JP2011215139A - Method and device for estimating fatigue limit surface pressure of rolling bearing material for railroad vehicle - Google Patents
Method and device for estimating fatigue limit surface pressure of rolling bearing material for railroad vehicle Download PDFInfo
- Publication number
- JP2011215139A JP2011215139A JP2011054487A JP2011054487A JP2011215139A JP 2011215139 A JP2011215139 A JP 2011215139A JP 2011054487 A JP2011054487 A JP 2011054487A JP 2011054487 A JP2011054487 A JP 2011054487A JP 2011215139 A JP2011215139 A JP 2011215139A
- Authority
- JP
- Japan
- Prior art keywords
- fatigue
- surface pressure
- shear
- limit surface
- test
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
- Rolling Contact Bearings (AREA)
Abstract
Description
この発明は、鉄道車両用転がり軸受材料の疲労限面圧の推定方法および推定装置に関し、実験によって超長寿命域までのせん断疲労特性を求め、転がり軸受等の転がり接触する機械要素の内部起点型はく離が起きなくなる最大接触面圧Pmaxを疲労限面圧Pmax 1imとして推定する方法および装置、並びにこの推定方法を用いた軸受材料の選定方法に関する。 TECHNICAL FIELD The present invention relates to a method and an apparatus for estimating fatigue limit surface pressure of rolling bearing materials for railway vehicles, and obtains shear fatigue characteristics up to an ultra-long life range by experiments, and is an internal origin type of a machine element that makes rolling contact such as a rolling bearing. The present invention relates to a method and an apparatus for estimating a maximum contact surface pressure P max at which separation does not occur as a fatigue limit surface pressure P max 1im , and a method for selecting a bearing material using the estimation method.
転がり軸受の内部起点型はく離は、表層内部で振幅が最大となる交番せん断応力( ほぼ両振り) の繰り返しによってき裂が発生,進展して起きると考えられている。引張圧縮疲労試験( 軸荷重疲労試験,回転曲げ疲労試験) の場合,107 回における疲労強度を疲労限度とすることが慣習的である。それに対し、転がり軸受は、潤滑条件が良好な場合、かなり高い負荷を与えても107 回程度の負荷回数では内部起点型はく離は起こらない。せん断応力で疲労破壊させる試験としてねじり疲労試験があるが、油圧サーボ型ねじり疲労試験の負荷周波数は高々10Hzであり、例えば109 回の負荷回数に到達するには3年以上を要する。そのため、超長寿命域までのせん断疲労特性を求めることは実質不可能である。 It is thought that the internal origin type delamination of rolling bearings is caused by cracks that are generated and propagated by repeated alternating shear stress (almost both swings) with the maximum amplitude inside the surface layer. In the case of the tensile compression fatigue test (axial load fatigue test, rotary bending fatigue test), it is customary to use the fatigue strength at 10 7 times as the fatigue limit. On the other hand, in the case of rolling bearings with good lubrication conditions, even if a considerably high load is applied, the internal starting type separation does not occur at a load frequency of about 10 7 times. There is a torsional fatigue test as a test for fatigue fracture by shear stress, but the load frequency of the hydraulic servo torsional fatigue test is at most 10 Hz. For example, it takes 3 years or more to reach 10 9 times. Therefore, it is practically impossible to obtain the shear fatigue characteristics up to the ultra-long life range.
その代わりに、鋼中に不可避に含まれ組織的に不連続なため応力集中源となる非金属介在物が内部起点型はく離の起点になるとの考えから、任意の体積中に含まれる非金属介在物の最大サイズを極値統計解析によって推定する手法が考案され、非金属介在物の最大サイズを鋼の品質の指標とする方法がとられている(例えば、特許文献1〜4)。 Instead, non-metallic inclusions contained in an arbitrary volume are considered from the idea that non-metallic inclusions that are inevitably contained in steel and are structurally discontinuous, and that cause non-metallic inclusions as the source of stress concentration, will be the origin of internal-origin separation. A method of estimating the maximum size of an object by extreme value statistical analysis has been devised, and a method has been adopted in which the maximum size of nonmetallic inclusions is used as an index of steel quality (for example, Patent Documents 1 to 4).
内部起点型はく離に先立つ転がり接触面表層における疲労き裂の進展様式はモードII型と考えられている。上記の非金属介在物の最大サイズから疲労限面圧を推定する方法として、非特許文献1の考察に記載の考え方がある。非特許文献1の図13にあるように、ヘルツ接触圧力が移動する場合について、交番せん断応力振幅がおよそ最大になる深さb/2(bは接触楕円の短軸半径)に直径2aの円板状き裂が存在すると考える。このき裂を最大介在物の直径に見立てる。非特許文献1では、独自のモードII疲労き裂進展実験を行い、疲労き裂進展しなくなる応力拡大係数の下限界値をΔKIIth=3MPa√mと求めている。非特許文献1の図14では、ΔKIIth=3MPa√mの場合について、き裂面間の摩擦係数を0.5と仮定し、最大接触面圧と疲労き裂進展するか否かの臨界き裂直径2aの関係が示されている。例えば、2a=50μmとすると、疲労限面圧はPmax lim=2.5GPaと推定されている。しかしながら、この方法では、き裂面間の摩擦係数は未知であり、ある値に仮定しなければならない。また、非特許文献2でも、独自のモードII疲労き裂進展実験を行い、疲労き裂進展しなくなる応力拡大係数の下限界値をΔKIIth=13MPa√mと求めており、非特許文献1のΔKIIthとは大きく異なる。
The mode of fatigue crack propagation at the surface of the rolling contact surface prior to internal origin type delamination is considered to be mode II. As a method of estimating the fatigue limit surface pressure from the maximum size of the non-metallic inclusions, there is a concept described in the consideration of Non-Patent Document 1. As shown in FIG. 13 of Non-Patent Document 1, when the Hertz contact pressure moves, a circle having a diameter 2a at a depth b / 2 (b is the minor axis radius of the contact ellipse) at which the alternating shear stress amplitude is approximately maximized. It is considered that a plate crack exists. Think of this crack as the diameter of the largest inclusion. In Non-Patent Document 1, an original mode II fatigue crack growth experiment is performed, and the lower limit value of the stress intensity factor at which fatigue crack growth does not occur is determined as ΔK IIth = 3 MPa√m. In FIG. 14 of Non-Patent Document 1, in the case of ΔK IIth = 3 MPa√m, it is assumed that the coefficient of friction between crack surfaces is 0.5, and the critical pressure on whether or not the maximum contact surface pressure and fatigue crack progress. The relationship of the crack diameter 2a is shown. For example, when 2a = 50 μm, the fatigue limit surface pressure is estimated to be P max lim = 2.5 GPa. However, in this method, the coefficient of friction between the crack surfaces is unknown and must be assumed to be a certain value. Non-Patent
鉄道車両用の転がり軸受では、多数の乗客を乗せて走行し、また高頻度で長年使用されるため、高度に信頼性が要求される。そのため、使用材料の購入先やロット毎等のねじり疲労試験を行って疲労限面圧の推定を行うことができれば、信頼性向上に効果的である。しかし、従来の技術では、前述のようにねじり疲労試験には長期間を要し、使用材料の疲労限面圧の推定は実質不可能であった。このため、軸受材料の試験項目の一つとして、疲労限面圧を採用するという発想はなかった。 Rolling bearings for railway vehicles travel with a large number of passengers and are frequently used for many years, so that high reliability is required. Therefore, if it is possible to estimate the fatigue limit surface pressure by conducting a torsional fatigue test for each supplier or lot of materials used, it is effective for improving reliability. However, with the conventional technology, as described above, the torsional fatigue test requires a long time, and it is impossible to estimate the fatigue limit surface pressure of the material used. For this reason, there was no idea of adopting fatigue limit surface pressure as one of the test items for bearing materials.
