JPH0612317B2 - Effective stress intensity factor measuring device - Google Patents

Effective stress intensity factor measuring device

Info

Publication number
JPH0612317B2
JPH0612317B2 JP27047486A JP27047486A JPH0612317B2 JP H0612317 B2 JPH0612317 B2 JP H0612317B2 JP 27047486 A JP27047486 A JP 27047486A JP 27047486 A JP27047486 A JP 27047486A JP H0612317 B2 JPH0612317 B2 JP H0612317B2
Authority
JP
Japan
Prior art keywords
crack
eff
strain
intensity factor
stress intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27047486A
Other languages
Japanese (ja)
Other versions
JPS63122928A (en
Inventor
良之 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP27047486A priority Critical patent/JPH0612317B2/en
Publication of JPS63122928A publication Critical patent/JPS63122928A/en
Publication of JPH0612317B2 publication Critical patent/JPH0612317B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は構造物に発生したき裂の開閉口挙動を計測する
有効応力拡大係数計測装置に関する。
TECHNICAL FIELD The present invention relates to an effective stress intensity factor measuring device for measuring opening / closing behavior of a crack generated in a structure.

[従来の技術] 構造物に発生したき裂が繰返し荷重をうけて成長する場
合、そのき裂成長速度を正確に予測することは安全保守
上重要であり、このためには、き裂の成長速度を支配す
る力学パラメータを正確に知る必要がある。
[Prior Art] When a crack generated in a structure grows under repeated load, it is important to accurately predict the crack growth rate for safety and maintenance. It is necessary to know the mechanical parameters that govern velocity accurately.

従来疲労き裂の成長速度を支配する力学パラメータとし
ては破壊力学による応力拡大係数範囲ΔKが使用されて
おり、これは第6図に示す様に長さ2a、応力Δδが作
用するき裂に対し (ただし、f(a)は部材形状等により決まる修正係
数)で与えられる。
Conventionally, the stress intensity factor range ΔK by fracture mechanics has been used as a mechanical parameter that governs the growth rate of fatigue cracks, and this is used for cracks with a length 2a and stress Δδ acting as shown in FIG. (However, f (a) is given by a correction coefficient determined by the member shape and the like).

[発明が解決しようとする問題点] 従来の取扱いはき裂に作用する応力拡大係数Kの全範囲
ΔKがき裂成長に有効であると考える方法であるが、最
近の研究ではき裂先端の塑性変形,残留応力,き裂内酸
化物の存在により繰返し応力範囲のある部分では“き裂
先端が閉じており”き裂成長に関与しないことが明らか
にされている(き裂開閉口挙動と呼ばれる)。ΔKのう
ち“き裂先端が開いている範囲に対応する部分”を“有
効応力拡大係数”ΔKeffとも呼び、これがき裂成長を
支配する力学パラメータであることが明らかにされてお
り、実験室的にはこれに基づくき裂成長予測法が確立し
ている。
[Problems to be Solved by the Invention] Conventional treatment is a method in which the full range ΔK of the stress intensity factor K acting on a crack is considered to be effective for crack growth. Due to deformation, residual stress, and the presence of oxides in the crack, it has been clarified that "the crack tip is closed" in the part where the cyclic stress range is present and it is not involved in crack growth (called crack opening / closing behavior). ). The part of ΔK that corresponds to the range in which the crack tip is open is also called the “effective stress intensity factor” ΔK eff, and it has been clarified that this is the mechanical parameter that governs crack growth. In general, a crack growth prediction method based on this has been established.

