JP2002243604A - Ultrasonic fatigue tester - Google Patents

Ultrasonic fatigue tester

Info

Publication number
JP2002243604A
JP2002243604A JP2001044377A JP2001044377A JP2002243604A JP 2002243604 A JP2002243604 A JP 2002243604A JP 2001044377 A JP2001044377 A JP 2001044377A JP 2001044377 A JP2001044377 A JP 2001044377A JP 2002243604 A JP2002243604 A JP 2002243604A
Authority
JP
Japan
Prior art keywords
stress
fatigue
ultrasonic
test piece
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001044377A
Other languages
Japanese (ja)
Other versions
JP4374785B2 (en
Inventor
Noriaki Komine
徳晃 小嶺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2001044377A priority Critical patent/JP4374785B2/en
Publication of JP2002243604A publication Critical patent/JP2002243604A/en
Application granted granted Critical
Publication of JP4374785B2 publication Critical patent/JP4374785B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/024Mixtures
    • G01N2291/02491Materials with nonlinear acoustic properties

Abstract

PROBLEM TO BE SOLVED: To provide an ultrasonic fatigue tester, capable of obtaining the same fatigue test data as that of a conventional mechanical fatigue tester. SOLUTION: The relationship between distortion and stress in a material to be tested is previously measured and stored, in a stress input part 11 and a stress output part 2. The non-linearity between set stress and distortion is corrected, and fatigue strength test is performed by ultrasonic waves. Since distortion of a test piece S equal to its elastic limit or more is enlarged to shorten a fatigue failure life time by the correction, it is possible to bring the fatigue test data close to the test data of the conventional fatigue tester.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超音波により試験
片に歪みを与え、試験片の疲労強度を測定する超音波疲
労試験機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic fatigue tester for measuring the fatigue strength of a test piece by applying a strain to the test piece by ultrasonic waves.

【0002】[0002]

【従来の技術】従来、試験片の疲労強度を測定する装置
として、超音波を導入して試験片に疲労破壊を起こさせ
て疲労強度を測定する超音波疲労試験機が知られてい
る。例えば、特開昭60−17339号公報で開示され
ている方法では、試験片変位の振幅を受光素子で受けて
一定振幅で疲労試験を行うようにしている。このような
超音波疲労試験機は、従来の機械式疲労試験機等に比べ
て応力変化の繰り返し速度を速くすることができ、短期
間に多量の疲労強度試験を行うことができる。また、従
来は時間がかかりすぎてデータを採るのが難しかった回
数が10〜10回に達する長寿命域での疲労強度試
験も短期間に行うことができる。
2. Description of the Related Art Conventionally, as an apparatus for measuring the fatigue strength of a test piece, there has been known an ultrasonic fatigue tester for measuring the fatigue strength by introducing ultrasonic waves to cause the test piece to undergo fatigue fracture. For example, in a method disclosed in Japanese Patent Application Laid-Open No. 60-17339, the fatigue test is performed at a constant amplitude by receiving the amplitude of the displacement of a test piece by a light receiving element. Such an ultrasonic fatigue tester can increase the repetition rate of the stress change as compared with a conventional mechanical fatigue tester or the like, and can perform a large amount of fatigue strength test in a short time. In addition, a fatigue strength test in a long life region in which the number of times that it has conventionally been so long that it was difficult to collect data reaches 10 8 to 10 9 times can be performed in a short time.