この発明の目的は、短期間の疲労試験の結果から、転がり軸受用鋼等の転がり接触する疲労強度の高い金属材料の疲労限面圧を精度良く推定することができる鉄道車両用転がり軸受材料の疲労限面圧の推定方法、推定装置、および推定システムを提供することを目的とする。
この発明の他の目的は、従来では発想になかった試験項目の採用により、鉄道車両用転がり軸受の信頼性向上が図れる鉄道車両用転がり軸受材料の選定方法を提供することである。
The object of the present invention is to provide a rolling bearing material for rolling stock that can accurately estimate the fatigue limit surface pressure of a metal material with high fatigue strength that is in rolling contact with the rolling bearing steel or the like from the result of a short-term fatigue test. It is an object of the present invention to provide a fatigue limit surface pressure estimation method, estimation apparatus, and estimation system.
Another object of the present invention is to provide a method for selecting a rolling bearing material for a railway vehicle that can improve the reliability of the rolling bearing for a railway vehicle by adopting test items that were not previously conceived.
この発明方法は、概要を説明すると、超音波ねじり疲労試験によって超長寿命域までのせん断疲労特性を求め、鉄道車両用の転がり軸受の軌道輪または転動体となる金属材料の内部起点型はく離が起きなくなる最大接触面圧Pmaxを疲労限面圧Pmax 1imとして推定する方法である。
この発明の鉄道車両用転がり軸受材料の疲労限面圧の推定方法は、鉄道車両用の転がり軸受の軌道輪または転動体となる金属材料の疲労限面圧Pmax 1imを推定する方法であって、
超音波ねじり疲労試験によって金属材料のせん断応力振幅と負荷回数の関係を求める試験過程(S1)と、
この求められたせん断応力振幅と負荷回数の関係から超長寿命領域におけるせん断疲労強度τ1imを、定められた基準に従って決めるせん断疲労強度決定過程(S2)と、
前記金属材料で製造される物体およびこの物体に対して転がり接触する物体の互いに接触する面の形状,寸法と接触面圧を与える負荷とから決まる前記金属材料の表層内部に作用する最大交番せん断応力振幅τ0 が、前記せん断疲労強度τ1imに等しくなる前記負荷が作用するときの最大接触面圧Pmaxを定められた計算式によって求め、この最大接触面圧Pmaxを疲労限面圧Pmax 1imの推定値とする疲労限面圧計算過程(S3)とを含む。
前記超音波ねじり疲労試験は、試験片に対して、正回転方向と逆回転方向のねじりが対称となるねじり振動を与える完全両振りのねじり疲労試験とするのが良い。前記金属材料は、転がり軸受の軌道輪または転動体となる転がり軸受用鋼であっても良い。
The outline of the method of the present invention is as follows. An ultrasonic torsional fatigue test is used to determine the shear fatigue characteristics up to the ultra-long life region, and the internal origin type separation of the metal material that will be used as the bearing ring or rolling element of rolling bearings for railway vehicles. This is a method of estimating the maximum contact surface pressure P max that does not occur as the fatigue limit surface pressure P max 1im .
The method for estimating the fatigue limit surface pressure of a rolling bearing material for a railway vehicle according to the present invention is a method for estimating the fatigue limit surface pressure P max 1im of a metal material used as a race or rolling element of a rolling bearing for a railway vehicle. ,
A test process (S1) for determining the relationship between the shear stress amplitude of metal material and the number of loads by an ultrasonic torsional fatigue test;
A shear fatigue strength determination process (S2) for determining the shear fatigue strength τ 1im in the ultra-long life region from the relationship between the obtained shear stress amplitude and the number of loads, according to a predetermined criterion,
Maximum alternating shear stress acting on the surface of the metal material determined from the shape and size of the surfaces of the object made of the metal material and the object that is in rolling contact with the object, the size and the load that gives the contact surface pressure amplitude tau 0 is the shear fatigue strength tau determined by calculation formula defined maximum contact surface pressure P max at which the load is applied equal to the HM, the maximum contact surface pressure P max fatigue limit surface pressure P max And a fatigue limit surface pressure calculation process (S3) with an estimated value of 1 im .
The ultrasonic torsional fatigue test is preferably a full-twisted torsional fatigue test that gives torsional vibration in which the torsion in the normal rotation direction and the reverse rotation direction is symmetric with respect to the test piece. The metal material may be a rolling bearing steel used as a bearing ring or rolling element of a rolling bearing.
なお、上記の「超長寿命領域におけるせん断疲労強度」は、「せん断疲労限度」と同義であるが、この明細書では「超長寿命領域におけるせん断疲労強度」として説明する。
前記せん断疲労強度決定過程で用いる前記の「定められた基準」は、例えば、せん断疲労強度を示す確立された理論の曲線に、試験結果のせん断応力振幅と負荷回数の関係を当てはめた曲線を求め、その曲線からせん断疲労強度を求める処理とされる。具体的には、日本材料学会の金属材料疲労信頼性評価標準JSMS-SD-6-02の疲労限度型折れ線モデルにあてはめて求めたS−N線図(破壊確率50%の疲労強度線図) を用いることができる。疲労限度型折れ線モデルに限らず、連続低下型曲線モデルに当てはめてS−N線図を求めても良い。ただし、その場合は、τ1imは、例えば「1010回におけるS−N線図上の値」などとして定義する必要がある。
前記疲労限面圧計算過程で用いる「定められた計算式」は、非特許文献3に記載されている。非特許文献3のFIGURE 5.13は、線接触状態において接触面下に作用する交番せん断応力が最大になる深さの交番せん断応力の周方向分布であり、最大交番せん断応力τ0の4倍が最大接触面圧Pmaxに等しくなることを示している。したがって、線接触状態と見なせる金属材料の場合は、
(疲労限面圧Pmax 1im)=4×(せん断疲労強度τ1im)
となる。
The above-mentioned “shear fatigue strength in the ultralong life region” is synonymous with “shear fatigue limit”, but in this specification, it will be described as “shear fatigue strength in the ultralong life region”.
The “defined standard” used in the process of determining the shear fatigue strength is, for example, a curve obtained by fitting the relationship between the shear stress amplitude and the number of loadings of the test result to the established theoretical curve indicating the shear fatigue strength. The shear fatigue strength is determined from the curve. Specifically, the SN diagram (fatigue strength diagram with 50% fracture probability) obtained by applying to the fatigue limit type polyline model of JSMS-SD-6-02, a metal material fatigue reliability evaluation standard of the Japan Society of Materials Science Can be used. The SN diagram may be obtained by applying not only to the fatigue limit type broken line model but also to a continuously decreasing curve model. However, in that case, τ 1im needs to be defined as “a value on an SN diagram at 10 10 times”, for example.
Non-Patent
(Fatigue limit surface pressure P max 1im ) = 4 × (shear fatigue strength τ 1im )
It becomes.