すなわち、疲労き裂は、応力の負荷,除荷の繰り返しを
1サイクルとして、応力1サイクル毎にき裂が成長して
ゆき、応力1サイクル中のき裂先端の形状は第7図に示
す様に変化する。第7図(a)〜(d)の応力負荷過程
は応力上昇とともにき裂先端が開口してゆく過程である
が、応力があるレベル(き裂開口点とよばれる)に到達
するまでは、応力が作用しているにもかかわらず第7図
(a),(b)の様にき裂先端は開口しない。この状態
を称して“き裂先端が閉じている”と言う。第7図
(c),(d)の様に応力があるレベル以上になっては
じめてき裂先端が開口する様になる。この状態を称して
“き裂先端が開いている”と言う。この様にき裂先端が
開いている状態下での応力変動範囲が疲労き裂伝ぱに対
して有効であることがわかっている。
That is, a fatigue crack is a cycle in which stress loading and unloading are repeated as one cycle, and the crack grows every stress cycle, and the shape of the crack tip during one stress cycle is as shown in FIG. Changes to. The stress loading process of FIGS. 7 (a) to 7 (d) is a process in which the crack tip opens as the stress increases, but until the stress reaches a certain level (called the crack opening point), Despite the stress, the crack tip does not open as shown in FIGS. 7 (a) and 7 (b). This state is called "the crack tip is closed". As shown in FIGS. 7 (c) and 7 (d), the crack tip becomes open only when the stress exceeds a certain level. This state is called "the crack tip is open". It is known that the stress fluctuation range under the condition that the crack tip is open is effective for fatigue crack propagation.

“ΔKのうちき裂先端が開いている範囲に対応する部
分”とは、下記の意味である。従来の考え方では、上述
のき裂先端が開口する挙動を無視して、作用する全応力
範囲Δδを用いて(1)式で求めたΔK=Δσ√πaf
(a)が疲労き裂伝ぱを支配すると考えていたが、近年
作用する全応力範囲Δσの内、“き裂先端が開いている
部分に対応する応力範囲”Δσeffを用いて得られる。
The “portion of ΔK corresponding to the range in which the crack tip is open” has the following meaning. In the conventional way of thinking, ignoring the behavior of opening of the crack tip described above, ΔK = Δσ√πaf obtained by the equation (1) using the total stress range Δδ acting.
Although it was thought that (a) governs fatigue crack propagation, it can be obtained by using the "stress range corresponding to the portion where the crack tip is open" Δσ eff , out of the total stress range Δσ that has recently been applied.

が真に疲労き裂伝ぱを支配していることが明らかになっ
てきた。このΔKeffを称して“ΔKのうちき裂先端が
開いている範囲に対応する部分”と言う。
Has really become known to dominate fatigue crack propagation. This ΔK eff is referred to as “a portion of ΔK corresponding to the range in which the crack tip is open”.

ところが実機構造物に対してΔKeffを実測するための
実用化機器が見当たらず研究成果の実機適用が困難な状
況である。
However, it is difficult to apply the research results to the actual machine because there is no practical equipment for measuring ΔK eff for the actual machine structure.

本発明は、この様な事情に鑑みて提案されたもので、構
造物中のき裂に作用する有効応力拡大係数ΔKeffが測
定でき、機器の寿命予測精度を向上させることができる
有効応力拡大係数測定装置を提供することを目的とす
る。
The present invention has been proposed in view of such circumstances, and it is possible to measure the effective stress intensity factor ΔK eff that acts on a crack in a structure and to improve the life prediction accuracy of the device. An object is to provide a coefficient measuring device.

[問題点を解決するための手段] 本発明による有効応力拡大係数測定装置は、構造物に発
生したき裂先端に第1のひずみゲージを貼りつけ、また
き裂から十分離れた位置に第2のひずみゲージを貼りつ
け、これら第1および第2のひずみゲージの2つの信号
源と引算回路を用いて、き裂先端が開いている範囲に対
応するひずみΔ(ε+εeffを求めることによ
り、式 ΔKeff=C×Δ(ε+εeff 但し、Cは定数 から有効応力拡大係数ΔKeffを求めるように構成した
ことを特徴とする。
[Means for Solving Problems] In the effective stress intensity factor measuring device according to the present invention, a first strain gauge is attached to a crack tip generated in a structure, and a second strain gauge is provided at a position sufficiently distant from the crack. The strain gauge of No. 1 is attached, and the strain Δ (ε 2 + ε 4 ) eff corresponding to the range where the crack tip is open is used by using the two signal sources of these first and second strain gauges and the subtraction circuit. By calculating, the equation ΔK eff = C 1 × Δ (ε 2 + ε 4 ) eff, where C 1 is a constant, and the effective stress intensity factor ΔK eff is obtained.

