 0 is provided, blockage is similarly prevented in locations where other pressure detectors 52 and 53 are provided.
Note that since the air introducer 70 is not clogged with powdery material, accurate pressure can always be detected by the pressure detector.

以上、本発明の実施例について説明したが、勿
論、本発明はこれに限定されることなく、本発明
の技術的思想に基づいて種々の変形が可能であ
る。
The embodiments of the present invention have been described above, but of course the present invention is not limited thereto, and various modifications can be made based on the technical idea of the present invention.

例えば、以上の実施例では輸送管14の3箇所
に圧力検出器51〜53を備えた空気導入器70
を設けたが、更に増加させてもよい。あるいは減
少させて例えば一箇所としてもよい。然しなが
ら、流体の圧力伝播には相当な時間遅れがあるの
で、圧力検出器を備えた空気導入器70の個数を
増加させた方が好ましく、ある箇所で侵入が生じ
んとすれば、直ちにこれを解除することができ
る。また上述したように一般の輸送管14の曲部
の少し上流側で粉粒材料は閉塞しやすいので、で
きるだけこのような箇所に圧力検出器を備えた空
気導入器70を設けることが望ましい。
For example, in the above embodiment, the air introducer 70 is equipped with pressure detectors 51 to 53 at three locations on the transport pipe 14.
is provided, but it may be further increased. Alternatively, the number may be reduced to one location, for example. However, since there is a considerable time delay in the pressure propagation of the fluid, it is preferable to increase the number of air inlets 70 equipped with pressure detectors, and if intrusion does not occur at a certain point, it is recommended to immediately remove it. Can be canceled. Further, as described above, since the powder material tends to become clogged slightly upstream of the curved portion of the general transport pipe 14, it is desirable to provide the air introducer 70 equipped with a pressure detector at such a location as much as possible.

また空気導入手段としては第2図に示す構成の
ものに限らず、この種の公知の空気導入器がすべ
て適用可能である。
Further, the air introducing means is not limited to the one having the configuration shown in FIG. 2, and all known air introducing devices of this type can be used.

〔発明の効果〕 以上述べたように本発明の空気輸送装置によれ
ば、空気導入手段内に粉粒材料が閉塞することは
ないので、常に輸送管内の粉粒材料の閉塞を確実
に防止することができ常に円滑な輸送を保証する
ことができる。
[Effects of the Invention] As described above, according to the pneumatic transport device of the present invention, the air introduction means is not clogged with particulate material, so clogging of the particulate material in the transport pipe is always prevented. We can always guarantee smooth transportation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例による空気輸送装置の
部分破断側面図及び第2図は第1図における要部
の拡大断面図である。 なお図において、1……圧力タンク、14……
輸送管、51〜53……圧力検出器、54〜56
……電磁バルブ、57……圧縮空気タンク、70
……空気導入器、71,72……環状部材。
FIG. 1 is a partially cutaway side view of a pneumatic transport device according to an embodiment of the present invention, and FIG. 2 is an enlarged sectional view of the main part in FIG. 1. In the figure, 1...pressure tank, 14...
Transport pipe, 51-53...Pressure detector, 54-56
... Solenoid valve, 57 ... Compressed air tank, 70
... Air introducer, 71, 72 ... Annular member.

Claims (1)