この発明方法によると、疲労試験を超音波ねじり疲労試験で行うため、極めて高速な負荷が可能で、短時間で金属材料のせん断応力振幅と負荷回数の関係を求めることができる。このように求めた関係から超長寿命領域におけるせん断疲労強度τ1imを決め、金属材料の接触寸法諸元から表層内部に作用する最大交番せん断応力振幅τ0 が前記せん断疲労強度τ1imに等しくなる負荷が作用するときの最大接触面圧Pmaxを疲労限面圧Pmax 1imとして推定するため、ねじり疲労試験の結果から精度良く疲労限面圧Pmax 1imを推定することができる。このため、前記せん断疲労強度τ1imが強い材質である転がり軸受用鋼の疲労限面圧Pmax 1imの推定を行う場合に、その短時間の試験で済むという効果がより一層効果的に発揮される。したがって、鉄道車両用の転がり軸受の軌道輪または転動体となる金属材料のせん断疲労特性を求め、求めたせん断疲労特性から疲労限面圧Pmax 1imを評価し得る。この疲労限面圧Pmax 1imを評価した金属材料を有する転がり軸受を用いることで、超長寿命域の軸受寿命を実現することができる。 According to the method of the present invention, since the fatigue test is performed by an ultrasonic torsional fatigue test, an extremely high-speed load is possible, and the relationship between the shear stress amplitude of the metal material and the number of loads can be obtained in a short time. From the relationship thus obtained, the shear fatigue strength τ 1im in the ultra-long life region is determined, and the maximum alternating shear stress amplitude τ 0 acting on the inside of the surface layer from the contact dimension specifications of the metal material becomes equal to the shear fatigue strength τ 1im. to estimate the maximum contact surface pressure P max when the load acts as a fatigue limit surface pressure P max HM, it is possible to precisely estimate the fatigue limit surface pressure P max HM from the results of the torsional fatigue test. For this reason, when estimating the fatigue limit surface pressure P max 1im of the rolling bearing steel, which is a material having a strong shear fatigue strength τ 1im , the effect that only a short test is required is more effectively exhibited. The Therefore, the shear fatigue characteristics of the metal material used as the rolling ring or rolling element of the rolling bearing for a railway vehicle can be obtained, and the fatigue limit surface pressure P max 1im can be evaluated from the obtained shear fatigue characteristics. By using a rolling bearing having a metal material evaluated for this fatigue limit surface pressure P max 1im , it is possible to realize a bearing life in an extremely long life region.
なお、材料の疲労破壊を支配する応力は、突き詰めれば垂直応力かせん断応力のどちらかである。垂直応力による疲労特性を高速に評価するため、超音波軸荷重疲労試験機( 完全両振り) が市販されてから数年が経つ。それに対し、せん断応力による疲労特性を高速に評価するための超音波ねじり疲労試験の研究はほとんど行われておらず、これまでに評価された材料は最大せん断応力振幅(完全両振り) が250MPa以下で疲労破壊する軟鋼やアルミ合金である。それに対し、転がり軸受の動定格荷重及び定格寿命の規格であるISO-281:2007で定められている転がり軸受の疲労限面圧は1500MPaであり、線接触状態を考えると、そのときに表層内部に作用する最大交番せん断応力振幅はτ0 =375MPaである。したがって、375MPa以上の最大せん断応力振幅で評価できる超音波ねじり試験機が必要であるが、このような大きな最大せん断応力振幅で評価できる超音波ねじり試験機は、従来に例がない。そのため、この発明は、超音波ねじり試験機の開発と、表層内部に作用する最大交番せん断応力振幅τ0 が前記せん断疲労強度τ1imに等しくなる負荷が作用するときの最大接触面圧Pmaxを疲労限面圧Pmax 1imとして推定できるという知見との、総合的な案出によりなされたものである。 It should be noted that the stress governing the fatigue fracture of the material is either normal stress or shear stress. Several years have passed since the ultrasonic axial load fatigue tester (full swing) was put on the market to evaluate fatigue characteristics due to normal stress at high speed. On the other hand, there has been little research on ultrasonic torsional fatigue tests to evaluate fatigue characteristics due to shear stress at high speed, and materials evaluated so far have a maximum shear stress amplitude (full swing) of 250 MPa or less. It is a mild steel or aluminum alloy that undergoes fatigue failure. On the other hand, the fatigue limit surface pressure of rolling bearings defined in ISO-281: 2007, which is the standard of dynamic load rating and rated life of rolling bearings, is 1500 MPa. The maximum alternating shear stress amplitude acting on τ 0 = 375 MPa. Therefore, an ultrasonic torsion tester that can be evaluated with a maximum shear stress amplitude of 375 MPa or more is required, but there is no example of an ultrasonic torsion tester that can be evaluated with such a large maximum shear stress amplitude. Therefore, the present invention develops an ultrasonic torsion tester and determines the maximum contact surface pressure P max when a load is applied in which the maximum alternating shear stress amplitude τ 0 acting inside the surface layer is equal to the shear fatigue strength τ 1im. This is based on a comprehensive idea with the knowledge that the fatigue limit surface pressure P max can be estimated as 1 im .
この発明方法において、せん断疲労強度決定過程では、前記定められた基準に従って決められたせん断疲労強度に対する85%の値を、前記疲労限面圧計算過程で用いるせん断疲労強度τ1imの値として良い。
超音波ねじり疲労試験では、従来の疲労試験に対し、大きな負荷を受ける体積(危険体積)が略等しい場合、せん断疲労強度を高めに評価する傾向があるためである。
In the method of the present invention, in the process of determining the shear fatigue strength, a value of 85% with respect to the shear fatigue strength determined according to the predetermined criteria may be used as the value of the shear fatigue strength τ 1im used in the fatigue limit surface pressure calculation process.
This is because in the ultrasonic torsional fatigue test, when the volume subjected to a large load (dangerous volume) is substantially equal to the conventional fatigue test, the shear fatigue strength tends to be evaluated higher.
この発明方法において、せん断疲労強度決定過程では、前記定められた基準に従って決められたせん断疲労強度に対する80%の値を、前記疲労限面圧計算過程で用いるせん断疲労強度τ1imの値として良い。
ねじり疲労試験では、せん断応力は試験片表面で最大,軸芯でゼロになる。すなわち、応力勾配をもつ疲労試験である。引張圧縮疲労試験のうち、軸荷重疲労試験では平滑部断面内の垂直応力は均一であり、平滑部直径によらず一定の疲労限度を示すことが知られているが、応力勾配をもつ回転曲げ疲労試験では、平滑部直径が大きくなるにつれて疲労限度が低下し、軸荷重疲労試験での疲労限度に漸近していく寸法効果を示すことが知られている。非特許文献4によると、軸荷重疲労試験での疲労限度は平滑部直径が4mmの回転曲げ疲労試験での疲労限度の約80%となっている。応力勾配をもつ以上、ねじり疲労試験でも寸法効果は避けられない。そこで、ねじり疲労試験についても引張圧縮疲労試験の基準がそのまま適用できると仮定すると、前記定められた基準に従って決められたせん断疲労強度に対する80%の値を、前記疲労限面圧計算過程で用いるせん断疲労強度τ1imの値として用いることが適切である。
In the method of the present invention, in the shear fatigue strength determination process, a value of 80% with respect to the shear fatigue strength determined according to the predetermined criteria may be used as the value of the shear fatigue strength τ 1im used in the fatigue limit surface pressure calculation process.