[作 用] 本発明によれば、第1および第2のひずみゲージの各出
力信号から、第2図に示す折れ曲がり点を求め、この折
れ曲がり点から引算回路を用いて第3図に示すように明
瞭な折れ曲がりを有するヒステリシスを求め、このひず
み変化分 Δ(ε+εeff から有効応力拡大係数ΔKeffを ΔKeff=C×Δ(ε+εeff ……(3) により求められる。ただしCは定数である。
[Operation] According to the present invention, the bending point shown in FIG. 2 is obtained from the output signals of the first and second strain gauges, and the subtraction circuit is used from this bending point as shown in FIG. calculated hysteresis with distinct bends in, this strain variation Δ (ε 2 + ε 4) eff ΔK the effective stress intensity factor [delta] K eff from eff = C 1 × Δ (ε 2 + ε 4) eff ...... (3) Desired. However, C 1 is a constant.

[実施例] 第1図は本発明の一実施例のブロック図であり、1はき
裂の先端部に貼着された第1のひずみゲージ、7はき裂
から十分離間した位置に貼着された第2のひずみゲー
ジ、8は計測装置、9a,9bは動ひずみアンプ、11
は引算回路、12は可変抵抗器、13は演算増幅器、1
4は記録器、15は第1のひずみゲージの出力、16は
引算回路の出力を示す。
[Embodiment] FIG. 1 is a block diagram of an embodiment of the present invention, in which 1 is a first strain gauge attached to the tip of the crack, and 7 is a location sufficiently separated from the crack. The second strain gauge, 8 is a measuring device, 9a and 9b are dynamic strain amplifiers, 11
Is a subtraction circuit, 12 is a variable resistor, 13 is an operational amplifier, 1
Reference numeral 4 is a recorder, 15 is the output of the first strain gauge, and 16 is the output of the subtraction circuit.

第4図は第1図における第1のひずみゲージ1の詳細図
(特願昭61−155200号参照)であり、2,3,
4,5はゲージグリッド、6は穴を示す。
FIG. 4 is a detailed view of the first strain gauge 1 in FIG. 1 (see Japanese Patent Application No. 61-155200),
4 and 5 are gauge grids, and 6 is a hole.

第4図に示すひずみゲージを、例えば第5図のようにゲ
ージ中心をき裂先端に合わせて貼りつけ計測すると、計
測ひずみと応力拡大係数ΔKの関係は、ゲージグリッド
2,4のひずみ値をそれぞれΔε,Δεとすると、 ΔK=C×Δ(Δε+Δε) ……(4) で与えられる。なお、Cはゲージグリッド寸法r
関係する定数であり、理論的、実験的に求められる。
When the strain gauge shown in FIG. 4 is attached and measured by aligning the center of the gauge with the crack tip as shown in FIG. 5, for example, the relationship between the measured strain and the stress intensity factor ΔK is the strain value of the gauge grids 2 and 4. Assuming Δε 2 and Δε 4 , respectively, ΔK = C 1 × Δ (Δε 2 + Δε 4 ) ... (4) C 1 is a constant related to the gauge grid size r 1 and is theoretically and experimentally obtained.

応力拡大係数ΔKは第5図のゲージグリッド2,4のひ
ずみが関係するが、ゲージグリッド3,5のひずみが関
係しないのは、次の理由による。
The stress intensity factor ΔK is related to the strain of the gauge grids 2 and 4 in FIG. 5, but is not related to the strain of the gauge grids 3 and 5 for the following reason.

本発明の対象とする2次元き裂問題に於ける応力拡大係
数としては、厳密には“き裂に作用する応力状態”に応
じて、第8図(a)に示す開口形のΔKと、第8図
(b)に示す面内剪断型のΔK11が存在する。
Strictly speaking, the stress intensity factor in the two-dimensional crack problem which is the subject of the present invention is ΔK 1 of the opening type shown in FIG. 8 (a) according to the “stress state acting on the crack”. , In-plane shear type ΔK 11 shown in FIG.