【特許請求の範囲】[Claims] 1 密閉圧力タンクに接続される輸送管にパルス
状に圧縮空気を供給することによつて前記密閉圧
力タンクから排出される粉粒材料を前記輸送管に
沿つてプラグ輸送するようにし、前記輸送管の少
なくとも一箇所に圧力検出手段を備えた空気導入
手段を設けて、該箇所の管内圧力を検出するよう
にし、この圧力が所定値より高いときには前記空
気導入手段を介して前記輸送管内に圧縮空気を導
入することにより前記輸送管内の粉粒材料の閉塞
を防止するようにした空気輸送装置において、前
記空気導入手段は相当接する2つの環状部材から
成り、前記輸送管の各一部を成す上流側輸送管部
と下流側輸送管部との間に相整列させ、かつこれ
ら環状部材の端面間に環状のスリツトを形成させ
るように介在、固定し、前記密閉圧力タンク及び
輸送管から粉粒材料を完全に排出すべく前記密閉
圧力タンク及び前記輸送管内に圧縮空気を送入す
るときには常時前記空気導入手段の前記環状のス
リツトを介して圧縮空気を前記輸送管内に導入さ
せるようにしたことを特徴とする空気輸送装置。
1 By supplying compressed air in pulses to a transport pipe connected to a closed pressure tank, the powder material discharged from the closed pressure tank is transported along the transport pipe as a plug, and the transport pipe An air introduction means equipped with a pressure detection means is provided in at least one location of the pipe to detect the pressure inside the pipe at the location, and when this pressure is higher than a predetermined value, compressed air is introduced into the transport pipe via the air introduction means. In the pneumatic transport device, which prevents clogging of powdery material in the transport pipe by introducing air, the air introducing means is composed of two annular members that are in close contact with each other, and the upstream side forming each part of the transport pipe. The transport pipe section and the downstream transport pipe section are interposed and fixed so as to be aligned in phase and to form an annular slit between the end faces of these annular members, and the granular material is removed from the sealed pressure tank and the transport pipe. The compressed air is always introduced into the transport pipe through the annular slit of the air introduction means when compressed air is introduced into the closed pressure tank and the transport pipe in order to completely discharge the compressed air. pneumatic transport equipment.
JP15747686A 1986-07-03 1986-07-03 Pneumatic transport device Granted JPS6312524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15747686A JPS6312524A (en) 1986-07-03 1986-07-03 Pneumatic transport device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15747686A JPS6312524A (en) 1986-07-03 1986-07-03 Pneumatic transport device

Publications (2)

Publication Number Publication Date
JPS6312524A JPS6312524A (en) 1988-01-19
JPH046623B2 true JPH046623B2 (en) 1992-02-06

Family

ID=15650514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15747686A Granted JPS6312524A (en) 1986-07-03 1986-07-03 Pneumatic transport device

Country Status (1)

Country Link
JP (1) JPS6312524A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2524850B (en) * 2014-07-17 2017-05-10 Clyde Process Solutions Ltd Pneumatic conveying apparatus and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60223720A (en) * 1984-04-20 1985-11-08 Ebara Corp Plug conveying apparatus for powdery and granular material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60223720A (en) * 1984-04-20 1985-11-08 Ebara Corp Plug conveying apparatus for powdery and granular material

Also Published As

Publication number Publication date
JPS6312524A (en) 1988-01-19

Similar Documents

Publication Publication Date Title
EP0210873B2 (en) Control system for a continuous process venturi accelerated pneumatic pump
US6764253B1 (en) System and method for assuring fluidization of a material transported in a pneumatic conveying system
EP0988243B1 (en) A method and a device for transporting bulk material, granular material or powdery material
EP1254835A2 (en) Powder packing method and apparatus therefor
EP3325375B1 (en) Conveying system and method of breaking a bridge therein
US7850047B2 (en) System and method for transporting measured amounts of bulk materials
US4111492A (en) Pneumatic conveying apparatus and method
US4420279A (en) Pressure impulse dense phase conveying apparatus and method
JPH0774044B2 (en) Pneumatic or hydraulic pipe conveying method for solid content and its implementation device
US3620575A (en) Particulate-conveying apparatus
JPH046623B2 (en)
JPH0479928B2 (en)
JPH07285678A (en) Transport device of powder/grain
JPS62259920A (en) Pneumatic transport device
JPS60223720A (en) Plug conveying apparatus for powdery and granular material
JPH06191640A (en) Low speed high density transport device
JPH07109018A (en) Powder carrying chute equipment having porous inner tube
JPS6312521A (en) Pneumatic transport device
JPH085548B2 (en) High-pressure transportation equipment for powders
JPS6312522A (en) Pneumatic transport device
JPS6312523A (en) Pneumatic transport device
US5967704A (en) Pneumatic apparatus for conveying a dry granular material
JPH0899718A (en) Pneumatic transporting device
JPH01145925A (en) Low-speed, high density pneumatic transport device for pulverized granular substance
JPS5839738B2 (en) Blowout restriction method in high pressure gas transport equipment