In the torsional fatigue test, the shear stress is maximum on the specimen surface and zero on the shaft core. That is, a fatigue test with a stress gradient. Of the tensile and compression fatigue tests, the axial load fatigue test is known to have a uniform normal stress in the cross section of the smooth part and show a constant fatigue limit regardless of the diameter of the smooth part. In the fatigue test, it is known that the fatigue limit decreases as the diameter of the smooth portion increases, and exhibits a dimensional effect that gradually approaches the fatigue limit in the axial load fatigue test. According to
この発明方法において、前記試験過程では、複数回の前記超音波ねじり疲労試験を行って、金属材料のせん断応力振幅と負荷回数の関係を複数求め、前記せん断疲労強度決定過程では、前記複数回の試験過程で求めたせん断応力振幅と負荷回数の関係から任意の破壊確率のP−S−N線図を求め、このP−S−N線図から、前記超長寿命領域におけるせん断疲労強度τ1imを決めるようにしても良い。
上記の応力勾配をもつ疲労試験で現れる寸法効果は,応力勾配という力学的要因と、大きな負荷を受ける体積(危険体積)が増減するという統計的要因によってもたらされる。統計的要因という観点から、複数応力水準で複数本の評価を行ってP-S-N 線図を得ればよい。
In the method of the present invention, in the test process, the ultrasonic torsional fatigue test is performed a plurality of times to obtain a plurality of relationships between the shear stress amplitude of the metal material and the number of loads, and in the process of determining the shear fatigue strength, the plurality of times A PSN diagram having an arbitrary failure probability is obtained from the relationship between the shear stress amplitude and the number of loads obtained in the test process, and from this PSN diagram, the shear fatigue strength τ 1im in the ultralong life region is obtained. You may make it decide.
The size effect that appears in fatigue tests with the above stress gradient is caused by a mechanical factor called stress gradient and a statistical factor that increases or decreases the volume subjected to a large load (dangerous volume). From the viewpoint of statistical factors, a PSN diagram may be obtained by evaluating multiple lines at multiple stress levels.
この場合に、前記せん断疲労強度決定過程では、前記P−S−N線図から決められた前記超長寿命領域におけるせん断疲労強度に対する85%の値を、前記疲労限面圧計算過程で用いるせん断疲労強度τ1imの値としても良い。
最も安全に見積もるために、上記と同様に、P−S−N線図から決められた前記超長寿命領域におけるせん断疲労強度の85%の値を、さらに80%した値を前記疲労限面圧計算過程で用いるせん断疲労強度τ1imの値とすることが好ましい。
In this case, in the process of determining the shear fatigue strength, a value of 85% with respect to the shear fatigue strength in the ultra-long life region determined from the PSN diagram is used in the process of calculating the fatigue limit surface pressure. It is good also as a value of fatigue strength (tau) 1im .
In order to estimate it most safely, in the same manner as described above, 85% of the value of the shear fatigue strength in the ultra-long life region determined from the PSN diagram, and a value obtained by further adding 80% to the fatigue limit surface pressure. It is preferable to set the value of the shear fatigue strength τ 1im used in the calculation process.
この発明において、せん断疲労強度の絶対値を安全に見積もるため、前記試験過程において、複数回の前記超音波ねじり疲労試験を行って、金属材料のせん断応力振幅と負荷回数の関係を複数求め、前記せん断疲労強度決定過程では、前記複数回の試験過程で求めたせん断応力振幅と負荷回数の関係から任意の破壊確率のP−S−N線図を求め、このP−S−N線図から、前記超長寿命領域におけるせん断疲労強度τ1imを決める補正である破壊確率補正と、前記せん断疲労強度決定過程において、前記定められた基準に従って決められたせん断疲労強度に対する85%の値を、前記疲労限面圧計算過程で用いるせん断疲労強度τ1imの値とする補正である過大評価補正と、前記せん断疲労強度決定過程で決めた前記超長寿命領域におけるせん断疲労強度に対する80%の値を、前記疲労限面圧計算過程で用いるせん断疲労強度τ1imの値とする補正である寸法効果補正との3つの補正のうち、任意の2つ以上の補正を組み合わせて求まる断疲労強度τ1imを絶対値と見なしても良い。このように、2つ以上の補正を組み合わせることにより、せん断疲労強度を安全に見積もってより一層安全に疲労限面圧を安全に推定することができる。
In the present invention, in order to safely estimate the absolute value of the shear fatigue strength, the ultrasonic torsional fatigue test is performed a plurality of times in the test process to obtain a plurality of relationships between the shear stress amplitude of the metal material and the number of loads, In the process of determining the shear fatigue strength, a PSN diagram of an arbitrary fracture probability is obtained from the relationship between the shear stress amplitude and the number of loads obtained in the plurality of test processes, and from this PSN diagram, The fracture probability correction, which is a correction for determining the shear fatigue strength τ 1im in the ultra-long life region, and a value of 85% with respect to the shear fatigue strength determined according to the determined criteria in the process of determining the shear fatigue strength, and overestimation correction is a correction to the value of the shear fatigue strength tau HM used in limited surface pressure calculation process, put in the ultra-long life region decided by the shear fatigue
この発明方法において、前記超音波ねじり疲労試験は、例えば、交流電力が印加されることで回転中心軸回りの正逆の回転となるねじり振動を発生するねじり振動コンバータと、先端に同心に試験片を取付ける取付部を有し基端でねじり振動コンバータに固定され、基端に与えられた前記振動コンバータのねじり振動の振幅を拡大する振幅拡大ホーンとを用い、前記試験片の形状,寸法を、前記ねじり振動コンバータの駆動による振幅拡大ホーンの振動に共振する形状,寸法とし、前記振動コンバータを超音波領域の周波数で駆動し前記試験片を前記振幅拡大ホーンの振動に共振させてせん断疲労破壊させることによって行う。 In the method of the present invention, the ultrasonic torsional fatigue test includes, for example, a torsional vibration converter that generates a torsional vibration that rotates forward and backward around a rotation center axis when AC power is applied, and a test piece concentrically at the tip. A mounting portion to which the vibration converter is attached and fixed to the torsional vibration converter at the base end, and an amplitude expansion horn that expands the amplitude of the torsional vibration of the vibration converter applied to the base end, The shape and dimensions resonate with the vibration of the amplitude expanding horn driven by the torsional vibration converter, and the vibration converter is driven at a frequency in the ultrasonic region to resonate the test piece with the vibration of the amplitude expanding horn to cause shear fatigue destruction. By doing.
