JPS5839738B2 - Blowout restriction method in high pressure gas transport equipment - Google Patents
Blowout restriction method in high pressure gas transport equipmentInfo
- Publication number
- JPS5839738B2 JPS5839738B2 JP12867479A JP12867479A JPS5839738B2 JP S5839738 B2 JPS5839738 B2 JP S5839738B2 JP 12867479 A JP12867479 A JP 12867479A JP 12867479 A JP12867479 A JP 12867479A JP S5839738 B2 JPS5839738 B2 JP S5839738B2
- Authority
- JP
- Japan
- Prior art keywords
- blowout
- pressurized tank
- transported
- pressure
- carrier gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Air Transport Of Granular Materials (AREA)
Description
【発明の詳細な説明】
この発明は、加圧タンクによる送給装置と分離装置とを
有する高圧気体輸送装置に於ける被輸送物送給終了時の
ブローアウトを制限するブローアウト制限方法に関する
。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a blowout limiting method for limiting blowout at the end of feeding of a transported object in a high-pressure gas transportation device having a feeding device using a pressurized tank and a separation device.
高圧気体輸送装置の一例を第1図について説明すると、
1は加圧タンクであって、上部の被輸送物投入口2から
投入弁3を介して被輸送物としての石炭微粉等の粉粒体
、液体等を充填し、次いで加圧弁4を介して空気等の高
圧搬送気体を供給してタンク内圧力を昇圧し、排出弁5
から被輸送物と高圧搬送気体とが混合された混合気体を
送出する。An example of a high-pressure gas transport device is explained with reference to Fig. 1.
Reference numeral 1 denotes a pressurized tank, into which particles such as fine coal powder, liquid, etc. are filled as objects to be transported through an input port 2 at the upper part of the tank through an input valve 3, and then through a pressure valve 4. The pressure inside the tank is increased by supplying high-pressure carrier gas such as air, and the discharge valve 5
A mixed gas in which the objects to be transported and high-pressure carrier gas are mixed is sent out from the container.
7は輸送管路、8は分離装置であって、ホツバー9とそ
の上部に配設されたバグフィルタ10とから構成され、
ホッパー9の下部から被輸送物が、バグフィルタ−10
からは搬送気体が夫々排出される。7 is a transport pipe, 8 is a separation device, which is composed of a hotter 9 and a bag filter 10 disposed above it,
The objects to be transported from the bottom of the hopper 9 are transported to the bag filter 10.
The carrier gas is discharged from each of them.
この高圧気体輸送装置によると、第2図に示す如く、時
点t。According to this high-pressure gas transport device, as shown in FIG. 2, at time t.
−t1間で加圧タンク1内に被輸送物を充填し、その後
時点t0で線(P)で示す如く加圧弁4を開いて昇圧を
開始し、これが所定の圧力となった時点t2で排出弁5
を開いて輸送を開始する。- Fill the pressurized tank 1 with the material to be transported between t1, then open the pressurizing valve 4 as shown by line (P) at time t0 to start increasing the pressure, and discharge at time t2 when this reaches a predetermined pressure. valve 5
Open and start transport.
而してタンク内の被輸送物が全て排出されると(時点t
3)、輸送管路における搬送気体の圧力損失が少なくな
り、これに伴ない加圧タンク内の搬送気体の風量は線(
B)で示す如くブローアウトして定常値(時点t2〜t
3間の輸送時の値)に対し増大し、特に加圧タンクとし
て加圧ローリ−車などを使用した場合の排出流量は定常
値の数倍にも達する。Then, when all the objects to be transported in the tank are discharged (at time t
3) The pressure loss of the carrier gas in the transport pipeline is reduced, and as a result, the air volume of the carrier gas in the pressurized tank is reduced to a line (
As shown in B), the blowout occurs and the steady value (time t2 to t
In particular, when a pressurized lorry or the like is used as a pressurized tank, the discharge flow rate reaches several times the steady value.
このためバグフィルタ10の許容量をブローアウト時の
最大風量に適合させなければならず、必要以上に大型の
バグフィルタを使用せざるを得なかった。For this reason, the permissible amount of the bag filter 10 must be adapted to the maximum air flow rate at the time of blowout, and an unnecessarily large bag filter has to be used.
