JPS63124472A - Manufacture of field-effect transistor - Google Patents

Manufacture of field-effect transistor

Info

Publication number
JPS63124472A
JPS63124472A JP27132286A JP27132286A JPS63124472A JP S63124472 A JPS63124472 A JP S63124472A JP 27132286 A JP27132286 A JP 27132286A JP 27132286 A JP27132286 A JP 27132286A JP S63124472 A JPS63124472 A JP S63124472A
Authority
JP
Japan
Prior art keywords
contact region
type impurity
electrode
region
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27132286A
Other languages
Japanese (ja)
Inventor
Michi Kozuka
古塚 岐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP27132286A priority Critical patent/JPS63124472A/en
Publication of JPS63124472A publication Critical patent/JPS63124472A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a FET operating at high speed by implanting N-type impurity ions, collectively forming a sufficiently activated low-resistance contact region and an N-type conductive layer as an operating layer and implanting P-type impurity ions only into the operating layer and lowering the effective concentration of electrons. CONSTITUTION:Si ions are implanted into a semi-insulating GaAs substrate 11 and a plasma Si3N4 film is applied, and an operating layer 12 in an N-type low-resistance contact region is formed through heat treatment in an H2 atmosphere. The Si3N4 film is removed, an SiO2 film 19 is applied again, a slitty opening is bored made to correspond to a gate-electrode forming section, and Mg ions are implanted and a source contact region 14 and a drain region 15 are shaped through heat treatment in the H2 atmosphere containing AsH3. Al is used as a Schottky barrier gate electrode material, a gate electrode 13 is formed on the boundary of the regions 14 and 15 exposed into the opening, and films 19 on the regions 14 and 15 are removed and a source electrode 16 and a drain electrode 17 are attached to the films 19.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電界効果トランジスタの製造方法に関し、特に
ショッ1ヘキ障壁ゲ・−1−型の砒化ガリウム電界効果
トランジスタの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a field effect transistor, and more particularly to a method for manufacturing a Schott 1 barrier gate type gallium arsenide field effect transistor.

〔従来の技術〕[Conventional technology]

砒化ガリウム(GaAs)を用いたショッl−キ障壁ゲ
ート型電界効果トランジスタ(MESFET)の高性能
化のためにはソース寄生抵抗の低減が最も重要である。
In order to improve the performance of a Schottky barrier gate field effect transistor (MESFET) using gallium arsenide (GaAs), reducing the source parasitic resistance is most important.

このために高不純物濃度の低抵抗コンタクト領域をゲー
ト電極に対して自己整合形成する方法が有効である。
For this purpose, it is effective to form a low resistance contact region with a high impurity concentration in self-alignment with the gate electrode.

従来、この種の自己整合技術を用いなGaAsMESF
ETの製造方法は、予稿集r ]、、 98 ]年アイ
・イー・イー・イー インタナショナル ソリッドステ
ー1〜 サーキッッ コンファレンス(19811EE
E  5olid−3tateC4rcuits  C
onference)」、第218頁乃至219頁に記
載されている。これは、第2図(a)〜(d)に示す製
造工程に従って製造されるものが多用されて来た。
Conventionally, GaAs MESFs using this type of self-alignment technology have not been used.
The manufacturing method of ET is described in the Proceedings of the International Solid Stay 1~Circuit Conference (19811EE).
E 5olid-3tateC4rcuits C
218-219. For this purpose, those manufactured according to the manufacturing process shown in FIGS. 2(a) to 2(d) have been widely used.