この発明方法において、前記試験過程では、前記超音波ねじり疲労試験において前記金属材料の試験片の発熱を抑制するために、試験片を強制空冷しても良い。また、試験片の発熱を抑制するために、負荷と休止を交互に繰り返しても良い。前記試験過程で、超音波ねじり疲労試験において前記金属材料の試験片の発熱が問題にならない低負荷域では連続負荷しても良い。
この発明は、高速に負荷が可能な超音波ねじり疲労試験を用いるようにしており、例えば、加振周波数が20000Hzと極めて高速な超音波ねじり疲労試験を行う。これにより、連続加振すれば、わずか半日余りで109 回の負荷回数に到達する。しかし、ある程度高いせん断応力振幅で連続加振すると試験片が発熱し、精度の良いせん断応力振幅と負荷回数の関係を求めることができない。そのため、試験片を強制空冷することが好ましい。強制空冷だけでは試験片の発熱抑制が不十分な場合は、加振と休止を交互に繰り返すことが好ましい。休止することで実質の負荷周波数は小さくなるが、加振周波数が20000Hzの超音波ねじり疲労試験機を用いると、休止時間を加振時間の10倍程度としても2000Hz程度と依然高速であり、1週間もあれば109 回の負荷回数に到達する。
この発明方法において、前記金属材料が、SNCM420、SUJ2、SUJ3、SCr420のいずれかであり、前記試験片は熱処理品であっても良い。
In the method of the present invention, in the test process, the test piece may be forcibly air-cooled in order to suppress heat generation of the metal material test piece in the ultrasonic torsional fatigue test. Moreover, in order to suppress the heat generation of the test piece, the load and the pause may be alternately repeated. In the test process, a continuous load may be applied in a low load region where heat generation of the test piece of the metal material does not become a problem in the ultrasonic torsional fatigue test.
In the present invention, an ultrasonic torsional fatigue test capable of applying a load at high speed is used. For example, an ultrasonic torsional fatigue test with an extremely high excitation frequency of 20000 Hz is performed. As a result, if the vibration is continuously applied, the load number reaches 10 9 times in just half a day. However, when the sample is continuously vibrated with a somewhat high shear stress amplitude, the test piece generates heat, and it is impossible to obtain a precise relationship between the shear stress amplitude and the number of loads. Therefore, it is preferable to forcibly air-cool the test piece. If the heat generation of the test piece is not sufficiently suppressed by forced air cooling alone, it is preferable to alternately repeat excitation and pause. Although the actual load frequency is reduced by resting, if an ultrasonic torsional fatigue tester with an excitation frequency of 20000 Hz is used, the suspension time is about 2000 Hz even if the suspension time is about 10 times the excitation time. If there is a week, it reaches 10 9 loadings.
In the method of the present invention, the metal material may be any one of SNCM420, SUJ2, SUJ3, and SCr420, and the test piece may be a heat-treated product.
この発明の鉄道車両用転がり軸受材料の選定方法は、この発明の上記いずれかの構成の疲労限面圧の推定方法により推定された疲労限面圧が、定められた疲労限面圧以上である金属材料を、鉄道車両用の転がり軸受の軌道輪または転動体の材料として使用するものである。 In the method for selecting a rolling bearing material for a railway vehicle according to the present invention, the fatigue limit surface pressure estimated by the fatigue limit surface pressure estimation method according to any one of the above configurations of the present invention is equal to or greater than a predetermined fatigue limit surface pressure. A metal material is used as a material for a bearing ring or rolling element of a rolling bearing for a railway vehicle.
この発明の疲労限面圧の推定方法によれば、短時間の疲労試験の結果から、転がり軸受用の金属材料の疲労限面圧を精度良く推定することができる。そのため、転がり軸受の軌道輪または転動体に使用する材料の試験項目の一つとして疲労限面圧を採用することができる。実際に疲労試験して求めた疲労限面圧が、定められた疲労限面圧以上である材料のみを軸受材料として用いることで、鉄道車両用転がり軸受の信頼性向上に大きく役立つ。疲労限面圧を使用材料の試験項目の一つとして採用することは、従来では試験に長年かかり、あまりにも実情から離れていて発想になかったが、この発明方法によると、実用化が可能であり、その採用により軸受の信頼性向上に役立てることができる。なお、判定基準となる「定められた疲労限面圧」は、目的等に応じて適宜設定すれば良い。また、疲労限面圧の推定は、例えば、材料のロット毎や、一度に購入した量毎、購入先毎等に行う。 According to the fatigue limit surface pressure estimation method of the present invention, the fatigue limit surface pressure of a metal material for a rolling bearing can be accurately estimated from the result of a short-time fatigue test. Therefore, fatigue limit surface pressure can be adopted as one of the test items of the material used for the bearing ring or rolling element of the rolling bearing. By using only a material having a fatigue limit surface pressure obtained by an actual fatigue test that is equal to or higher than a predetermined fatigue limit surface pressure as a bearing material, it greatly helps to improve the reliability of rolling bearings for railway vehicles. Employing fatigue limit surface pressure as one of the test items for the materials used has been difficult for the past because it took many years to test and was far from the actual situation. Yes, it can be used to improve bearing reliability. In addition, what is necessary is just to set "the defined fatigue limit surface pressure" used as a criterion suitably according to the objective. In addition, the fatigue limit surface pressure is estimated, for example, for each lot of material, for each purchased amount, for each supplier, and the like.
この発明の鉄道車両用転がり軸受材料の疲労限面圧の推定装置は、鉄道車両用の転がり軸受の軌道輪または転動体となる金属材料の疲労限面圧Pmax 1imを推定する装置であって、
完全両振りの超音波ねじり疲労試験によって求められた金属材料のせん断応力振幅と負荷回数の関係を、定められた記憶領域に記憶させる入力手段22と、
この記憶されたせん断応力振幅と負荷回数の関係から超長寿命領域におけるせん断疲労強度τ1imを、定められた基準に従って決めるせん断疲労強度決定手段23と、
前記金属材料で製造される物体M1およびこの物体M1に対して転がり接触する物体M2の互いに接触する面の形状,寸法と接触面圧を与える負荷とから決まる前記金属材料の表層内部に作用する最大交番せん断応力振幅τ0 が、前記せん断疲労強度τ1imに等しくなる前記負荷が作用するときの最大接触面圧Pmax を定められた計算式によって求め、この最大接触面圧Pmaxを疲労限面圧Pmax 1imの推定値とする疲労限面圧計算手段24とを備える。
前記金属材料は、鉄道車両用の転がり軸受の軌道輪または転動体となる転がり軸受用鋼であっても良い。前記入力手段22は、キーボート等の手入力を行う入力装置や、記録媒体の読み出し装置、通信ネットワークなどを用いて、例えば、前記金属材料のせん断応力振幅と負荷回数の関係を纏めたファイルを、後の計算のために、定められた記憶領域、またはその記憶場所が特定できるように記憶させる手段である。
The apparatus for estimating the fatigue limit surface pressure of a rolling bearing material for a railway vehicle according to the present invention is an apparatus for estimating the fatigue limit surface pressure P max 1im of a metal material used as a bearing ring or rolling element of a rolling bearing for a railway vehicle. ,
An input means 22 for storing the relationship between the shear stress amplitude of the metal material and the number of loads obtained by a complete double-swing ultrasonic torsional fatigue test in a predetermined storage area;
A shear fatigue
Maximum acting on the inside of the surface of the metal material determined by the shape and size of the surfaces of the object M1 made of the metal material and the object M2 which is in rolling contact with the object M1 and the contact surface pressure. alternating shear stress amplitude tau 0 is the maximum contact surface pressure determined by P max were determined equation, the fatigue limit surface the maximum contact surface pressure P max when the load equal to the shear fatigue strength tau HM acts Fatigue limit surface pressure calculating means 24 that is an estimated value of the pressure P max 1im is provided.