【0003】[0003]

【発明が解決しようとする課題】上記のように超音波方
式の疲労試験機は、短期間に多量の疲労強度試験を行う
ことに適しているが、試験片に弾性限界以上の応力を負
荷すると、超音波疲労試験機で採取される疲労強度試験
データは、例えば、従来の機械式のような疲労試験機に
より採取された試験データと比べ、同一疲労限界繰返し
回数に対する応力値が10〜30%高めに出るという問
題がある。本発明は、このような事情に鑑みてなされた
ものであって、従来の機械式疲労試験機等とほぼ等しい
疲労強度試験データが得られる超音波疲労試験機を提供
することを目的とする。
As described above, the ultrasonic type fatigue tester is suitable for performing a large amount of fatigue strength test in a short period of time, but when a stress exceeding the elastic limit is applied to the test piece. The fatigue strength test data collected by the ultrasonic fatigue tester is, for example, 10-30% of the stress value for the same fatigue limit repetition number as compared with the test data collected by the conventional mechanical type fatigue tester. There is a problem of going high. The present invention has been made in view of such circumstances, and has as its object to provide an ultrasonic fatigue tester capable of obtaining fatigue strength test data substantially equal to those of a conventional mechanical fatigue tester or the like.

【0004】[0004]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の超音波疲労試験機は、超音波の発生に必要
な電力を供給する発振器と、該発振器の出力を受けて試
験片に超音波による振動を与える超音波振動子とを備
え、試験片の疲労強度を試験する超音波疲労試験機にお
いて、予め試験片で測定された歪み応力特性データ又は
計算式を用いて、前記発振器出力及び試験データの補正
処理を行えるようにしたことを特徴とするものである。
本発明の超音波疲労試験機は上記の構成を用いることに
より、従来の機械式疲労試験機等とほぼ近い試験データ
を得ることができる。
In order to achieve the above object, an ultrasonic fatigue tester according to the present invention comprises an oscillator for supplying electric power required for generating ultrasonic waves, and a test piece receiving the output of the oscillator. An ultrasonic vibrator that applies vibration by ultrasonic waves to an ultrasonic fatigue tester for testing the fatigue strength of a test piece, using strain stress characteristic data or a calculation formula previously measured on the test piece, and using the oscillator. The output and test data can be corrected.
By using the above configuration, the ultrasonic fatigue tester of the present invention can obtain test data almost similar to those of a conventional mechanical fatigue tester or the like.

【0005】[0005]

【発明の実施の形態】以下、本発明の第1実施例による
超音波疲労試験機を図面を参照しながら説明する。図1
は、本超音波疲労試験機の構成を示す概略ブロック図で
ある。本超音波疲労試験機は、試験片Sに超音波振動に
よる所定の歪みを加える制御部1(点線で囲まれた部
分)とその歪み検出信号から該当する応力を求める応力
出力部2とから構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an ultrasonic fatigue tester according to a first embodiment of the present invention will be described with reference to the drawings. Figure 1
1 is a schematic block diagram showing a configuration of the present ultrasonic fatigue tester. The ultrasonic fatigue tester includes a control unit 1 (a portion surrounded by a dotted line) for applying a predetermined strain to a test piece S by ultrasonic vibration, and a stress output unit 2 for obtaining a corresponding stress from the strain detection signal. Have been.

【0006】前記制御部1は、入力される応力値に相当
する試験片Sの端面歪み振幅値に変換する応力入力部1
1と、その振幅値に相当する電圧設定信号17aを発生
する端面振幅設定部17と、超音波振動を発生する超音
波振動子13と、この超音波振動子13と結合して超音
波振動を増幅するホーン14と、前記超音波振動子13
を駆動するための駆動部12と、試験片Sの端面変位X
を測定する変位計15と、この変位計15の出力を前記
応力出力部2に必要な出力レベルにまで増幅する変位計
アンプ16から構成されている。
The control unit 1 includes a stress input unit 1 for converting an end surface distortion amplitude value of the test piece S corresponding to the input stress value.
1, an end face amplitude setting unit 17 for generating a voltage setting signal 17a corresponding to the amplitude value, an ultrasonic vibrator 13 for generating ultrasonic vibration, and an ultrasonic vibrator 13 coupled with the ultrasonic vibrator 13 to generate ultrasonic vibration. The horn 14 for amplification and the ultrasonic transducer 13
12 for driving the test piece, and the end face displacement X of the test piece S
, And a displacement meter amplifier 16 that amplifies the output of the displacement meter 15 to an output level required for the stress output unit 2.

