JPS63122928A - Apparatus for measuring effective stress expansion coefficient - Google Patents
Apparatus for measuring effective stress expansion coefficientInfo
- Publication number
- JPS63122928A JPS63122928A JP27047486A JP27047486A JPS63122928A JP S63122928 A JPS63122928 A JP S63122928A JP 27047486 A JP27047486 A JP 27047486A JP 27047486 A JP27047486 A JP 27047486A JP S63122928 A JPS63122928 A JP S63122928A
- Authority
- JP
- Japan
- Prior art keywords
- crack
- strain gauge
- strain
- effective stress
- gauges
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005452 bending Methods 0.000 abstract description 6
- 238000010586 diagram Methods 0.000 description 7
- 238000011160 research Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Landscapes
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は構造物に発生したき裂の開閉口挙動を計測する
有効応力拡大係数計測装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an effective stress intensity factor measuring device for measuring the opening and closing behavior of cracks generated in structures.
[従来の技術]
構造物に発生したき裂が繰返し荷重をうけて成長する場
合、そのき層成長速度を正確に予測することは安全保守
上重要であり、このためにはき裂の成長速度を支配する
力学パラメータを正確に知る必要がある。[Prior Art] When a crack that occurs in a structure grows under repeated loads, it is important for safety and maintenance to accurately predict the growth rate of the crack. It is necessary to accurately know the mechanical parameters governing the
従来疲労き裂の成長速度を支配する力学パラメータとし
ては破壊力学による応力拡大係数範囲ΔKが使用されて
おり、これは第6図に示す様に長さ2as応力Δσが作
用するき裂に対しΔに一Δσf丁τf (a) (f
(a)は部材形状等により決まる修正係数)で与えら
れる。Conventionally, the stress intensity factor range ΔK according to fracture mechanics has been used as the mechanical parameter governing the growth rate of fatigue cracks, and as shown in Figure 6, this is Δ to one Δσf dτf (a) (f
(a) is given by a correction coefficient determined by the shape of the member, etc.
[発明が解決しようとする問題点]
従来の取扱いはき裂に作用する応力拡大係数にの全範囲
ΔKがき裂成長に有効であると考える方法であるが、最
近の研究ではき裂先端の塑性変形。[Problems to be solved by the invention] The conventional approach is to consider that the entire range ΔK of the stress intensity factor acting on a crack is effective for crack growth, but recent research has focused on the plasticity of the crack tip. Transformation.
残留応力、き袋内酸化物の存在により繰返し応力範囲の
ある部分ではき裂先端が閉じておりき裂成長に関与しな
いことが明らかにされている(き裂開閉口挙動と呼ばれ
る)。Δにのうちき裂先端が開いている範囲に対応する
部分を有効応力拡大係数ΔKof’f’と呼び、これが
き裂成長を支配する力学パラメータであることが明らか
にされており、実験室的にはこれに基づくき裂成長子測
法が確立している。ところが実機構造物に対してΔKo
ffを゛実測するための実用化機器が見当たらず研究成
果の実機適用が困難な状況である。It has been revealed that due to residual stress and the presence of oxides in the crack, the crack tip closes in a certain part of the cyclic stress range and does not participate in crack growth (referred to as crack opening/closing behavior). The part of Δ that corresponds to the open range of the crack tip is called the effective stress intensity factor ΔKof'f', and it has been clarified that this is the mechanical parameter that governs crack growth. A crack growth measurement method based on this has been established. However, for the actual structure, ΔKo
The current situation is that it is difficult to apply research results to actual equipment because there is no practical equipment to actually measure ff.
本発明は、この様な事情に鑑みて提案されたもので、構
造物中のき裂に作用する有効応力拡大係数ΔKefrが
測定でき、機器の寿命予測精度を向上[問題点を解決す
るための手段]
本発明による有効応力拡大係数計測装置は、構造物に発
生したき裂先端に第1のひずみゲージを貼りつけ、また
き裂から十分離れた位置に第2のひずみケージを貼りつ
け、これら第1および第2のひずみゲージの2つの信号
源と引算回路を用いて有効応力拡大係数にθrrを求め
るように構成したことを特徴とする。The present invention was proposed in view of these circumstances, and it is possible to measure the effective stress intensity factor ΔKefr that acts on cracks in structures, thereby improving the accuracy of predicting the life of equipment. Means] The effective stress intensity factor measuring device according to the present invention has a first strain gauge affixed to the tip of a crack that has occurred in a structure, a second strain cage affixed at a position sufficiently distant from the crack, and The present invention is characterized in that it is configured to obtain the effective stress intensity factor θrr using two signal sources, the first and second strain gauges, and a subtraction circuit.