The metal material may be rolling bearing steel used as a rolling ring or rolling element of a rolling bearing for a railway vehicle. The input means 22 uses, for example, an input device that performs manual input such as a keyboard, a reading device for a recording medium, a communication network, and the like, for example, a file that summarizes the relationship between the shear stress amplitude of the metal material and the number of loads. It is a means for memorize | storing so that a predetermined | prescribed storage area or its memory location can be specified for later calculation.
この発明装置によると、この発明方法につき説明したと同様に、極めて高速な負荷が可能な超音波ねじり疲労試験を用いることができて、短期間で転がり軸受用鋼のせん断応力振幅と負荷回数の関係を求め、疲労限面圧Pmax 1imを精度良く推定することができる。
線接触とみなせる場合、前記疲労限面圧計算手段24における前記定められた計算式は、例えば次式、
(疲労限面圧Pmax 1im)=4×(せん断疲労強度τ1im)
とする。
According to the apparatus of the present invention, the ultrasonic torsional fatigue test capable of extremely high speed load can be used as described for the method of the present invention, and the shear stress amplitude and load frequency of the rolling bearing steel can be measured in a short period of time. The relationship can be obtained, and the fatigue limit surface pressure P max 1im can be accurately estimated.
When it can be regarded as line contact, the determined calculation formula in the fatigue limit surface pressure calculation means 24 is, for example,
(Fatigue limit surface pressure P max 1im ) = 4 × (shear fatigue strength τ 1im )
And
この発明装置において、前記入力手段22は、複数回の各超音波ねじり疲労試験によって求められた金属材料のせん断応力振幅と負荷回数の関係を、定められた記憶領域に記憶させる機能を有し、前記せん断疲労強度決定手段23は、前記複数回の試験におけるせん断応力振幅と負荷回数の関係から任意の破壊確率のP−S−N線図を求め、このP−S−N線図から、前記超長寿命領域におけるせん断疲労強度τ1imを決めるものであっても良い。
In the present invention device, the input means 22 has a function of storing the relationship between the shear stress amplitude of the metal material and the number of loads obtained in each ultrasonic torsional fatigue test in a plurality of times in a predetermined storage area, The shear fatigue
この発明の鉄道車両用転がり軸受材料の疲労限面圧の推定システムは、鉄道車両用の転がり軸受の軌道輪または転動体となる金属材料の試験片1について、完全両振りの超音波ねじり疲労試験を行う超音波ねじり疲労試験機本体3と、この超音波ねじり疲労試験機本体3を、入力された試験条件に従って制御する試験機制御装置4と、この発明の上記いずれかの構成の疲労限面圧の推定装置5とを備えたシステムである。
このシステムにおいても、この発明方法につき説明したと同様に、極めて高速な負荷が可能な超音波ねじり疲労試験を用いることができて、短期間で転がり軸受用鋼等のせん断応力振幅と負荷回数の関係を求め、疲労限面圧Pmax 1imを精度良く推定することができる。
The system for estimating the fatigue limit surface pressure of rolling bearing materials for railway vehicles according to the present invention is the complete torsional ultrasonic torsional fatigue test of a test piece 1 of a metal material that becomes a race or rolling element of a rolling bearing for railway vehicles. An ultrasonic torsional fatigue testing machine
In this system as well, the ultrasonic torsional fatigue test capable of extremely high-speed loading can be used as described for the method of the present invention, and the shear stress amplitude and the number of loads of rolling bearing steel can be measured in a short period of time. The relationship can be obtained, and the fatigue limit surface pressure P max 1im can be accurately estimated.
この発明の鉄道車両用転がり軸受材料の疲労限面圧の推定方法、推定装置および推定システムは、超音波ねじり疲労試験によって金属材料のせん断応力振幅と負荷回数の関係を求め、その関係から超長寿命領域におけるせん断疲労強度τ1imを決め、金属材料の接触寸法諸元から表層内部に作用する最大交番せん断応力振幅τ0 が前記せん断疲労強度τ1imに等しくなる負荷が作用するときの最大接触面圧Pmax を疲労限面圧Pmax 1imとして推定するため、極めて高速な負荷が可能な超音波ねじり疲労試験を用いることができて、転がり軸受用鋼等の疲労強度の高い金属材料であっても、短期間でせん断応力振幅と負荷回数の関係を求め、疲労限面圧Pmax 1imを精度良く推定することができる。 An estimation method, an estimation apparatus, and an estimation system for a rolling bearing material for rolling stock according to the present invention obtain a relationship between a shear stress amplitude of a metal material and the number of loads by an ultrasonic torsional fatigue test. decide shear fatigue strength tau HM in life region, maximum contact surface when the maximum alternating shear stress amplitude tau 0 is equal to the shear fatigue strength tau HM load acting on the surface layer inside the contact dimension specifications of the metallic material acts Since the pressure P max is estimated as the fatigue limit surface pressure P max 1 im , an ultrasonic torsional fatigue test capable of applying a very high speed can be used, and a metal material having high fatigue strength such as a steel for rolling bearings. However, the relationship between the shear stress amplitude and the number of loads can be obtained in a short period of time, and the fatigue limit surface pressure P max 1im can be accurately estimated.
この発明の鉄道車両用転がり軸受材料の選定方法は、この発明の上記いずれかの構成の疲労限面圧の推定方法により推定された疲労限面圧が、定められた疲労限面圧以上である金属材料を、鉄道車両用の転がり軸受の軌道輪または転動体の材料として使用するため、従来では発想になかった試験項目の採用により、鉄道車両用転がり軸受の信頼性向上が図れる。 In the method for selecting a rolling bearing material for a railway vehicle according to the present invention, the fatigue limit surface pressure estimated by the fatigue limit surface pressure estimation method according to any one of the above configurations of the present invention is equal to or greater than a predetermined fatigue limit surface pressure. Since the metal material is used as the material for the bearing ring or rolling element of the rolling bearing for the railway vehicle, the reliability of the rolling bearing for the railway vehicle can be improved by adopting test items that were not previously thought of.
この発明の一実施形態を図面と共に説明する。以下の説明は、鉄道車両用転がり軸受材料の選定方法についての説明をも含む。この転がり接触金属材料の疲労限面圧の推定方法は、鉄道車両用の転がり軸受の軌道輪または転動体となる金属材料の疲労限面圧Pmax 1imを推定する方法であって、図1(A)のように、試験過程(S1)と、せん断疲労強度決定過程(S2)と、疲労限面圧計算過程(S3)とを含む。この鉄道車両の転がり軸受は、例えば、鉄道車両の車軸を支持する軸受である。前記金属材料は、例えば、転がり軸受の軌道輪または転動体となる転がり軸受用鋼である。 An embodiment of the present invention will be described with reference to the drawings. The following description also includes a description of a method for selecting a rolling bearing material for a railway vehicle. This method of estimating the fatigue limit surface pressure of a rolling contact metal material is a method of estimating the fatigue limit surface pressure P max 1im of a metal material that will be a race or rolling element of a rolling bearing for a railway vehicle. As in A), a test process (S1), a shear fatigue strength determination process (S2), and a fatigue limit surface pressure calculation process (S3) are included. The rolling bearing of the railway vehicle is a bearing that supports an axle of the railway vehicle, for example. The metal material is, for example, rolling bearing steel that serves as a bearing ring or rolling element of a rolling bearing.