本発明はブローアウト開始状態を検出し、これによって
輸送路上の弁を絞り操作して管路抵抗を増加させバグフ
ィルタへの過大な風量を制限することができ、これによ
って、ブローアウト時の輸送路内流速増加を防止し、残
留粒、ダストによる摩耗、粒破砕、静電気発生を抑制で
きるようにした新規なブローアウト制限方法で、第3図
以下について本発明の詳細な説明する。The present invention detects the start state of blowout, and accordingly throttles the valve on the transport path to increase the pipe resistance and limit the excessive air flow to the bag filter. The present invention will be described in detail with reference to FIG. 3 and below, using a novel blowout limiting method that prevents an increase in the flow velocity in the channel and suppresses abrasion caused by residual particles and dust, particle crushing, and static electricity generation.
尚本例に於て第1図との対応部分には同一符号を附し詳
細説明はこれを省略する。In this example, parts corresponding to those in FIG. 1 are designated by the same reference numerals, and detailed explanation thereof will be omitted.
21は輸送管路7の途上に配設したブローアウト調節弁
の一例であって、管路7を閉塞するように制御される。Reference numeral 21 is an example of a blowout control valve disposed in the middle of the transport pipe 7, and is controlled to close the pipe 7.
この調節弁21の一例は第4図に示す如く、貫通孔22
を有しその両端部にフランジ23,24を有する弁体2
5と、流入側の貫通孔内面に配設された弁座26及び回
転自在の弁芯27とからなる粉体輸送用に使用可能な弁
であり、輸送時は開、ブローアウト時は弁芯27が閉方
向(図示した矢印A方向)に回動して絞り動作するよう
になっていて、この絞り動作時は粒粉体が少ないので摩
耗を少なくし得る。An example of this control valve 21 is as shown in FIG.
A valve body 2 having flanges 23 and 24 at both ends thereof.
5, a valve seat 26 arranged on the inner surface of the through hole on the inflow side, and a rotatable valve core 27, which can be used for powder transportation. 27 rotates in the closing direction (direction of arrow A shown in the figure) to perform a squeezing operation, and since there is less granular powder during this squeezing operation, wear can be reduced.
31はバグフィルタ10の気体排出管路11に配設され
た流量又は流速を検出するブローアウト検出器32は検
出器31からの検出出力を受は所定の設定値と比較する
ブローアウト制限調節計であって、この調節計32から
検出出力が設定値を超えたとき制御出力が得られ、これ
によって前記調節弁21が閉操作される。Reference numeral 31 denotes a blowout limit controller that detects the flow rate or flow velocity and is disposed in the gas discharge pipe 11 of the bag filter 10. A blowout detector 32 receives the detection output from the detector 31 and compares it with a predetermined set value. A control output is obtained from the controller 32 when the detected output exceeds a set value, and the control valve 21 is thereby closed.
以上が本発明の第1及び第2の発明の実施例であるが、
この方法の動作を次に説明する。The above are examples of the first and second inventions of the present invention,
The operation of this method will now be described.
先ずブローアウト制限調節計32の設定値を第2図で破
線図示の如く、定常時からブローアウト状態に移行する
時点t3後のブローアウト開始時点t4に於ける風量に
セットする。First, the set value of the blowout limit controller 32 is set to the air flow rate at the blowout start time t4 after the time t3 when the steady state transitions to the blowout state, as shown by the broken line in FIG.
而して輸送が終了して風量が増大するとこれが検出器3
1で検出され、その検出出力が設定値を越えると調節計
32から制御出力が得られ、これによって調節弁21が
全開から閉方向に回動し、輸送管路7が絞られる。Then, when the transportation is finished and the air volume increases, this is detected by the detector 3.
1, and when the detected output exceeds the set value, a control output is obtained from the controller 32, which causes the control valve 21 to rotate from the fully open direction to the closed direction, and the transport pipe 7 is throttled.