【0007】上記応力入力部11は、設定された試験応
力値に該当する試験片Sの歪み値を補正変換するための
応力歪み変換・補正部11aと、この補正された歪み値
から試験片Sの端面における振幅値を算出するための歪
み端面振幅変換部11bとから構成されている。
The stress input unit 11 includes a stress-strain conversion / correction unit 11a for correcting and converting a strain value of the test piece S corresponding to the set test stress value, and a test piece S based on the corrected strain value. And a distortion end face amplitude conversion section 11b for calculating the amplitude value at the end face of.

【0008】この応力歪み変換・補正部11aには予め
油圧式材料試験機等により測定された図2に示すような
試験片Sの応力歪み特性が記憶されている。図2に示さ
れるような応力値σは、弾性限界内に該当する応力値
であり、これに対応する歪み値εとは直線的な関係を
有している。これに対して応力値σは、弾性限界外に
該当する応力値であり、これに対応する歪み値εとは
非直線的な関係を有している。
The stress-strain conversion / correction section 11a stores in advance the stress-strain characteristics of the test piece S as shown in FIG. 2 measured by a hydraulic material testing machine or the like. The stress value σ 1 as shown in FIG. 2 is a stress value falling within the elastic limit, and has a linear relationship with the corresponding strain value ε 1 . On the other hand, the stress value σ 2 is a stress value falling outside the elastic limit, and has a non-linear relationship with the corresponding strain value ε 2 .

【0009】また、前記駆動部12は、必要な超音波振
動に該当する発振波形(通常正弦波波形が用いられる)
を発生させる発振器12aと、その信号波形で、前記端
面振幅設定部17の電圧設定信号17aに比例した強さ
の超音波振動を発生させるに必要な電力を、超音波振動
子13に供給するドライブ回路12bから構成されてい
る。
The drive section 12 generates an oscillation waveform (usually a sine wave waveform) corresponding to the required ultrasonic vibration.
12a and a drive for supplying to the ultrasonic vibrator 13 the power required to generate ultrasonic vibration having a signal waveform corresponding to the voltage setting signal 17a of the end face amplitude setting section 17 with the signal waveform. It is composed of a circuit 12b.

【0010】本装置において、応力歪み変換・補正部1
1aに試験を行う応力値を設定すると、図2の応力歪み
特性データまたはそれから得られた近似式を用いて歪み
値が算出される。例えば、設定された応力値がσであ
るとすると、図2から補正のない場合であれば非直線性
が無視されて歪み値は点線上のε20と見なされるのに
対し、本発明では非直線性による補正が行われるので歪
み値はεと見なされる。この歪み値εは図2からも
見られるように一般的に歪み値ε20より大きな値を取
るが、この歪み値εは歪み端面振幅変換部11bにお
いて必要な端面振幅値に変換され、端面振幅設定部17
から電圧設定信号17aとしてドライブ回路12bに出
力される。
In this apparatus, the stress-strain converter / corrector 1
When the stress value to be tested is set to 1a, the strain value is calculated using the stress-strain characteristic data of FIG. 2 or an approximate expression obtained from the data. For example, assuming that the set stress value is σ 2 , if there is no correction from FIG. 2, the nonlinearity is ignored and the distortion value is regarded as ε 20 on the dotted line, whereas in the present invention, strain values the correction due to nonlinearity is performed is considered epsilon 2. Although this distortion value ε 2 generally takes a value larger than the distortion value ε 20 as can be seen from FIG. 2, this distortion value ε 2 is converted into a required end face amplitude value by the strain end face amplitude conversion section 11b. End face amplitude setting unit 17
Is output to the drive circuit 12b as a voltage setting signal 17a.