試験過程(S1)は、完全両振りの超音波ねじり疲労試験によって金属材料のせん断応力振幅と負荷回数の関係を求める過程である。この試験は、同図(B)に示す金属材料の試験片1に対して完全両振りの超音波ねじり振動を与える超音波ねじり疲労試験機2を用いる。この超音波ねじり疲労試験機2は、加振周波数が20000Hzと極めて高速な超音波ねじり疲労試験(完全両振り) を用いることにした。この超音波ねじり疲労試験機2は、市販のものをそのまま使用することができず、種々の改良を施したものである。
The test process (S1) is a process of obtaining the relationship between the shear stress amplitude of the metal material and the number of loads by a complete double-sided ultrasonic torsional fatigue test. In this test, an ultrasonic torsional
せん断疲労強度決定過程(S2)は、試験過程(S1)で求められたせん断応力振幅と負荷回数の関係から超長寿命領域におけるせん断疲労強度τ1imを、定められた基準に従って決める。なお、上記の「超長寿命領域におけるせん断疲労強度」は、「せん断疲労限度」のことであるが、この明細書では、「超長寿命領域におけるせん断疲労強度」として説明する。せん断疲労強度決定過程(S2)で言う上記の「定められた基準」は、例えば、せん断疲労強度を示す確立された理論の曲線に、試験結果のせん断応力振幅と負荷回数の関係を当てはめた曲線を求め、その曲線からせん断疲労強度を求める処理とされる。具体的には、日本材料学会の金属材料疲労信頼性評価標準JSMS-SD-6-02の疲労限度型折れ線モデルにあてはめて求めたS−N線図(破壊確率50%の疲労強度線図) (同図(C)参照)を用いることができる。疲労限度型折れ線モデルに限らず、連続低下型曲線モデルに当てはめてS−N線図を求めても良い。ただし、その場合は、例えば「τ1imは、1010回におけるS−N線図上の値」等として定義する必要がある。 In the shear fatigue strength determination process (S2), the shear fatigue strength τ 1im in the ultra-long life region is determined according to a predetermined standard from the relationship between the shear stress amplitude and the number of loads obtained in the test process (S1). The above-mentioned “shear fatigue strength in the ultra-long life region” refers to the “shear fatigue limit”, but in this specification, it will be described as “shear fatigue strength in the ultra-long life region”. The above-mentioned “defined standard” in the shear fatigue strength determination process (S2) is, for example, a curve obtained by fitting the relationship between the shear stress amplitude of the test results and the number of loads to an established theoretical curve indicating the shear fatigue strength. And the shear fatigue strength is determined from the curve. Specifically, the SN diagram (fatigue strength diagram with 50% fracture probability) obtained by applying to the fatigue limit type polyline model of JSMS-SD-6-02, a metal material fatigue reliability evaluation standard of the Japan Society of Materials Science (See FIG. 5C). The SN diagram may be obtained by applying not only to the fatigue limit type broken line model but also to a continuously decreasing curve model. However, in that case, it is necessary to define, for example, “τ 1im is a value on the SN diagram at 10 10 times”.
日本材料学会の金属材料疲労信頼性評価標準JSMS-SD-6-02の疲労限度型折れ線モデルは、次式にあてはめて回帰する。
σ=-Alog10N+B(N<NW)
σ=E(N≧NW)
ここで、A、B、E、Nwは定数である。疲労限度(上式のE)は、N=5×106以上の負荷回数における打ち切りデータが1点以上存在する場合、以下のように推定する。破断データ応力最小値σf minと、これより低応力の打ち切りデータ応力最大値σr maxの平均値を疲労限度とする(図21参照)。なお、σf minと同じ応力レベルに打ち切りデータがあり、かつこれより低い応力レベルで打切りデータが存在しない場合は、このσf minを疲労限度とする。こうして疲労限度を決めた上で、この値を固定して破断データのみから上式中の他のパラメータを推定する。
連続低下型曲線モデルはストロメイヤー(Stromeyer)の基礎式である次式にあてはめて回帰する。
疲労強度、疲労寿命にはバラツキがある。本来、確率疲労特性は、複数の応力振幅で複数個の試験片を評価し、ある破壊確率におけるP−S−N線図を求めて評価する(非特許文献5参照)。しかしながら、P−S−N線図を求めるには多大な工数と時間を要する。金属材料疲労信頼性評価標準JSMS-SD-6-02では、S−N線図から任意の破壊確率におけるP−S−N線図を求める方法が提案されている。それは、図22のように、任意の疲労寿命における強度分布は正規分布に従い、その標準偏差σは一定と仮定する。
得られたS−N線図を破壊確率50%の疲労強度曲線とする。疲労限度型折れ線モデルでは時間強度部(傾斜直線部)の破損データ、連続低下型曲線モデルは全範囲の破損データを対象とする。図23は連続低下型曲線モデルの例である。直線または曲線に沿って個々の破損データを任意の疲労寿命に平行移動し、それらが正規分布するとして標準偏差を求める。例えば、得られた標準偏差をsとすると、破壊確率50%の疲労強度曲線を1.282sだけ下に平行移動したものが破壊確率10%のP−S−N線図となる。
The fatigue limit type polyline model of JSMS-SD-6-02, a metal material fatigue reliability evaluation standard of the Japan Society of Materials Science, is regressed by applying the following equation.
σ = −Alog 10 N + B (N <N W )
σ = E (N ≧ N W )
Here, A, B, E, and Nw are constants. The fatigue limit (E in the above equation) is estimated as follows when there is one or more censored data at a load count of N = 5 × 10 6 or more. The average value of the fracture data stress minimum value σ f min and the censored data stress maximum value σ r max lower than this is defined as the fatigue limit (see FIG. 21). If censored data exists at the same stress level as σ f min and there is no censored data at a stress level lower than this, this σ f min is used as the fatigue limit. After determining the fatigue limit in this way, this value is fixed and other parameters in the above equation are estimated from only the fracture data.
The continuously decreasing curve model is regressed by applying the following equation which is a basic equation of Stromeyer.
There are variations in fatigue strength and fatigue life. Originally, the probability fatigue characteristic is evaluated by evaluating a plurality of test pieces with a plurality of stress amplitudes and obtaining a PSN diagram at a certain fracture probability (see Non-Patent Document 5). However, it takes a lot of man-hours and time to obtain the PSN diagram. In the metal material fatigue reliability evaluation standard JSMS-SD-6-02, a method for obtaining a PSN diagram at an arbitrary fracture probability from an SN diagram is proposed. As shown in FIG. 22, it is assumed that the strength distribution in an arbitrary fatigue life follows a normal distribution and that the standard deviation σ is constant.
Let the obtained SN diagram be a fatigue strength curve with a fracture probability of 50%. In the fatigue limit type broken line model, the damage data of the time-strength part (inclined straight line part), and in the continuous decline type curve model, the damage data of the whole range are targeted. FIG. 23 is an example of a continuously decreasing curve model. Translate individual failure data along a straight line or curve to any fatigue life and determine the standard deviation as they are normally distributed. For example, when the obtained standard deviation is s, a P-S-N diagram with a fracture probability of 10% is obtained by translating a fatigue strength curve with a fracture probability of 50% downward by 1.282s.