以上のように本発明方法によると、輸送終了後ブローア
ウト開始状態となればこれを検出して輸送路を絞るよう
にしているから、バグフィルタを通過する搬送気体の風
量が制限され、従来装置のように不必要な許容量を有す
るバグフィルタを使用する必要がなく、その分バグフィ
ルタを小型化することが出来る上設備費を軽減すること
ができる犬なる特徴を有する。As described above, according to the method of the present invention, if a blowout starts after the end of transportation, this is detected and the transportation route is narrowed down, so the flow rate of the carrier gas passing through the bag filter is limited, and compared to the conventional method. It is not necessary to use a bag filter having an unnecessary capacity as in the case of the present invention, and the bag filter can be made smaller and the equipment cost can be reduced accordingly.
尚加圧タンク1が第5図に示すように下部に排出弁5を
有する型式のものであっても上側と同様にブローアウト
制御することができる。Incidentally, even if the pressurized tank 1 is of a type having a discharge valve 5 at the lower part as shown in FIG. 5, blowout control can be performed in the same manner as in the upper part.
次に本発明の第3の発明の実施例を第6図について説明
する。Next, a third embodiment of the present invention will be described with reference to FIG.
本例に於てはブローアウト開始状態を加圧タンクの重量
微分値の関数で検出するようにしたもので、41はロー
ドセル等の重量検出器、42は検出器41の出力に基き
調節弁21の制御出力を得るようにした制御回路であっ
て、この制御回路42は、検出器41の出力の重量微分
値(重量変化分)(dw/dt)が略零即ちdw/dt
″−i。In this example, the blowout start state is detected as a function of the weight differential value of the pressurized tank, and 41 is a weight detector such as a load cell, and 42 is a control valve 21 based on the output of the detector 41. This control circuit 42 is a control circuit configured to obtain a control output of 1, and the control circuit 42 is such that the weight differential value (weight change) (dw/dt) of the output of the detector 41 is approximately zero, that is, dw/dt
″-i.
であることを判定すると共にタンク重量(5)が最小設
定重量(WMIN)以下即W<wlIINであることを
判定し、双方の条件を満足する状態となったとき制御出
力が得られ調節弁21を全開から閉方向に操作するよう
に構成されている。It is determined that the tank weight (5) is equal to or less than the minimum set weight (WMIN), and it is also determined that W<wlIIN. When both conditions are satisfied, a control output is obtained and the control valve 21 is configured to be operated from fully open to closed.
以上の第3の発明の実施例によると、加圧タンク内の被
輸送物の排出終了時点を検出することができ、従ってそ
の時点から輸送管路長を考慮して所要の時間遅れて調節
弁21を絞り操作すれば上記実施例と同様の効果を得る
ことができる。According to the embodiment of the third invention described above, it is possible to detect the point in time when the discharge of the transported material in the pressurized tank is completed, and therefore, from that point on, the control valve is activated after a necessary time delay in consideration of the length of the transport pipe. By operating the aperture 21, the same effect as in the above embodiment can be obtained.
なお、輸送途中でタンク内の被輸送物排出不良の場合は
d w/d tξOであってもタンク重量がw>WM工
Nであるから制御出力が得られず調節弁は開状態を維持
し誤動作するおそれはない。In addition, if there is a problem in discharging the transported material from the tank during transportation, even if d w/d tξO, since the tank weight is w > WM engineering N, no control output will be obtained and the control valve will remain open. There is no risk of malfunction.
次に本発明の第4の発明の実施例を第7図について説明
する。Next, a fourth embodiment of the present invention will be described with reference to FIG.
本例に於ては加圧タンクの出入口差圧の関数に基いてブ
ローアウト開始時を検出するもので、加圧ライン51の
他にブスターライン52を有し、タンク1内の充填物の
排出量が加圧ライン圧力(Pl)とブスターライン圧力
(P2)の差によって制御される型式の加圧タンクに適
用して好適なものである。In this example, the start of blowout is detected based on a function of the differential pressure at the entrance and exit of the pressurized tank, and in addition to the pressurizing line 51, a booster line 52 is provided to discharge the filling in the tank 1. It is suitable for application to pressurized tanks of the type where the volume is controlled by the difference between pressurized line pressure (Pl) and booster line pressure (P2).