【0011】前記ドライブ回路12bからは、所定の振
幅幅の歪みと、発振器12aの波形とを有する駆動信号
が超音波振動子13に供給され、超音波振動が発生す
る。この超音波振動は、超音波振動子13内を伝播し、
ホーン14で増幅されて試験片Sに加えられ、試験片S
が伸縮してその端面と変位計15間の変位Xが変化す
る。
From the drive circuit 12b, a drive signal having a distortion of a predetermined amplitude and a waveform of the oscillator 12a is supplied to the ultrasonic vibrator 13 to generate ultrasonic vibration. This ultrasonic vibration propagates in the ultrasonic vibrator 13,
The sample is amplified by the horn 14 and added to the test piece S.
Expands and contracts, and the displacement X between the end face and the displacement meter 15 changes.

【0012】前記変位Xは変位計15により検出され、
変位計アンプ16により応力出力部2に必要な信号レベ
ルに増幅される。このようにして、所定の応力値σ
σに対応した歪みが超音波振動により試験片Sに加え
られる。
The displacement X is detected by a displacement gauge 15,
The signal is amplified to a signal level required for the stress output unit 2 by the displacement meter amplifier 16. Thus, the predetermined stress value σ 1 ,
A strain corresponding to σ 2 is applied to the test piece S by ultrasonic vibration.

【0013】一方、実際に試験片Sに生じた応力を計測
するために前記応力出力部2が用いられる。この応力出
力部2は、変位計アンプ16により試験片Sの端面変位
Xを増幅した出力信号16aから歪み値に変換する端面
振幅歪み変換部21と、この歪み値を応力に補正変換す
る歪み応力変換・補正部22より構成されている。
On the other hand, the stress output unit 2 is used to measure the stress actually generated on the test piece S. The stress output unit 2 converts an output signal 16a obtained by amplifying the end surface displacement X of the test piece S by the displacement meter amplifier 16 into a distortion value, and converts the distortion value into a stress. It comprises a conversion / correction unit 22.

【0014】上記応力変換・補正部22には、図2と同
様、予め油圧式材料試験機等により測定された図3に示
すような試験片Sの応力歪み特性が記憶されている。図
3に示されるような歪み値εは弾性限界内に該当する
歪み値で、これに対応する応力値σとは直線的な関係
を有している。これに対して歪み値εは、弾性限界外
に該当する歪み値で、これに対応する応力値σとは非
直線的な関係を有している。
As shown in FIG. 2, the stress conversion / correction section 22 stores stress-strain characteristics of the test piece S as shown in FIG. 3 which are measured in advance by a hydraulic material testing machine or the like. Distortion value epsilon 3 as shown in FIG. 3 is a strain value corresponding to the elastic limit, and has a linear relationship to the stress value sigma 3 corresponding thereto. On the other hand, the strain value ε 4 is a strain value falling outside the elastic limit, and has a non-linear relationship with the corresponding stress value σ 4 .

【0015】試験片Sの変位Xは、変位計15および変
位計アンプ16で信号変換された後、前記端面振幅歪み
変換部21により歪み値εに変換される。この歪み値
εは前記歪み応力変換・補正部22において図3の応
力歪み特性データまたはそれから得られた近似式を用い
て応力値σが算出される。この応力値σは補正が行
われない場合の応力値、すなわち点線上の応力値σ40
に比べて小さくなる。
The displacement X of the specimen S, after being signal converted by the displacement gauge 15 and the displacement meter amplifier 16, is converted to strain values epsilon 4 by the end face amplitude distortion conversion portion 21. The distortion value epsilon 4 is stress-strain characteristic data or stress value sigma 4 by using the obtained approximate expression from those in FIG 3 is calculated in the distortion stress conversion and correction unit 22. The stress value σ 4 is the stress value when no correction is performed, that is, the stress value σ 40 on the dotted line.
Smaller than.