即ち、第2図(a)のように、まずイオン注入及び活性
化を行なって半絶縁性G a A s基板11上に動作
層12が形成され、この動作層12の上に、例えばTi
 −W合金の様な耐熱金属を用いてゲート電極23を形
成し、次にゲート電極23をマスクとして、第2図(b
)のように、低抵抗コンタクト領域形成のためのイオン
注入を行ないソースコンタクト領域14、ドレインコン
タクト領域15を形成し、第2図(C)のように、例え
ばSiO□膜29を堆積した後、動作層の活性化温度以
下の温度で熱処理をして活性化を行ない、第2図(d)
のように、ソース電極16およびドレイン電極17を形
成してG a A s M E S F E Tを得る
ものである。
That is, as shown in FIG. 2(a), first, ion implantation and activation are performed to form an active layer 12 on a semi-insulating GaAs substrate 11, and on this active layer 12, for example, Ti is deposited.
The gate electrode 23 is formed using a heat-resistant metal such as -W alloy, and then the gate electrode 23 is used as a mask to form the gate electrode 23 as shown in FIG.
), ion implantation is performed to form a low resistance contact region to form a source contact region 14 and a drain contact region 15, and as shown in FIG. 2(C), for example, after depositing a SiO□ film 29, Activation is performed by heat treatment at a temperature below the activation temperature of the active layer, as shown in Figure 2(d).
A source electrode 16 and a drain electrode 17 are formed to obtain Ga As M E S F E T as shown in FIG.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来のG a A s M E S F E 
Tの製造方法では、低抵抗コンタクト領域(14,15
)の活性化の温度は動作層12の活性化の温度より高く
することが難しく、また活性化の時間も充分に長くする
ことが困難である。それは低抵抗コンタクト領域の活性
化のための熱処理工程で、同時に動作層も熱処理され、
活性化温度が高い程、また活性化時間が長い程、注入不
純物のプロファイルが広がり、G a A s M E
 S F ETの相互コンダクタンス(g、)を劣化さ
せるからである。しかし、動作層12と低抵抗コンタク
ト領域(14,15>とを比較すると、後者の方が加速
エネルギが高く、注入ドース量も多いので、活性化に要
する温度は高く2時間も長い。このため従来のGaAs
MESFETの製造方法では、低抵抗コンタクト領域の
活性化が不充分となり、ソース寄生抵抗が充分に低減し
得ない欠点があった。
The above-mentioned conventional G a As M E S F E
In the manufacturing method of T, low resistance contact regions (14, 15
) It is difficult to make the activation temperature higher than the activation temperature of the active layer 12, and it is also difficult to make the activation time sufficiently long. This is a heat treatment process for activating the low resistance contact area, and the active layer is also heat treated at the same time.
The higher the activation temperature and the longer the activation time, the wider the implanted impurity profile becomes
This is because it degrades the mutual conductance (g,) of the S FET. However, when comparing the active layer 12 and the low-resistance contact regions (14, 15>), the latter has higher acceleration energy and larger implantation dose, so the activation temperature is higher and it takes longer than 2 hours. Conventional GaAs
The MESFET manufacturing method has the drawback that activation of the low-resistance contact region is insufficient, and the source parasitic resistance cannot be sufficiently reduced.

本発明の目的は、このような欠点を除き、ソース寄生抵
抗を充分に低減させ、高速動作・高周波動作を改善した
電界効果トランジスタの製造方法を提供することにある
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a field effect transistor that eliminates these drawbacks, sufficiently reduces source parasitic resistance, and improves high-speed operation and high-frequency operation.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の電界効果トランジスタの製造方法の構成は、砒
化ガリウム基板にn型不純物をイオン注入して活性化す
ることによりソースコンタクト領域及びドレインコンタ
クト領域を形成する工程と、前記ソースコンタクト領域
とドレインコンタクト領域との中間領域を開口しこの他
の領域をマスク材で覆う工程と、前記マスク材をマスク
としてn型不純物を、前記n型不純物よりも平均投影飛
程が深くなる様に加速エネルギを設定してイオン注入す
る工程と、前記コンタクト領域の活性化の温度以下の温
度で加熱処理して活性化をする工程と、前記n型不純物
注入領域にゲート電極を設け前記ソースコンタクト領域
及びドレインコンタクト領域にそれぞれソース電極及び
ドレイン電極を設ける工程とを含んで構成される。
The method for manufacturing a field effect transistor of the present invention includes a step of forming a source contact region and a drain contact region by ion-implanting and activating an n-type impurity into a gallium arsenide substrate, and a step of forming a source contact region and a drain contact region. A step of opening an intermediate region between the two regions and covering the other region with a mask material, and setting an acceleration energy for applying an n-type impurity using the mask material as a mask so that the average projected range is deeper than that of the n-type impurity. a step of ion-implanting the contact region; a step of activating the contact region by heat treatment at a temperature lower than the activation temperature of the contact region; and a step of providing a gate electrode in the n-type impurity implantation region and the source contact region and the drain contact region. The structure includes a step of providing a source electrode and a drain electrode, respectively.