この型式の加圧タンクに於ては、粉粒体が流れている時
は圧力損失が大きく、粉粒体が流れていない時は圧力損
失が少いので、排出弁5の前後差圧を検出することによ
ってブローアウト開始時点を検出し得るものであるが、
実際上タンク内に於ける排出弁5の直前音■籾の圧力を
測定することは不可能であるため、例えば第7図に於て
、加圧ライン51及びジスターライフ52間に、加圧ラ
イン51及びジスターライフ52間の差圧(pt P
2)と加圧ライン圧力低下の時間微分値(dP1/d、
)を求める差圧検出器53を介挿し、この差圧検出器5
3により加圧ライン圧力(Pl)とブスターライン圧力
(P2)との差(pt P2)を求めると、P、−P
2は、排出量dW/dtに近似できる。In this type of pressurized tank, the pressure loss is large when the powder is flowing, and the pressure loss is small when the powder is not flowing, so the differential pressure across the discharge valve 5 is detected. The point at which the blowout starts can be detected by
In practice, it is impossible to measure the pressure of paddy immediately before the discharge valve 5 in the tank.For example, in FIG. Differential pressure between 51 and Jistarlife 52 (pt P
2) and the time differential value of pressurization line pressure drop (dP1/d,
) is inserted, and this differential pressure detector 5
3 to find the difference (pt P2) between the pressure line pressure (Pl) and the booster line pressure (P2), P, -P
2 can be approximated to the emission amount dW/dt.
又、この差圧検出器53からdPl/dtを求めること
により第2図t3.t4に於ける圧力Pの下降を検出し
、
K1 (P I P 2 )+に2 apt/d、j
Kt > O、に2> 0・・・・・・(1)
なる値の下限値によりブローアウト開始を検知できるの
で、このときの(1)式の出力信号を調節計54に供給
して設定値と比較し、その出力によって調節弁21を絞
り操作するようにしている。Also, by determining dPl/dt from this differential pressure detector 53, t3. Detecting the drop in pressure P at t4, 2 apt/d,j at K1 (P I P 2 )+
Since the start of blowout can be detected by the lower limit of Kt > O, 2 > 0 (1), the output signal of equation (1) at this time is supplied to the controller 54 and set. The control valve 21 is throttled based on the output.
以上の第4の発明の実施例によってもブローアウト開始
状態を検出することができ、上記各実施例と同様の効果
を得ることができる。The blowout start state can also be detected according to the embodiments of the fourth invention described above, and the same effects as those of the embodiments described above can be obtained.
第1図は従来の高圧気体輸送装置を示す系統図、第2図
はその作動説明に供する風量及び圧力を示す図、第3図
は本発明方法の第1及び第2の発明の一実施例を示す系
統図、第4図はブローアウト調節弁の一例を示す断面図
、第5図は本発明方法の他の実施例を示す系統図、第6
図及び第7図は、本発明の第3及び第4の発明の一実施
例を夫々示す系統図である。
1は加圧タンク、4は加圧弁、5は排出弁、7は輸送管
路、8は分離装置、10はバグフィルタ、21はブロー
アウト調節弁、31はブローアウト検出器、41は重量
検出器、42は制御回路、51は加圧ライン、52はブ
スターライン、53は差圧検出器。Fig. 1 is a system diagram showing a conventional high-pressure gas transport device, Fig. 2 is a diagram showing air volume and pressure to explain its operation, and Fig. 3 is an embodiment of the first and second inventions of the method of the present invention. FIG. 4 is a sectional view showing an example of a blowout control valve, FIG. 5 is a system diagram showing another embodiment of the method of the present invention, and FIG.
FIG. 7 is a system diagram showing an embodiment of the third and fourth aspects of the present invention, respectively. 1 is a pressurized tank, 4 is a pressurization valve, 5 is a discharge valve, 7 is a transportation pipe, 8 is a separation device, 10 is a bag filter, 21 is a blowout control valve, 31 is a blowout detector, 41 is a weight detection 42 is a control circuit, 51 is a pressurizing line, 52 is a booster line, and 53 is a differential pressure detector.