【0016】以上のような制御部1および応力出力部2
を用いて試験片Sの疲労試験を行うことにより、弾性限
界以上の応力を加えて疲労試験を行う場合、補正は歪み
を増加させる方向に作用し、疲労寿命データは寿命が短
くなる方向に作用する。したがって、疲労強度は補正を
行わない場合に比べて、従来の疲労試験機で測定する疲
労強度に近い試験データを得ることができる。このよう
にして計測される応力を順次変更して疲労試験を行い、
疲労破壊した寿命(疲労試験繰り返し回数)を求め、こ
れを△印でプロットすることにより、図4のように○印
で示した補正が行われない場合に比べて疲労強度が低下
する。
The control unit 1 and the stress output unit 2 as described above
When a fatigue test is performed by applying a stress equal to or more than the elastic limit by performing a fatigue test of the test piece S using the correction, the correction works in a direction to increase the strain, and the fatigue life data works in a direction to shorten the life. I do. Therefore, compared to the case where the fatigue strength is not corrected, test data close to the fatigue strength measured by a conventional fatigue tester can be obtained. A fatigue test is performed by sequentially changing the stress measured in this way,
By calculating the life of the fatigue failure (the number of repetitions of the fatigue test) and plotting this with a mark, the fatigue strength is reduced as compared with the case where the correction shown with a mark is not performed as shown in FIG.

【0017】図5は本発明の第2実施例の構成を示す概
略ブロック図である。本超音波疲労試験機は、試験片S
に所定の振幅の歪みをより正確に発生させるために、前
記第1実施例(図1参照)において、前記端面振幅設定
部17の代わりに、前記変位計アンプ16からのフィー
ドバック信号16bと前記歪み端面振幅変換部11bか
らの偏差信号を検出して、前記ドライブ回路12bに修
正信号を出力するための端面振幅比較部18が用いられ
ている。
FIG. 5 is a schematic block diagram showing the configuration of the second embodiment of the present invention. This ultrasonic fatigue tester uses a test piece S
In the first embodiment (see FIG. 1), the feedback signal 16b from the displacement meter amplifier 16 and the distortion An end face amplitude comparing section 18 for detecting a deviation signal from the end face amplitude converting section 11b and outputting a correction signal to the drive circuit 12b is used.

【0018】本装置において、応力入力部11に試験を
行う応力値を設定すると、第1実施例と同様に、端面振
幅値が補正変換され、この端面振幅値は、端面振幅比較
部18で変位計アンプ16からの変位Xに比例したフィ
ードバック信号16bと比較され、その偏差信号は電圧
信号18aとしてドライブ回路12bに入力される。こ
の端面振幅比較部18から変位計アンプ16までのフィ
ードバック回路により、周囲温度などの環境変化や経年
変化の影響を除去して、試験片Sの端面振幅は、正確に
歪み端面振幅変換部11bの出力値に制御される。
In the present apparatus, when a stress value to be tested is set in the stress input section 11, the end face amplitude value is corrected and converted in the same manner as in the first embodiment. The difference signal is compared with a feedback signal 16b proportional to the displacement X from the amplifier 16, and the deviation signal is input to the drive circuit 12b as a voltage signal 18a. By the feedback circuit from the end face amplitude comparing section 18 to the displacement meter amplifier 16, the influence of environmental change such as ambient temperature and aging is removed, and the end face amplitude of the test piece S is accurately corrected by the distortion end face amplitude converting section 11b. Controlled by output value.

【0019】また、前記変位計アンプ16からの端面歪
み振幅は、第1実施例と同様にして応力出力部2で補正
変換され、歪み応力変換・補正部22から応力値として
出力される。本発明の特徴は上記のように試験片Sに与
える応力と、試験片Sの歪みから求める応力を予め測定
された歪み応力データまたは近似式により補正すること
により、従来の疲労試験機による疲労試験データに近い
データが得られるようにした点にある。なお、前記応力
入力部11及び応力出力部2の構成要素の演算機能はマ
イクロコンピュータにより実施することもできる。
Further, the amplitude of the end face strain from the displacement meter amplifier 16 is corrected and converted by the stress output section 2 in the same manner as in the first embodiment, and is output from the strain stress conversion / correction section 22 as a stress value. The feature of the present invention is that the stress applied to the test piece S and the stress obtained from the strain of the test piece S are corrected by a previously measured strain stress data or an approximate expression to thereby perform a fatigue test using a conventional fatigue tester. The point is that data close to the data can be obtained. The operation of the components of the stress input unit 11 and the stress output unit 2 may be performed by a microcomputer.