[作用]
本発明によれば、第1および第2のひずみゲージの各出
力信号から、第2図に示す折れ曲がり点を求め、この折
れ曲がり点から引算回路を用いて第3図に示すように明
瞭な折れ曲がりを存するヒステリシスを求め、このひず
み変化分Δ(ε2+ε4 ) offから有効応力拡大
係数ΔKef’f’をΔKoff’−01×Δ(ε2+
εa ) offで求められる。ただしC五は定数。[Operation] According to the present invention, the bending point shown in FIG. 2 is determined from each output signal of the first and second strain gauges, and from this bending point, using a subtraction circuit, the bending point is calculated as shown in FIG. 3. Find the hysteresis that has a clear bend, and calculate the effective stress intensity factor ΔKef'f' from this strain change Δ(ε2+ε4) off by ΔKoff'-01×Δ(ε2+
εa ) off. However, C5 is a constant.
[実施例]
第1図は本発明の一実施例のブロック図であり、1はき
裂の先端部に貼着された第1のひずみゲージ、7はき裂
から十分離間した位置に貼着された第2のひずみゲージ
、8は計測装置、9a、9bは動ひずみアンプ、11は
引算回路、12は可変抵抗器、13は演算増幅器、14
は記録器、15は第1のひずみゲージの出力、16は引
算回路の出力を示す。[Example] Fig. 1 is a block diagram of an example of the present invention, where 1 is a first strain gauge attached to the tip of a crack, and 7 is attached at a position sufficiently distant from the crack. 8 is a measuring device, 9a and 9b are dynamic strain amplifiers, 11 is a subtraction circuit, 12 is a variable resistor, 13 is an operational amplifier, 14
15 is the output of the first strain gauge, and 16 is the output of the subtraction circuit.
第4図は第1図における第1のひずみゲージ1の詳細図
(特願昭81−155200号参照)であり、2゜3.
4.5はゲージグリッド、6は穴を示す。FIG. 4 is a detailed view of the first strain gauge 1 in FIG.
4.5 indicates a gauge grid, and 6 indicates a hole.
第4図に示すひずみゲージを、例えば第5図のようにゲ
ージ中心をき裂先端に合わせて貼りつけ計測すると、計
測ひずみと応力拡大係数Δにの関係は、ゲージグリッド
2,4のひずみ値をそれぞれΔε2.Δε4とすると、
Δに−mc1 (Δε2+Δε4)で与えられる。なお
、C1はゲージグリッド寸法r1に関係する定数であり
、理論的。When the strain gauge shown in Fig. 4 is attached and measured with the center of the gauge aligned with the crack tip as shown in Fig. 5, the relationship between the measured strain and the stress intensity factor Δ is the strain value of gauge grids 2 and 4. are respectively Δε2. Assuming Δε4,
Δ is given by −mc1 (Δε2+Δε4). Note that C1 is a constant related to the gauge grid dimension r1 and is theoretical.
実験的に求められる。Required experimentally.
上記本発明の一実施例の作用について説明する。The operation of the above embodiment of the present invention will be explained.
第1図に示す様に、構造物中のき裂先端に第4図の第1
のひずみゲージ1を、またき裂から十分離れた位置に第
2のひずみゲージ7を貼りつけ、これを計測装置8に導
く。ゲージ出力が動ひずみアンプ9a、9bで増幅され
ると、第2図の様にき裂開閉口挙動のためにわずかに非
線形性を有する波形を描き、折れ曲がり点10がき裂が
開口しはじめる点に対応する。この折れ曲がり点10を
明瞭にするために、この信号を第1図の引算回路11に
導き、可変抵抗12を適当に設定すると、第3図の様に
明瞭な折れ曲がりを有するヒステリシスが得られる。第
3図中水平な直線部分がき裂が開口している範囲に対応
するひずみ変化分Δ(ε2+ε4 ) aN’であり、
有効応力拡大係数ΔKef’fは
ΔKef’f=CIXΔ(’z +e* ) of’r
で求められる。As shown in Figure 1, the tip of the crack in the structure is shown in Figure 4.