しかし、第4図および第5図に示すひずみゲージは特願
昭61−155200において、ΔKとΔK11を分離
して計測する目的で発明したものであり、き裂直角方向
の応力成分が支配的な開口形ΔKを計測するために配
置したゲージグリッド2,4と、き裂方向の応力成分が
支配的な面内剪断型ΔK11を計測するために配置したゲ
ージグリッド3,5とによって構成されている。
However, the strain gauges shown in FIGS. 4 and 5 were invented in Japanese Patent Application No. 61-155200 for the purpose of separately measuring ΔK 1 and ΔK 11 , and the stress component in the direction perpendicular to the crack is dominant. Gauge grids 2 and 4 arranged to measure the typical aperture type ΔK 1 and gauge grids 3 and 5 arranged to measure the in-plane shear type ΔK 11 in which the stress component in the crack direction is dominant. It is configured.

そして、本発明では疲労き裂の伝ぱ速度が主にΔK
よって決定される(ΔK11は主にき裂の伝ぱ方向に関係
する)ことより、ΔKを計測するためのゲージグリッ
ド2,4のみを使用し、ΔK計測に関係しないゲージ
グリッド3,5は使用しないためである。
In the present invention, the propagation speed of fatigue cracks is mainly determined by ΔK 1 (ΔK 11 is mainly related to the propagation direction of cracks), so that the gauge grids 2 and 4 for measuring ΔK 1 are determined. This is because only the gauge grids 3 and 5 that are not related to the ΔK 1 measurement are used.

なお、単にΔKと言えばΔKをさすのが一般的であ
る。そこで本発明の説明にもそれに従うことにする。
It should be noted that simply speaking ΔK generally refers to ΔK 1 . Therefore, the description of the present invention will be followed accordingly.

応力拡大係数ΔKを表わす式(1)と(4)が異なるの
は次の理由による。即ち、式(1)によるΔKの式は解
析的表現であり、Δσやf(a)が既知の場合にのみ使
用できる。一方、式(4)によるΔKの式はひずみ計測
からΔKを求めるための実験式的表現である。
The expressions (1) and (4) representing the stress intensity factor ΔK are different for the following reason. That is, the expression of ΔK according to the expression (1) is an analytical expression and can be used only when Δσ and f (a) are known. On the other hand, the equation of ΔK according to the equation (4) is an empirical expression for obtaining ΔK from strain measurement.

次に上記本発明の一実施例の作用について説明する。Next, the operation of the embodiment of the present invention will be described.

第1図に示す様に、構造物中のき裂先端に第4図の第1
のひずみゲージ1を、またき裂から十分離れた位置に第
2のひずみゲージ7を貼りつけ、これを計測装置8に導
く。ゲージ出力が動ひずみアンプ9a,9bで増幅され
ると、第2図の様にき裂開閉口挙動のためにわずかに非
線形性を有する波形を描き、折れ曲がり点10がき裂が
開口しはじめる点に対応する。この折れ曲がり点10を
明瞭にするために、この信号を第1図の引算回路11に
導き、可変抵抗12を適当に設定すると、第3図の様に
明瞭に折れ曲がりを有するヒステリシスが得られる。第
3図中水平な直線部分が“き裂が開口している範囲に対
応するひずみ変化分Δ(ε+εeff″であり、有
効応力拡大係数ΔKeffは ΔKeff=C×Δ(ε+εeff ……(3) で求められる。
As shown in Fig. 1, the crack tip in the structure is
The second strain gauge 7 is attached to the strain gauge 1 and the second strain gauge 7 is sufficiently separated from the crack, and the second strain gauge 7 is guided to the measuring device 8. When the gauge output is amplified by the dynamic strain amplifiers 9a and 9b, a waveform with a slight nonlinearity is drawn due to the crack opening / closing behavior as shown in Fig. 2, and the bending point 10 becomes a point where the crack starts to open. Correspond. In order to make this bending point 10 clear, this signal is led to the subtraction circuit 11 of FIG. 1 and the variable resistor 12 is set appropriately, so that hysteresis having a clear bending as shown in FIG. 3 is obtained. The horizontal straight line portion in FIG. 3 is the strain variation Δ (ε 2 + ε 4 ) eff ″ corresponding to the range in which the crack is open, and the effective stress intensity factor ΔK eff is ΔK eff = C 1 × Δ (Ε 2 + ε 4 ) eff (3)

第1および第2のひずみゲージの出力の差が、有効応力
拡大係数となるのは次の理由による。
The difference between the outputs of the first and second strain gauges becomes the effective stress intensity factor for the following reason.