【0020】[0020]

【発明の効果】本発明の超音波疲労試験機は、歪み応力
の非直線性の補正をすることで、超音波疲労試験機で採
取した疲労強度データを従来の試験機で採取したデータ
に近づけることができる。
According to the ultrasonic fatigue tester of the present invention, the fatigue strength data collected by the ultrasonic fatigue tester is made closer to the data collected by the conventional tester by correcting the nonlinearity of the strain stress. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例による超音波疲労試験機の
ブロック構成図である。
FIG. 1 is a block diagram of an ultrasonic fatigue tester according to a first embodiment of the present invention.

【図2】超音波により加えた応力に対する歪みの関係を
表す歪み応力特性図である。
FIG. 2 is a strain stress characteristic diagram showing a relationship between strain applied to stress applied by ultrasonic waves.

【図3】超音波により生じた歪に対する応力の関係を表
す歪み応力特性図である。
FIG. 3 is a strain stress characteristic diagram showing a relationship between stress generated by ultrasonic waves and stress.

【図4】超音波疲労試験における応力歪み非直線性の補
正の有無しの影響を説明するための疲労寿命特性図であ
る。
FIG. 4 is a fatigue life characteristic diagram for explaining the effect of the presence or absence of correction of stress-strain nonlinearity in an ultrasonic fatigue test.

【図5】本発明の第2実施例による超音波疲労試験機の
ブロック構成図である。
FIG. 5 is a block diagram of an ultrasonic fatigue tester according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…制御部 2…応力出力部 11…応力入力部 12…駆動部 13…超音波振動子 14…ホーン 15…変位計 16…変位計アンプ 16a…出力信号 16b…フィードバック信号 17…端面振幅設定部 17a…電圧設定信号 18…端面振幅比較部 18a…電圧信号 21…端面振幅歪み変換部 22…歪み応力変換・補正部 S…試験片 X…変位 DESCRIPTION OF SYMBOLS 1 ... Control part 2 ... Stress output part 11 ... Stress input part 12 ... Driving part 13 ... Ultrasonic vibrator 14 ... Horn 15 ... Displacement meter 16 ... Displacement meter amplifier 16a ... Output signal 16b ... Feedback signal 17 ... End face amplitude setting part 17a: Voltage setting signal 18: End face amplitude comparison section 18a: Voltage signal 21: End face amplitude distortion conversion section 22: Strain stress conversion / correction section S: Test piece X: Displacement

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】超音波の発生に必要な電力を供給する発振
器と、該発振器の出力を受けて試験片に超音波による振
動を与える超音波振動子とを備え、試験片の疲労強度を
試験する超音波疲労試験機において、予め試験片で測定
された歪み応力特性データ又は計算式を用いて、前記発
振器出力及び試験データの補正処理を行えるようにした
ことを特徴とする超音波疲労試験機。
An oscillator for supplying electric power necessary for generating ultrasonic waves, and an ultrasonic vibrator for receiving an output of the oscillator and applying ultrasonic vibration to a test piece to test the fatigue strength of the test piece. An ultrasonic fatigue tester, wherein the oscillator output and the test data are corrected by using strain stress characteristic data or a calculation formula measured in advance on a test piece. .
JP2001044377A 2001-02-21 2001-02-21 Ultrasonic fatigue testing machine Expired - Lifetime JP4374785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001044377A JP4374785B2 (en) 2001-02-21 2001-02-21 Ultrasonic fatigue testing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001044377A JP4374785B2 (en) 2001-02-21 2001-02-21 Ultrasonic fatigue testing machine

Publications (2)

Publication Number Publication Date
JP2002243604A true JP2002243604A (en) 2002-08-28
JP4374785B2 JP4374785B2 (en) 2009-12-02

