RU94025670A - Method of testing of composition of gas mixture and liquid media - Google Patents

Method of testing of composition of gas mixture and liquid media

Info

Publication number
RU94025670A
RU94025670A RU94025670/28A RU94025670A RU94025670A RU 94025670 A RU94025670 A RU 94025670A RU 94025670/28 A RU94025670/28 A RU 94025670/28A RU 94025670 A RU94025670 A RU 94025670A RU 94025670 A RU94025670 A RU 94025670A
Authority
RU
Russia
Prior art keywords
change
medium
rate
composition
measured
Prior art date
Application number
RU94025670/28A
Other languages
Russian (ru)
Other versions
RU2115116C1 (en
Inventor
И.М. Уракаев
И.Л. Аитов
С.Б. Даянов
А.И. Аитов
Original Assignee
И.М. Уракаев
И.Л. Аитов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by И.М. Уракаев, И.Л. Аитов filed Critical И.М. Уракаев
Priority to RU94025670A priority Critical patent/RU2115116C1/en
Publication of RU94025670A publication Critical patent/RU94025670A/en
Application granted granted Critical
Publication of RU2115116C1 publication Critical patent/RU2115116C1/en

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

FIELD: measurement technology. SUBSTANCE: method is intended for testing of compositions of gas mixtures and liquid media in technological processes as well as for emission of harmful gas mixtures into atmosphere and stowage discharge. Tested medium is passes (fills) periodically and continuously with composition known at the moment of first measurement. Short-term acoustic sinusoidal oscillations with known parameters are excited in it through waveguide 3. They are converted into electric signals by means of pickup 5, amplified by amplifier 7 and amplitude Uof this signal is measured and converted into code with the aid of converter 15. Oscillation period Tis measured and converted into code with the use of threshold device 10 flip-flop 11, clock generator 20 and converter 16. Temperature Tof medium in waveguide is measured and converted with the help of pickup 6, converters 13, 14 and clock generator 20. Then sound velocity a,, rate of change of acoustic pressure (dP/dt)for moment of transition by voltage of electric signal through zero are computed. Further on short-term sinusoidal oscillations are periodically excited, time intervals Δt between excitation moments, signal amplitude U, oscillation period T, temperature T, of medium are measured. Sound velocity a, rate of change of acoustic pressure (dP/dt), are calculated. Starting from second measurement one judges about change of composition of medium by calculation by rate of change of volumetric fractions of components of medium (dα/dt). If (dα/dt)= 0 = 0 one judges about constancy of composition. If (dα/dt)≠ 0 0 value of rate of change of volumetric fractions Δαis computed for all n components of medium and if= 0 one judges about invariability of number of components (n-const) and if0 one judges about appearance of new components. Two threshold values (U, U) of voltages are isolated across growing section of change of signal with the aid of two-threshold unit 9. Duration of interval τ, corresponding to these threshold values is measured and rate of change of acoustic pressure (dP/dt)within this interval is calculated by expressionwhere Kis gain factor of pickup 5, Kis gain factor of amplifier 7. EFFECT: expansion of application field of method, simplified design of device used for testing, increased accuracy and timeliness of test. 3 cl, 2 dwg

Claims (1)