〔作用〕[Effect]

一般に、GaAsにおけるn型不純物の活性化は、n型
不純物のそれに比べて低温で、且つ短時間の熱処理で行
なうことができる。従って、GaAsMESFETの製
造工程を、まずn型不純物をイオン注入し、充分に活性
化させて低抵抗コンタクト領域及び動作層となるべきn
型導電層を一括形成し、しかる後に動作層となるべき領
域にのみn型不純物をイオン注入し、n型領域に比べて
低温で且つ短時間で活性化して動作層となるべき領域の
実効的な電子濃度を低下させる様にすれば、大幅なソー
ス抵抗の低減が可能となる。
Generally, n-type impurities in GaAs can be activated by heat treatment at a lower temperature and for a shorter time than that for n-type impurities. Therefore, in the manufacturing process of GaAs MESFET, an n-type impurity is first ion-implanted and sufficiently activated to form a low-resistance contact region and an active layer.
The type conductive layer is formed all at once, and then n-type impurities are ion-implanted only in the region that is to become the active layer, and activated at a lower temperature and in a shorter time than the n-type region, effectively improving the effectiveness of the region that is to become the active layer. By reducing the electron concentration, the source resistance can be significantly reduced.

〔実施例〕〔Example〕

以下図面を用いて本発明の詳細な説明する。 The present invention will be described in detail below using the drawings.

第1図(a)〜(d)は本発明の一実施例を工程順に説
明する断面図である。先ず、第1図(a>のように、半
絶縁性GaAs基板11の主表面に、Siイオンを加速
エネルギ70KeV、ドース量3X1013C11−2
の条件でイオン注入し、厚さ0.1μmのプラズマ窒化
硅素膜を被着して850℃の水素雰囲気中で20分間熱
処理を行ない、n型の低抵抗コタクト領域の動作層12
を形成し、その後窒化硅素膜を除去する。次に、厚さ0
.5μmのS i 02膜19を被着し、ゲート電極形
成部のS i 02膜を長さ1.5μmのスリット状に
エラ= 6− チングして除去し、Mgイオンを加速エネルギ120 
K e V 、ドース量IX]、013cm−2の条件
でイオン注入した後、A s H3を含む750℃の水
素雰囲気中で5分間熱処理して活性化し、第1図(1)
)のように、ソースコンタクト領域14゜ドレインコン
タクト領域15を形成する。
FIGS. 1(a) to 1(d) are cross-sectional views illustrating an embodiment of the present invention in the order of steps. First, as shown in FIG. 1 (a), Si ions are deposited on the main surface of a semi-insulating GaAs substrate 11 at an acceleration energy of 70 KeV and a dose of 3×1013C11-2.
Ion implantation was performed under the following conditions, a plasma silicon nitride film with a thickness of 0.1 μm was deposited, and heat treatment was performed for 20 minutes in a hydrogen atmosphere at 850° C. to form the active layer 12 of the n-type low resistance contact region.
is formed, and then the silicon nitride film is removed. Next, thickness 0
.. A 5 μm thick Si 02 film 19 is deposited, and the Si 02 film in the gate electrode formation area is removed by cutting into a 1.5 μm long slit shape, and the Mg ions are accelerated with an energy of 120 μm.
After ion implantation under the conditions of K e V , dose IX], 013 cm -2 , it was activated by heat treatment for 5 minutes in a hydrogen atmosphere at 750° C. containing As H3, and as shown in Fig. 1 (1).
), a source contact region 14° and a drain contact region 15 are formed.