A second strain gauge 7 is attached at a position sufficiently away from the crack, and then guided to a measuring device 8. When the gauge output is amplified by the dynamic strain amplifiers 9a and 9b, a waveform with slight nonlinearity due to crack opening/closing behavior is drawn as shown in Fig. 2, and the bending point 10 is the point where the crack begins to open. handle. In order to clarify this bending point 10, this signal is led to the subtraction circuit 11 shown in FIG. 1, and the variable resistor 12 is appropriately set, thereby obtaining hysteresis having a clear bend as shown in FIG. In Fig. 3, the horizontal straight line is the strain change Δ(ε2+ε4)aN' corresponding to the range where the crack has opened,
The effective stress intensity factor ΔKef'f is ΔKef'f=CIXΔ('z +e*) of'r
is required.
なお、上記第1図の引算回路11の出力は、オシロスコ
ープ等の記録器14で計測してもよいし、コンピュータ
によりディジタル処理を行ってもよい。The output of the subtraction circuit 11 shown in FIG. 1 may be measured with a recorder 14 such as an oscilloscope, or may be digitally processed by a computer.
[発明の効果]
本発明によれば、構造物中のき裂に作用する有効応力拡
大係数ΔKef’fを実測することが出来る。[Effects of the Invention] According to the present invention, it is possible to actually measure the effective stress intensity factor ΔKef'f acting on a crack in a structure.
これにより、これまで実験室的に研究がなされてきたき
裂開閉口挙動研究の成果を実機に適用できるので、機器
の寿命予測精度の向上を図ることができる等の優れた効
果が奏せられる。As a result, the results of research on crack opening and closing behavior, which have been studied in the laboratory up to now, can be applied to actual equipment, resulting in excellent effects such as improving the accuracy of equipment life prediction.
【図面の簡単な説明】
第1図は本発明の一実施例の構成を示すブロック図、第
2図は第1図におけるひずみゲージ間の出力の関係を示
す図、第3図は第1図におけるひずみゲージの出力と引
算回路の出力の関係を示す図、第4図は第1図における
ひずみゲージの詳細図、第5図は第4図のひずみゲージ
の使用例を示す図、第6図はき裂のモデルを示す図であ
る。
1・・・第1のひずみゲージ、7・・・第2のひずみゲ
ージ、8・・・計測装置、11・・・引算回路、14・
・・記録器。
出願人復代理人 弁理士 鈴江武彦
第1図
ひ4λケージ1の出力 4(ε2+ε4)第2図
第3図
第5図[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention, FIG. 2 is a diagram showing the output relationship between the strain gauges in FIG. 1, and FIG. 3 is the diagram shown in FIG. 1. Figure 4 is a detailed diagram of the strain gauge in Figure 1, Figure 5 is a diagram showing an example of how the strain gauge in Figure 4 is used, and Figure 6 is a diagram showing the relationship between the output of the strain gauge and the output of the subtraction circuit. The figure shows a crack model. DESCRIPTION OF SYMBOLS 1... First strain gauge, 7... Second strain gauge, 8... Measuring device, 11... Subtraction circuit, 14...