第1のひずみゲージは、き裂先端でのき裂開閉口の影響
を受けた、外荷重に対して非線形なひずみ出力を計測す
るためにき裂先端近傍に貼つけるのに対し、第2のひず
みゲージは、き裂先端でのき裂開閉口の影響が減衰した
き裂先端から遠く離れた位置に貼つけ、外荷重に対して
線形なひずみ出力を計測するためのものである。
The first strain gauge is attached near the crack tip to measure the nonlinear strain output with respect to the external load, which is affected by the crack opening and closing at the crack tip, while the second strain gauge is used. The strain gauge is for sticking at a position far from the crack tip where the effect of the crack opening and closing at the crack tip is attenuated, and for measuring the linear strain output with respect to an external load.

両者のリサージュ波形の非線形性から、き裂先端が開口
し始める折れ曲がり点10が決定できる。この様にして
折れ曲がり点10が決定できれば、“き裂先端が開いて
いる範囲”に対応するひずみ範囲Δ(ε+εeff
を求めることができ、式(3)により有効応力拡大係数
ΔKeffを求めることが出来る。
The bending point 10 at which the crack tip begins to open can be determined from the non-linearity of the Lissajous waveforms of both. If the bending point 10 can be determined in this way, the strain range Δ (ε 2 + ε 4 ) eff corresponding to the “range in which the crack tip is open” is determined.
And the effective stress intensity factor ΔK eff can be calculated by the equation (3).

なお、上記第1図の引算回路11の出力は、オシロスコ
ープ等の記録器14で計測してもよいし、コンピュータ
によりディジタル処理を行ってもよい。
The output of the subtraction circuit 11 shown in FIG. 1 may be measured by a recorder 14 such as an oscilloscope, or may be digitally processed by a computer.

[発明の効果] 本発明は前述のように構成されているので、以下に記載
するような効果を奏する。
[Effects of the Invention] Since the present invention is configured as described above, the following effects are achieved.

本発明によれば、第3図の水平な直線部分すなわち“き
裂が開口している範囲”に対応するひずみ変化分Δ(ε
+εeffを計測することにより、式(3)から構
造物中のき裂に作用する有効応力拡大係数ΔKeffを実
測することが出来る。これにより、これまで実験室的に
研究がなされてきたき裂開閉口挙動研究の成果を実機に
適用できるので、機器の寿命予測精度の向上を図ること
ができる等の優れた効果が奏せられる。
According to the present invention, the strain variation Δ (ε) corresponding to the horizontal straight line portion of FIG.
By measuring 2 + ε 4 ) eff , the effective stress intensity factor ΔK eff acting on the crack in the structure can be measured from the equation (3). As a result, the results of the crack opening / closing behavior research, which has been researched in the laboratory up to now, can be applied to the actual machine, and thus excellent effects such as the improvement of the life prediction accuracy of the equipment can be achieved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の構成を示すブロック図、第
2図は第1図におけるひずみゲージ間の出力の関係を示
す図、第3図は第1図におけるひずみゲージの出力と引
算回路の出力の関係を示す図、第4図は第1図における
ひずみゲージの詳細図、第5図は第4図のひずみゲージ
の使用例を示す図、第6図はき裂のモデルを示す図、第
7図は応力状態とき裂の関係を示す図、第8図は2次元
き裂問題における応力拡大係数ΔKとΔK11の説明図
である。 1……第1のひずみゲージ、7……第2のひずみゲー
ジ、8……計測装置、11……引算回路、14……記録
器。
FIG. 1 is a block diagram showing a configuration of an embodiment of the present invention, FIG. 2 is a diagram showing a relation of outputs between strain gauges in FIG. 1, and FIG. 3 is a diagram showing outputs of strain gauges in FIG. FIG. 4 is a detailed view of the strain gauge shown in FIG. 1, FIG. 5 is a diagram showing an example of using the strain gauge of FIG. 4, and FIG. 6 is a crack model. FIG. 7, FIG. 7 is a diagram showing a relationship between a stress state and a crack, and FIG. 8 is an explanatory diagram of stress intensity factors ΔK 1 and ΔK 11 in a two-dimensional crack problem. 1 ... 1st strain gauge, 7 ... 2nd strain gauge, 8 ... measuring device, 11 ... subtraction circuit, 14 ... recorder.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】き裂の先端部に貼着された第1のひずみゲ
ージと、前記き裂から離間した位置に貼着された第2の
ひずみゲージと、前記き裂の開閉口挙動を計測するため
に前記第1および第2のひずみゲージの各出力信号を入
力する引算回路とを具備し、き裂先端が開いている範囲
に対応するひずみΔ(ε+εeffを求めることに
より、式 ΔKeff=C×Δ(ε+εeff 但し、Cは定数 から有効応力拡大係数ΔKeffを求めるように構成した
ことを特徴とする有効応力拡大係数計測装置。
1. A first strain gauge attached to a tip portion of a crack, a second strain gauge attached to a position separated from the crack, and an opening / closing behavior of the crack is measured. To obtain the strain Δ (ε 2 + ε 4 ) eff corresponding to the range in which the crack tip is open. According to the equation ΔK eff = C 1 × Δ (ε 2 + ε 4 ) eff, where C 1 is a constant, the effective stress intensity factor ΔK eff is obtained from the constant stress intensity factor measuring device.
JP27047486A 1986-11-13 1986-11-13 Effective stress intensity factor measuring device Expired - Lifetime JPH0612317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27047486A JPH0612317B2 (en) 1986-11-13 1986-11-13 Effective stress intensity factor measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27047486A JPH0612317B2 (en) 1986-11-13 1986-11-13 Effective stress intensity factor measuring device