Использование: для контроля состава газовых смесей и жидких сред в технологических процессах, а также при выбросах вредных газовых смесей в атмосферу и сливе сточных вод. Задача: расширение функциональных возможностей, упрощение устройства, повышение точности и оперативности контроля. Сущность изобретения: периодически и непрерывно пропускают (наполняют) контролируемую среду, с известным на момент первого контрольного измерения составом, через волновод 3, с известными параметрами возбуждают в ней кратковременные акустические синусоидальные колебания, преобразуют их в электрические сигналы датчиком 5, усиливают усилителем 7 и измеряют амплитуду этого сигнала U<Mv>m0<D> и преобразуют ее в код преобразователем 15, измеряют и преобразуют в код период колебаний Т<Mv>0<D> с помощью порогового устройства 10, триггера 11 тактового генератора 20 и преобразователя 16, измеряют и преобразуют в код температуру T ° o среды в волноводе с помощью датчика 6, преобразователей 13,14 и тактового генератора 20, после чего вычисляют скорость звука a<Mv>0<D>, скорость изменения акустического давления (dP/dt)<Mv>0<D> для момента перехода напряжения электрического сигнала через нулевое значение, далее периодически возбуждают кратковременные синусоидальные колебания, измеряют интервалы времени Δt между моментами возбуждения, амплитуду сигнала U<Mv>mк<D>, период колебаний Т<Mv>к<D>, температуру среды T ° к , вычисляют скорость звука a<Mv>к<D>, скорость изменения акустического давления (dP/dt)<Mv>к<D>, при этом, начиная со второго измерения судят об изменении состава среды по вычислению (dαi/dt)к скорости изменения объемных долей составляющих среды, при этом, если (dαi/dt)к= 0 судят о постоянстве состава, при (dαi/dtк)≠ 0 вычисляют для всех n составляющих среды величину изменения объемных долей Δαi и, если в этом случае
Figure 00000001
, судят о неизменности числа компонентов (n - const), а при
Figure 00000002
судят о появлении новых компонентов. На нарастающем участке изменения сигнала выделяют два пороговых значения напряжений U<Mv>п1<D>, U<Mv>п2<D> с помощью двухпорогового устройства 9, измеряют длительность интервала τнк,, соответствующего этим пороговым значениям, и вычисляют скорость изменения акустического (dP/dt)<Mv>к<D> давления в этом интервале по выражению:
Figure 00000003

где К<Mv>д<D> - коэффициент передачи датчика 5, К<Mv>у<D> - коэффициент усиления усилителя 7. 1 c. и 1 з.п. ф-лы, 2 ил.
Figure 00000004
Usage: to control the composition of gas mixtures and liquid media in technological processes, as well as the emission of harmful gas mixtures into the atmosphere and the discharge of wastewater. Objective: expanding functionality, simplifying the device, increasing the accuracy and efficiency of control. The inventive periodically and continuously pass (fill) the controlled medium, with the composition known at the time of the first control measurement, through the waveguide 3, with known parameters, excite short-term acoustic sinusoidal oscillations in it, convert them into electrical signals by sensor 5, amplify by amplifier 7 and measure the amplitude of this signal is U <Mv> m0 <D> and it is converted into code by the converter 15, the oscillation period T <Mv> 0 <D> is measured and converted into code using the threshold device 10, trigger 11 of the clock a radiator 20 and a transducer 16, measure and convert the temperature T into a code ° o medium in the waveguide using the sensor 6, converters 13,14 and the clock generator 20, after which the speed of sound a <Mv> 0 <D>, the rate of change of acoustic pressure (dP / dt) <Mv> 0 <D> for the moment of transition are calculated voltage of the electric signal through a zero value, then periodically excite short-term sinusoidal oscillations, measure the time intervals Δt between the moments of excitation, the amplitude of the signal U <Mv> mk <D>, the oscillation period T <Mv> to <D>, the medium temperature T ° to , calculate the speed of sound a <Mv> to <D>, the rate of change of acoustic pressure (dP / dt) <Mv> to <D>, while, starting from the second measurement, judge the change in the composition of the medium by calculation (dα i / dt) to the rate of change in volume fractions of the components of the medium, in this case, if (dα i / dt) k = 0, the composition is constant, when (dα i / dt k ) ≠ 0, for all n components of the medium, the change in volume fractions Δα i and, if in this case
Figure 00000001
, judge about the invariability of the number of components (n - const), and when
Figure 00000002
judge the appearance of new components. On the growing section of the signal change, two threshold voltage values U <Mv> p1 <D>, U <Mv> p2 <D> are distinguished using a two-threshold device 9, the duration of the interval τ nc corresponding to these threshold values is measured, and the rate of change of the acoustic (dP / dt) <Mv> to <D> the pressure in this interval by the expression:
Figure 00000003

where K <Mv> d <D> is the transmission coefficient of the sensor 5, K <Mv> y <D> is the gain of the amplifier 7. 1 c. and 1 z.p. f-ly, 2 ill.
Figure 00000004
RU94025670A 1994-07-08 1994-07-08 Method controlling composition of gas mixtures and liquid media RU2115116C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU94025670A RU2115116C1 (en) 1994-07-08 1994-07-08 Method controlling composition of gas mixtures and liquid media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU94025670A RU2115116C1 (en) 1994-07-08 1994-07-08 Method controlling composition of gas mixtures and liquid media