...Recorder. Takehiko Suzue, sub-agent for applicant, patent attorney Figure 1 h4 Output of λ cage 1 4 (ε2+ε4) Figure 2 Figure 3 Figure 5
Claims (1)
き裂から離間した位置に貼着された第2のひずみゲージ
と、前記き裂の開閉口挙動を計測するために前記第1お
よび第2のひずみゲージの各出力信号を入力する引算回
路とを具備してなることを特徴とする有効応力拡大係数
計測装置。A first strain gauge affixed to the tip of the crack, a second strain gauge affixed at a position spaced apart from the crack, and a second strain gauge affixed to the tip of the crack, and a second strain gauge affixed to the tip of the crack. An effective stress intensity factor measuring device comprising: a subtraction circuit inputting each output signal of the first and second strain gauges.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27047486A JPH0612317B2 (en) | 1986-11-13 | 1986-11-13 | Effective stress intensity factor measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27047486A JPH0612317B2 (en) | 1986-11-13 | 1986-11-13 | Effective stress intensity factor measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63122928A true JPS63122928A (en) | 1988-05-26 |
JPH0612317B2 JPH0612317B2 (en) | 1994-02-16 |
Family
ID=17486813
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27047486A Expired - Lifetime JPH0612317B2 (en) | 1986-11-13 | 1986-11-13 | Effective stress intensity factor measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0612317B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1991019968A1 (en) * | 1990-06-12 | 1991-12-26 | Kabushiki Kaisha Komatsu Seisakusho | Gauge for estimating life of structure and method of estimate with said gauge |
JP2014186021A (en) * | 2013-02-22 | 2014-10-02 | Mitsubishi Heavy Ind Ltd | Method, device and program for acquiring crack opening behavior |
-
1986
- 1986-11-13 JP JP27047486A patent/JPH0612317B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1991019968A1 (en) * | 1990-06-12 | 1991-12-26 | Kabushiki Kaisha Komatsu Seisakusho | Gauge for estimating life of structure and method of estimate with said gauge |
US5355734A (en) * | 1990-06-12 | 1994-10-18 | Kabushiki Kaisha Komatsu Seisakusho | Life predicting gauge for structure and life predicting method employing the same |
JP2014186021A (en) * | 2013-02-22 | 2014-10-02 | Mitsubishi Heavy Ind Ltd | Method, device and program for acquiring crack opening behavior |
Also Published As
Publication number | Publication date |
---|---|
JPH0612317B2 (en) | 1994-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3435044A1 (en) | Apparatus and method for performing an impact excitation technique | |
CN108007334A (en) | The step response characteristic measurement method and device of a kind of resistance strain measurement instrument | |
EP4336143A3 (en) | Micromechanical measuring system for measuring strain on a measurement object and compensating for isotropically acting strain | |
CA2477968A1 (en) | Method for assessing the integrity of a structure | |
CN106596100B (en) | A kind of four-step machine tool chief axis elasticity modulus lossless detection method and device | |
KR970702476A (en) | SYSTEM FOR MEASURING LINEAR OR ANGULAR MOVEMENT | |
Xu et al. | Dynamic modeling and compensation of robot six-axis wrist force/torque sensor | |
JP2002243604A (en) | Ultrasonic fatigue tester | |
JPS63122928A (en) | Apparatus for measuring effective stress expansion coefficient | |
KR102256047B1 (en) | Strength signal measuring method and strength signal measuring device for monitoring strength of hydration reaction materials | |
CN115201585A (en) | Sensitivity drift compensation method for MEMS resonant electric field sensor | |
CN116380381A (en) | Multi-blade vibration fatigue strength test method | |
KR100354837B1 (en) | Cracklength measuring device and method of metallic materials | |
KR100343279B1 (en) | A Measuring Method of Cable Tension Using the Dynamic Characteristics of Cable | |
Gaikar et al. | Effect of excitation voltage and lead wire resistance on strain measurement | |
CN1128996C (en) | Method for determining plastic mechanical state equation of small area in material | |
JP2002340726A (en) | Apparatus and method for analyzing vibration | |
Gu et al. | Nonlinear calibration of resistance strain type electronic balance and its application in industrial sorting system | |
RU2231752C1 (en) | Procedure of tuning of resistance strain-gauge transducers with bridge measurement circuit | |
Bicego et al. | JR curve testing utilizing the reversing direct current electrical potential drop method | |
US9063028B2 (en) | Apparatus and method for detection of mechanical inputs | |
JP4576614B2 (en) | Measuring method of elastic wave and static strain of members | |
JPH10325787A (en) | Material-testing machine | |
JP2575521B2 (en) | Furnace operation method of reducing atmosphere furnace | |
JP2923294B1 (en) | Strain measurement method |