Publications (2)

Publication Number Publication Date
JPS63122928A JPS63122928A (en) 1988-05-26
JPH0612317B2 true JPH0612317B2 (en) 1994-02-16

Family

ID=17486813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27047486A Expired - Lifetime JPH0612317B2 (en) 1986-11-13 1986-11-13 Effective stress intensity factor measuring device

Country Status (1)

Country Link
JP (1) JPH0612317B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0450634A (en) * 1990-06-12 1992-02-19 Komatsu Ltd Estimating method for life of structure
JP6037983B2 (en) * 2013-02-22 2016-12-07 三菱重工業株式会社 Crack opening behavior acquisition method, crack opening behavior acquisition device, and crack opening behavior acquisition program

Also Published As

Publication number Publication date
JPS63122928A (en) 1988-05-26

Similar Documents

Publication Publication Date Title
US4699000A (en) Automated device for determining and evaluating the mechanical properties of materials
CN105784237A (en) Micro thrust test system and method
JP3897477B2 (en) Stress-strain relationship simulation method and springback amount prediction method
US2426390A (en) Straightening apparatus
US7869962B2 (en) Process and device for controlling the deformation of a metal part, in particular for redressing a metal part
JPH0612317B2 (en) Effective stress intensity factor measuring device
CN104865008A (en) Torsion bar temperature compensation method in torsional pendulum method rotational inertia measurement
JPH0676958B2 (en) Method and apparatus for controlling plastic strain rate
KR900700880A (en) Calculation method of biaxial stress of ferromagnetic material
US3948091A (en) Apparatus for determining the properties of metallic materials
JP3858833B2 (en) Material testing machine
KR20180019396A (en) Similitude Law and Pseudodynamic Test Method of Reinforced Concrete Structure by Modifying Analytic Parameter Considering Measured Strain Data
US20220057308A1 (en) Material testing machine and method for controlling material testing machine
Gedney Tensile testing basics, tips and trends
JPWO2020170770A1 (en) Calibration method of detection device and sensor
JP5197054B2 (en) Strain measuring apparatus and measuring method thereof
CN205404014U (en) Measure FBG sensor of many field information of model test material
GB1456403A (en) Transducers
JPH06154874A (en) Method and device for processing bottoming for press brake
JPH10325787A (en) Material-testing machine
KR100354837B1 (en) Cracklength measuring device and method of metallic materials
SU453631A1 (en) METHOD OF CONTROL OF CURING OF REFRACTORY COATING
JPS63151836A (en) Apparatus for correcting displacement of material tester
SU1523991A1 (en) Method of checking quality of articles
Pawel et al. Position for calibrating resistance strain gauges