続いて、ショッ1へキー障壁ゲー1〜電極材料として厚
さ0.3μmのA/を真空蒸着法により被着し、フォト
レジストをマスクとして不要部のAeをH3PO4を用
いて除去しゲート電極13を形成する(第1図(C))
。更に、ソースコンタクト領域14及びドレインコンタ
クl−領域15」二の5i02膜19を除去し、リフ1
〜オフ法により厚さ0.1μmのAuGe合金、厚さ0
.03μmのNiを順次被着して成る積層金属膜を選択
的に設置し、420℃に昇温してソース電極16、ドレ
イン電極17となしく第1図(d)) 、GaAsME
SFETを完成した。
Next, a 0.3 μm thick A/ as an electrode material is deposited on the shop 1 as a key barrier gate 1 by vacuum evaporation, and unnecessary portions of A are removed using H3PO4 using a photoresist as a mask to form a gate electrode 13. (Fig. 1 (C))
. Further, the 5i02 film 19 of the source contact region 14 and drain contact region 15'' is removed, and the 5i02 film 19 of
~AuGe alloy with a thickness of 0.1 μm by the off method, thickness 0
.. A laminated metal film made by successively depositing 0.3 μm of Ni was selectively installed, and the temperature was raised to 420° C. to form a source electrode 16 and a drain electrode 17 (Fig. 1(d)), GaAsME.
Completed SFET.

このようにして得られたゲート長1.5μ m のGa
AsMESFETのソース寄生抵抗は、0.4Ω1mと
従来に比べて40%以上改善され、g、の最大値は33
0m5/龍となった。
Ga with a gate length of 1.5 μm obtained in this way
The source parasitic resistance of AsMESFET is 0.4Ω1m, an improvement of more than 40% compared to the conventional one, and the maximum value of g is 33
It became 0m5/dragon.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に本発明によれば、低抵抗コンタクI−
領域自己整合型GaAsMESFETのソース抵抗の低
減が可能となり、g7が増大して高速動作、高周波動作
が容易に実現できるようになった。尚、本実施例ではp
型イオンの注入マスクをそのままグー1〜開ロマスクと
して用い、p型イオン注入領域とゲート電極が自己整合
的に形成される場合について説明したが、自己整合法に
よらずにゲート電極を形成する場合も本発明の効果が得
られることは言うまでもない。
As explained above, according to the present invention, the low resistance contact I-
It has become possible to reduce the source resistance of a region self-aligned GaAs MESFET, increase g7, and easily realize high-speed operation and high-frequency operation. In this example, p
We have explained the case where the p-type ion implantation region and the gate electrode are formed in a self-aligned manner by using the type ion implantation mask as it is as the Goo 1~Open Lo mask, but there is a case where the gate electrode is formed without using the self-alignment method. It goes without saying that the effects of the present invention can also be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(d)は本発明の一実施例を製造工程順
に説明したGaAsMESFETの断面図、第2図(a
)〜(d)は従来のG a A s M ESFETの
製造工程を順次水した断面図である。 1〕・・半絶縁性G a A s基板、]2・・・動作
層、1.3.23・・・ゲート電極、]4・・・ソース
コンタクト領域、15・・・ドレインコンタクト領域、
16・・・ソース電極、17・・・ドレイン電極、]9
・・・マスク= 9− 第4区 第2図
1(a) to 1(d) are cross-sectional views of a GaAs MESFET explaining one embodiment of the present invention in the order of manufacturing steps, and FIG. 2(a)
) to (d) are sectional views sequentially showing the manufacturing process of a conventional GaAsM ESFET. 1]... Semi-insulating GaAs substrate, ]2... Operating layer, 1.3.23... Gate electrode, ]4... Source contact region, 15... Drain contact region,
16...source electrode, 17...drain electrode, ]9
...Mask = 9- Ward 4, Figure 2