Family

ID=18906380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001044377A Expired - Lifetime JP4374785B2 (en) 2001-02-21 2001-02-21 Ultrasonic fatigue testing machine

Country Status (1)

Country Link
JP (1) JP4374785B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004010112A1 (en) * 2002-07-19 2004-01-29 Consejo Superior De Investigaciones Cientificas Method and device for examining fatigue resistance of metallic materials at ultrasonic frequencies and constant temperature
JP2007017288A (en) * 2005-07-07 2007-01-25 Honda Motor Co Ltd Ultrasonic fatigue testing apparatus and ultrasonic fatigue testing method
KR100943199B1 (en) 2009-11-17 2010-02-19 선문대학교 산학협력단 Ultra-high cycle fatigue testing apparatus
WO2011115101A1 (en) * 2010-03-16 2011-09-22 Ntn株式会社 Method of assessing rolling contact metallic material shear stress fatigue values, and method and device using same that estimate fatigue limit surface pressure
JP2011215138A (en) * 2010-03-16 2011-10-27 Ntn Corp Method and device for estimating fatigue limit surface pressure of rolling bearing material for airplane
JP2011215141A (en) * 2010-03-16 2011-10-27 Ntn Corp Method and device for assessing shearing fatigue characteristics of rolling contact metal material
JP2013015367A (en) * 2011-07-01 2013-01-24 Ntn Corp Method and device for estimating relative superiority of internally originated flaking life of rolling contact metal material
CN103344514A (en) * 2013-07-05 2013-10-09 北京航空航天大学 High-cycle fatigue and low-intensity impact coupled damage calculation method based on nominal stress method
KR101403030B1 (en) 2012-10-18 2014-06-03 주식회사 엠브로지아 High frequency fatigue testing apparatus
CN104736990A (en) * 2012-12-07 2015-06-24 株式会社岛津制作所 Ultrasonic fatigue testing device and ultrasonic fatigue testing method
CN112945771A (en) * 2021-02-04 2021-06-11 武汉钢铁有限公司 Ultrasonic fatigue test sample stress strain calibration method
CN112945770A (en) * 2021-02-04 2021-06-11 武汉钢铁有限公司 DIC-based ultrasonic fatigue sample strain measurement and calibration method
KR20230034710A (en) * 2021-09-03 2023-03-10 선문대학교 산학협력단 Ultrasonic fatigue testing apparatus