Claims (1)
する加圧タンクと、該加圧タンクから送給される被輸送
物及び高圧搬送気体を分離する分離装置とを有する高圧
気体輸送装置に於て、上記加圧タンクからの被輸送物の
送給終了によるブローアウト開始状態を検出し、これに
よって上記加圧タンク及び分離装置間の輸送路上のブロ
ーアウト調節弁を絞り操作して該輸送路内の流量を制限
するようにしたことを特徴とする高圧気体輸送装置に於
けるブローアウト制限方法。 2 被輸送物を収納しこれを高圧搬送気体によって送出
する加圧タンクと、該加圧タンクから送給される被輸送
物及び高圧搬送気体を分離する分離装置とを有する高圧
気体輸送装置に於て、上記加圧タンクからの被輸送物の
送給終了によるブローアウト開始状態を分離装置の高圧
搬送気体排出側に設けた流速又は流量検出器によって検
出し、この検出信号により上記加圧タンク及び分離装置
間の輸送管路上のブローアウト調節弁を絞り操作して該
輸送路内の流量を制限するようにしたことを特徴とする
高圧気体輸送装置に於けるブローアウト制限方法。 3 被輸送物を収納しこれを高圧搬送気体によって送出
する加圧タンクと、該加圧タンクから送給される被輸送
物及び高圧搬送気体を分離する分離装置とを有する高圧
気体輸送装置に於て、上記加圧タンクからの被輸送物の
送給終了によるブローアウト開始状態を上記加圧タンク
の重量微分値の関数によって検出し、この検出信号によ
り上記加圧タンク及び分離装置間の輸送路上のブローア
ウト調節弁を絞り操作して該輸送路内の流量を制限する
ようにしたことを特徴とする高圧気体輸送装置に於ける
ブローアウト制限方法。 4 被輸送物を収納しこれを高圧搬送気体によって送出
する加圧タンクと、該加圧タンクから送給される被輸送
物及び高圧搬送気体を分離する分離装置とを有する高圧
気体輸送装置に於て、上記加圧タンクからの被輸送物の
送給終了によるブローアウト開始状態を上記加圧タンク
の出入口差圧の関数によって検出し、この検出信号によ
り上記加圧タンク及び分離装置間の輸送路上のブローア
ウト調節弁を絞り操作して該輸送路内の流量を制限する
ようにしたことを特徴とする高圧気体輸送装置に於ける
ブローアウト制限方法。[Claims] 1. A pressurized tank that stores objects to be transported and sends them out using high-pressure carrier gas, and a separation device that separates the objects to be transported and the high-pressure carrier gas fed from the pressurized tank. In the high-pressure gas transportation device, a blowout start state due to the end of feeding of the material to be transported from the pressurized tank is detected, and the blowout control valve on the transportation path between the pressurized tank and the separation device is thereby throttled. 1. A method for restricting blowout in a high-pressure gas transport device, characterized in that the flow rate in the transport path is restricted by an operation. 2. In a high-pressure gas transport device that has a pressurized tank that stores objects to be transported and sends them out using high-pressure carrier gas, and a separation device that separates the objects to be transported and the high-pressure carrier gas fed from the pressurized tank. Then, the blowout start state due to the completion of feeding of the material to be transported from the pressurized tank is detected by a flow velocity or flow rate detector provided on the high pressure carrier gas discharge side of the separation device, and this detection signal is used to 1. A method for restricting blowout in a high-pressure gas transport device, characterized in that a blowout control valve on a transport pipe between separation devices is throttled to limit the flow rate in the transport pipe. 3. In a high-pressure gas transport device that has a pressurized tank that stores objects to be transported and sends them out using high-pressure carrier gas, and a separation device that separates the objects to be transported and the high-pressure carrier gas fed from the pressurized tank. Then, the blowout start state due to the end of feeding of the material to be transported from the pressurized tank is detected by a function of the weight differential value of the pressurized tank, and this detection signal is used to control the transport path between the pressurized tank and the separation device. 1. A method for restricting blowout in a high-pressure gas transport device, characterized in that the flow rate in the transport path is restricted by throttling a blowout control valve. 4. In a high-pressure gas transport device that has a pressurized tank that stores objects to be transported and sends them out using high-pressure carrier gas, and a separation device that separates the objects to be transported and the high-pressure carrier gas fed from the pressurized tank. Then, the blowout start state due to the end of feeding of the material to be transported from the pressurized tank is detected by a function of the differential pressure at the entrance and exit of the pressurized tank, and based on this detection signal, the transport route between the pressurized tank and the separation device is detected. 