Publications (2)

Publication Number Publication Date
RU94025670A true RU94025670A (en) 1996-05-20
RU2115116C1 RU2115116C1 (en) 1998-07-10

Family

ID=20158262

Family Applications (1)

Application Number Title Priority Date Filing Date
RU94025670A RU2115116C1 (en) 1994-07-08 1994-07-08 Method controlling composition of gas mixtures and liquid media

Country Status (1)

Country Link
RU (1) RU2115116C1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2542604C1 (en) * 2013-10-14 2015-02-20 Федеральное казенное предприятие "Научно-испытательный центр ракетно-космической промышленности" (ФКП "НИЦ РКП") Method of testing gas analytical sensors for operation speed with response time of less than 4 seconds
CN112179990A (en) * 2020-09-15 2021-01-05 昆明理工大学 Carbon fiber composite material fatigue damage probability imaging method based on ToF damage factor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2688883C2 (en) * 2014-08-26 2019-05-22 Павел Михайлович Гребеньков Fluid acoustic detector and its application method
RU2680416C1 (en) * 2018-04-13 2019-02-21 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" Method for determining true volume gas content
RU2680417C1 (en) * 2018-04-13 2019-02-21 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" Measuring system to determine the true volume gas content

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2542604C1 (en) * 2013-10-14 2015-02-20 Федеральное казенное предприятие "Научно-испытательный центр ракетно-космической промышленности" (ФКП "НИЦ РКП") Method of testing gas analytical sensors for operation speed with response time of less than 4 seconds
CN112179990A (en) * 2020-09-15 2021-01-05 昆明理工大学 Carbon fiber composite material fatigue damage probability imaging method based on ToF damage factor

Also Published As

Publication number Publication date
RU2115116C1 (en) 1998-07-10

Similar Documents

Publication Publication Date Title
CN101813528A (en) Method for precisely measuring temperature by using ultrasonic technology and measuring instrument
RU94025670A (en) Method of testing of composition of gas mixture and liquid media
CN201637504U (en) High-sensitivity ultrasonic thermometer
US3413595A (en) Ultrasonic apparatus for checking processes in liquid media
JP2003194615A (en) Method and device for detecting filler
GB2359368A (en) Determining the viscosity of a fluid from the exponential decay of an excited piezo-electric element
RU2221993C1 (en) Acoustic-impedance method to measure levels of liquid media
RU2089859C1 (en) Method determining physical parameters of gas and liquid systems and gear for its realization
RU2688883C2 (en) Fluid acoustic detector and its application method
RU2089860C1 (en) Method determining physical parameters of gas and liquid system and gear for its implementation
RU2160887C1 (en) Ultrasonic flowmeter
SU721678A1 (en) Method and device for determining two components of mechanical oscillations of a structure
RU2138786C1 (en) Method of measuring of liquid media level in reservoirs
SU864109A1 (en) Ultrasonic density meter
SU859940A1 (en) Uhf pulse power meter
SU894552A1 (en) Method of ultrasound speed determination
SU1298540A1 (en) Ultrasonic device for measuring distances in gaseous atmosphere
SU994974A1 (en) Digital meter of ultrasonic oscillation propagation and damping rate
RU2144284C1 (en) Method for calibration of reversible piezoelectric transducer and device which implements said method
SU1307325A1 (en) Meter of ultrasound velocity
SU1413521A1 (en) Apparatus for ultrasonic inspection of parameters of fluctuating media
SU949352A2 (en) Ultrasonic meter of gaseous media temperature
SU761833A1 (en) Ultrasonic echo-pulse thickness gauge
SU1320662A1 (en) Ultrasonic echo-pulse thickness gauge for checking inner tube
SU807059A1 (en) Ultrasonic device for measuring article thickness