Claims (1)

【特許請求の範囲】[Claims]  砒化ガリウム基板にn型不純物をイオン注入して活性
化することによりソースコンタクト領域及びドレインコ
ンタクト領域を形成する工程と、前記ソースコンタクト
領域とドレインコンタクト領域との中間領域を開口しこ
の他の領域をマスク材で覆う工程と、前記マスク材をマ
スクとしてp型不純物を、前記n型不純物よりも平均投
影飛程が深くなる様に加速エネルギを設定してイオン注
入する工程と、前記コンタクト領域の活性化の温度以下
の温度で加熱処理して活性化をする工程と、前記p型不
純物注入領域にゲート電極を設け前記ソースコンタクト
領域及びドレインコンタクト領域にそれぞれソース電極
及びドレイン電極を設ける工程とを含むことを特徴とす
る電界効果トランジスタの製造方法。
A step of forming a source contact region and a drain contact region by ion-implanting and activating an n-type impurity into a gallium arsenide substrate, and opening an intermediate region between the source contact region and the drain contact region and forming other regions. a step of covering with a mask material, a step of ion-implanting a p-type impurity using the mask material as a mask while setting acceleration energy so that the average projected range is deeper than that of the n-type impurity, and activating the contact region. a step of activating the p-type impurity by heat treatment at a temperature below the oxidation temperature; and a step of providing a gate electrode in the p-type impurity implantation region and providing a source electrode and a drain electrode in the source contact region and drain contact region, respectively. A method of manufacturing a field effect transistor, characterized in that:
JP27132286A 1986-11-13 1986-11-13 Manufacture of field-effect transistor Pending JPS63124472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27132286A JPS63124472A (en) 1986-11-13 1986-11-13 Manufacture of field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27132286A JPS63124472A (en) 1986-11-13 1986-11-13 Manufacture of field-effect transistor

Publications (1)

Publication Number Publication Date
JPS63124472A true JPS63124472A (en) 1988-05-27

Family

ID=17498438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27132286A Pending JPS63124472A (en) 1986-11-13 1986-11-13 Manufacture of field-effect transistor

Country Status (1)

Country Link
JP (1) JPS63124472A (en)

Similar Documents

Publication Publication Date Title
JPS6239835B2 (en)
US4905061A (en) Schottky gate field effect transistor
JPH06177159A (en) Field-effect transistor and manufacture thereof
JPH05299441A (en) Manufacture of field effect transistor
JP3206419B2 (en) Method for manufacturing semiconductor device
JPH04132232A (en) Field-effect transistor and its manufacture
JPS63124472A (en) Manufacture of field-effect transistor
JPS61187277A (en) Manufacture of field-effect transistor
JPS6292377A (en) Field-effect transistor
JPS62130567A (en) Manufacture of schottky gate field effect transistor
JPH0257340B2 (en)
JP3030123B2 (en) Method for manufacturing semiconductor device
JPH06151451A (en) Manufacture of semiconductor device
JP2889240B2 (en) Compound semiconductor device and method of manufacturing the same
JPH03280552A (en) Manufacture of field effect transistor
JPH0373542A (en) Manufacture of ga-as field effect transistor
JPH0385733A (en) Field effect transistor
JPH0425030A (en) Manufacture of semiconductor device
JPS61163662A (en) Manufacture of field-effect transistor
JPS62206885A (en) Manufacture of schottky gate type field-effect transistor
JPH04346442A (en) Manufacture of field-effect transistor
JPS6347982A (en) Semiconductor device
JPH0434824B2 (en)
JPH0724259B2 (en) Method for manufacturing compound semiconductor device
JPS6237971A (en) Manufacture of schottky barrier gate type field effect transistor