1. A method for restricting blowout in a high-pressure gas transport device, characterized in that the flow rate in the transport path is restricted by throttling a blowout control valve.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12867479A JPS5839738B2 (en) | 1979-10-05 | 1979-10-05 | Blowout restriction method in high pressure gas transport equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12867479A JPS5839738B2 (en) | 1979-10-05 | 1979-10-05 | Blowout restriction method in high pressure gas transport equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5652326A JPS5652326A (en) | 1981-05-11 |
JPS5839738B2 true JPS5839738B2 (en) | 1983-09-01 |
Family
ID=14990632
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12867479A Expired JPS5839738B2 (en) | 1979-10-05 | 1979-10-05 | Blowout restriction method in high pressure gas transport equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5839738B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02192177A (en) * | 1989-01-20 | 1990-07-27 | Ube Ind Ltd | Piezoelectric bimorph device |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57195032A (en) * | 1981-05-25 | 1982-11-30 | Nippon Alum Mfg Co Ltd:The | Granular powder high-pressure transport method |
JPS58151126U (en) * | 1982-04-06 | 1983-10-11 | 三興空気装置株式会社 | Cellar tank cleaning device |
JPS61136816A (en) * | 1984-12-07 | 1986-06-24 | Denka Consult & Eng Co Ltd | Gas transportation apparatus for granular powder |
JPS61136815A (en) * | 1984-12-07 | 1986-06-24 | Denka Consult & Eng Co Ltd | Gas transportation apparatus for granular powder |
-
1979
- 1979-10-05 JP JP12867479A patent/JPS5839738B2/en not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02192177A (en) * | 1989-01-20 | 1990-07-27 | Ube Ind Ltd | Piezoelectric bimorph device |
Also Published As
Publication number | Publication date |
---|---|
JPS5652326A (en) | 1981-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5407305A (en) | Continuous dense phase conveying method utilizing high pressure gas at predetermined gas pressures within a conveying pipe | |
US4662799A (en) | Apparatus and process for pneumatically conveying particulate material | |
US4067622A (en) | Method and apparatus for the pneumatic conveying of bulk material | |
JPH0774044B2 (en) | Pneumatic or hydraulic pipe conveying method for solid content and its implementation device | |
US4200412A (en) | Control for pneumatic conveying system | |
JPS5839738B2 (en) | Blowout restriction method in high pressure gas transport equipment | |
CS206656B1 (en) | Apparatus for conversion of pulverized or powder containing rigid substances into system of higher pressure | |
US3884401A (en) | Valve | |
US20030206776A1 (en) | Railroad hopper car unloader | |
CN110094636A (en) | A kind of shipment or the flow measuring system that unloads | |
JPS58212526A (en) | Pneumatic transportation apparatus | |
JP4307975B2 (en) | Method and apparatus for filling fine powder | |
US2915339A (en) | Discharge means for storage vessels | |
US3307596A (en) | Bag filling apparatus and method | |
US2897009A (en) | Conveyor system for fine solids | |
JPH0158085B2 (en) | ||
JPS638013B2 (en) | ||
JPS58104839A (en) | Fixed quantity supply mechanism for equipment for continuously supplying fixed quantity of powder | |
JP2696068B2 (en) | Plug transport method for powder | |
JPH10109754A (en) | Hopper for powder and grain | |
JPH01145925A (en) | Low-speed, high density pneumatic transport device for pulverized granular substance | |
JPS631631A (en) | Pressure type powder quantitative feeder | |
US3773230A (en) | Discharge of containers and pressure vessels | |
JPS6354611B2 (en) | ||
JPS5832136B2 (en) | Airtight discharge device for powder and granular materials |