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004010112A1 (en) * 2002-07-19 2004-01-29 Consejo Superior De Investigaciones Cientificas Method and device for examining fatigue resistance of metallic materials at ultrasonic frequencies and constant temperature
JP2007017288A (en) * 2005-07-07 2007-01-25 Honda Motor Co Ltd Ultrasonic fatigue testing apparatus and ultrasonic fatigue testing method
JP4480640B2 (en) * 2005-07-07 2010-06-16 本田技研工業株式会社 Ultrasonic fatigue test apparatus and ultrasonic fatigue test method
KR100943199B1 (en) 2009-11-17 2010-02-19 선문대학교 산학협력단 Ultra-high cycle fatigue testing apparatus
WO2011062322A1 (en) * 2009-11-17 2011-05-26 선문대학교 산학협력단 Ultra-high frequency fatigue-testing apparatus
JP2011215142A (en) * 2010-03-16 2011-10-27 Ntn Corp Method and device for assessing characteristics of rolling bearing material
US9234826B2 (en) 2010-03-16 2016-01-12 Ntn Corporation Assessment of shear fatigue property of rolling contact metal material and estimation of fatigue limit maximum contact pressure using same assessment
JP2011215141A (en) * 2010-03-16 2011-10-27 Ntn Corp Method and device for assessing shearing fatigue characteristics of rolling contact metal material
JP2011215139A (en) * 2010-03-16 2011-10-27 Ntn Corp Method and device for estimating fatigue limit surface pressure of rolling bearing material for railroad vehicle
JP2011215136A (en) * 2010-03-16 2011-10-27 Ntn Corp Method and device for estimating fatigue limit surface pressure of rolling contact metal material
WO2011115101A1 (en) * 2010-03-16 2011-09-22 Ntn株式会社 Method of assessing rolling contact metallic material shear stress fatigue values, and method and device using same that estimate fatigue limit surface pressure
JP2011215138A (en) * 2010-03-16 2011-10-27 Ntn Corp Method and device for estimating fatigue limit surface pressure of rolling bearing material for airplane
JP2013015367A (en) * 2011-07-01 2013-01-24 Ntn Corp Method and device for estimating relative superiority of internally originated flaking life of rolling contact metal material
KR101403030B1 (en) 2012-10-18 2014-06-03 주식회사 엠브로지아 High frequency fatigue testing apparatus
CN104736990A (en) * 2012-12-07 2015-06-24 株式会社岛津制作所 Ultrasonic fatigue testing device and ultrasonic fatigue testing method
CN103344514A (en) * 2013-07-05 2013-10-09 北京航空航天大学 High-cycle fatigue and low-intensity impact coupled damage calculation method based on nominal stress method
CN103344514B (en) * 2013-07-05 2016-01-27 北京航空航天大学 A kind of high cycle fatigue based on nominal stress method and low-intensity impact the damage measurement method of coupling
CN112945771A (en) * 2021-02-04 2021-06-11 武汉钢铁有限公司 Ultrasonic fatigue test sample stress strain calibration method
CN112945770A (en) * 2021-02-04 2021-06-11 武汉钢铁有限公司 DIC-based ultrasonic fatigue sample strain measurement and calibration method
KR20230034710A (en) * 2021-09-03 2023-03-10 선문대학교 산학협력단 Ultrasonic fatigue testing apparatus
KR102557214B1 (en) 2021-09-03 2023-07-19 선문대학교 산학협력단 Ultrasonic fatigue testing apparatus

Also Published As

Publication number Publication date
JP4374785B2 (en) 2009-12-02

Similar Documents

Publication Publication Date Title
JP4374785B2 (en) Ultrasonic fatigue testing machine
JP4480640B2 (en) Ultrasonic fatigue test apparatus and ultrasonic fatigue test method
RU2438137C1 (en) Method and apparatus for calibrating acceleration and force sensors
US7331209B2 (en) Transducer acceleration compensation with frequency domain amplitude and/or phase compensation
JP2814362B2 (en) High precision voltage measuring device
KR102256047B1 (en) Strength signal measuring method and strength signal measuring device for monitoring strength of hydration reaction materials
CN108827804A (en) A kind of resonant mode fatigue tester dynamic load error online compensation method
US6234032B1 (en) Load measuring method and an apparatus therefor
RU2245543C2 (en) Product flow control method
JPH0245801Y2 (en)
KR100950992B1 (en) Wireless Structure Health Monitoring System
JP2964315B2 (en) Measurement device for nonlinear elastic modulus of viscoelastic material
RU94025670A (en) Method of testing of composition of gas mixture and liquid media
JPH08159862A (en) Vibration monitoring apparatus
JPH0450628A (en) Shaking method for mechanical structure for measuring frequency response function
JPH0587718A (en) Fatigue testing machine for fine testing piece
Lage et al. Instumentation of Ultrasonic High-Frequency Machine to Estimate Applied Stress in Middle Section of Specimen
JP3482975B2 (en) Amplifier for strain measurement
JP3620959B2 (en) Viscoelasticity measuring device
SU1330547A1 (en) Method of vibration-acoustic check of thin-walled structures
SU716135A1 (en) Method of non-destructive quality control of piezoelements
SU1633527A1 (en) Method for measuring reinforcement stress in packet piezoelectric ceramic converter
RU2044298C1 (en) Acoustic method and device for determining sample parameters
JP2923294B1 (en) Strain measurement method
KR100235008B1 (en) Method of testing propagation immunity of a car

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090831

R151 Written notification of patent or utility model registration

Ref document number: 4374785

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

EXPY Cancellation because of completion of term