疲労限面圧計算過程(S3)は、前記金属材料で製造される物体M1(同図(D))およびこの物体M2に対して転がり接触する物体M2の互いに接触する面の接触寸法諸元(形状および寸法)と接触面圧を与える負荷とから決まる前記金属材料の物体M1の表層内部に作用する最大交番せん断応力振幅τ0が、前記せん断疲労強度τ1imに等しくなる前記負荷が作用するときの最大接触面圧Pmax を定められた計算式によって求め、この最大接触面圧Pmax を疲労限面圧Pmax 1imの推定値とする。
金属材料で製造される物体M1は、金属材料が転がり軸受用鋼である場合、転がり軸受の軌道輪または転動体である。この転がり軸受は、玉軸受であっても、ころ軸受であっても良い。
In the fatigue limit surface pressure calculation process (S3), the contact dimensions of the object M1 made of the metal material (FIG. (D)) and the surface of the object M2 which is in rolling contact with the object M2 are in contact with each other When the load is applied such that the maximum alternating shear stress amplitude τ 0 acting inside the surface layer of the object M1 of the metal material determined from the shape and size) and the load that gives the contact surface pressure is equal to the shear fatigue strength τ 1im The maximum contact surface pressure P max is obtained by a predetermined calculation formula, and this maximum contact surface pressure P max is used as an estimated value of the fatigue limit surface pressure P max 1im .
When the metal material is steel for rolling bearings, the object M1 manufactured with the metal material is a race or rolling element of a rolling bearing. This rolling bearing may be a ball bearing or a roller bearing.
この疲労限面圧計算過程(S3)で用いる上記の「定められた計算式」は、前出の非特許文献3に記載されている。非特許文献3のFIGURE 5.13は、線接触状態にお
いて接触面下に作用する交番せん断応力が最大になる深さの交番せん断応力の周方向分布であり、最大交番せん断応力τ0の4倍が最大接触面圧Pmaxに等しくなることを示している。したがって、線接触状態の場合は、
(疲労限面圧Pmax 1im)=4×(せん断疲労強度τ1im)
となる。
接触楕円の長軸半径a、単軸半径bに対し、線接触状態はb/a=0であり、その場合、上記のようにτ0の4倍がPmaxに等しい。b/a≠0の場合のτ0とPmaxの比例定数は非特許文献3のFIGURE 5.14に示されている。
The above-mentioned “determined calculation formula” used in the fatigue limit surface pressure calculation process (S3) is described in
(Fatigue limit surface pressure P max 1im ) = 4 × (shear fatigue strength τ 1im )
It becomes.
With respect to the major axis radius a and the uniaxial radius b of the contact ellipse, the line contact state is b / a = 0, and in this case, four times τ 0 is equal to P max as described above. The proportional constant between τ 0 and P max when b / a ≠ 0 is shown in FIG. 5.14 of
この実施形態の推定方法によると、疲労試験を超音波ねじり疲労試験で行うため、極めて高速な負荷が可能で、短時間で金属材料のせん断応力振幅と負荷回数の関係を求めることができる。このように求めた関係から超長寿命領域におけるせん断疲労強度τ1imを決め、金属材料の接触寸法諸元から表層内部に作用する最大交番せん断応力振幅τ0 が前記せん断疲労強度τ1imに等しくなる負荷が作用するときの最大接触面圧Pmax を疲労限面圧Pmax 1imとして推定するため、ねじり疲労試験の結果から精度良く疲労限面圧Pmax 1imを推定することができる。このため、前記せん断疲労強度τ1imが強い材質である転がり軸受用鋼の疲労限面圧Pmax 1imの推定を行う場合に、その短時間の試験で済むという効果がより一層効果的に発揮される。したがって、鉄道車両用の転がり軸受の軌道輪または転動体となる金属材料のせん断疲労特性を求め、求めたせん断疲労特性から疲労限面圧Pmax 1imを評価し得る。この疲労限面圧Pmax 1imを評価した金属材料を、転がり軸受の軌道輪または転動体に用いることで、超長寿命域の軸受寿命を実現することができる。 According to the estimation method of this embodiment, since the fatigue test is performed by an ultrasonic torsional fatigue test, an extremely high-speed load is possible, and the relationship between the shear stress amplitude of the metal material and the number of loads can be obtained in a short time. The shear fatigue strength τ 1im in the ultra-long life region is determined from the relationship thus obtained, and the maximum alternating shear stress amplitude τ 0 acting on the inside of the surface layer from the contact dimension specifications of the metal material becomes equal to the shear fatigue strength τ 1im. to estimate the maximum contact surface pressure P max when the load acts as a fatigue limit surface pressure P max HM, it is possible to precisely estimate the fatigue limit surface pressure P max HM from the results of the torsional fatigue test. For this reason, when estimating the fatigue limit surface pressure P max 1im of the rolling bearing steel, which is a material having a strong shear fatigue strength τ 1im , the effect that only a short test is required is more effectively exhibited. The Therefore, the shear fatigue characteristics of the metal material used as the rolling ring or rolling element of the rolling bearing for a railway vehicle can be obtained, and the fatigue limit surface pressure P max 1im can be evaluated from the obtained shear fatigue characteristics. By using the metal material evaluated for the fatigue limit surface pressure P max 1im for the bearing ring or rolling element of the rolling bearing, it is possible to realize a bearing life in an extremely long life region.
この実施形態では、上記のように、加振周波数が20000Hzと極めて高速な完全両振りの超音波ねじり疲労試験により、短期間で転がり軸受用鋼のせん断応力振幅と負荷回数の関係を求め、超長寿命領域におけるせん断疲労強度(またはせん断疲労限度)τ1imを決め、転がり軸受の接触寸法諸元から表層内部に作用する交番せん断応力振幅τ0
がせん断疲労強度τ1imに等しくなる負荷が作用するときの最大接触面圧Pmaxを疲労限面圧Pmax 1imとして推定する。例えば、20000Hzで連続加振すれば、わずか半日余りで109 の負荷回数に到達する。しかし、ある程度高いせん断応力振幅で連続加振すると試験片1が発熱するため、試験片1を冷却する必要があり、強制空冷を行う。強制空冷だけでは試験片1の発熱抑制が不十分な場合は、加振と休止を交互に繰り返すようにする。休止することで実質の負荷周波数は小さくなるが、加振周波数が20000Hzの試験機2であれば、休止時間を加振時間の10倍程度としても2000Hz程度と依然高速であり、1週間もあれば109 回の負荷回数に到達する。
In this embodiment, as described above, the relationship between the shear stress amplitude of the rolling bearing steel and the number of loads is determined in a short period of time by an ultrasonic torsional fatigue test with an extremely high excitation frequency of 20000 Hz and a very high speed. The shear fatigue strength (or shear fatigue limit) τ 1im in the long-life region is determined, and the alternating shear stress amplitude τ 0 acting on the inside of the surface layer from the contact dimension specifications of the rolling bearing
The maximum contact surface pressure P max is estimated as fatigue limit surface pressure P max HM when equal loads to shear fatigue strength tau HM acts. For example, if the vibration continuous pressurization at 20000 Hz, and reaches the slight load times at 109 half day or so. However, since the test piece 1 generates heat when continuously vibrated with a somewhat high shear stress amplitude, the test piece 1 needs to be cooled and forced air cooling is performed. If the heat generation of the test piece 1 is not sufficiently suppressed by forced air cooling alone, vibration and pause are alternately repeated. Although the actual load frequency is reduced by resting, if the
なお、材料の疲労破壊を支配する応力は、突き詰めれば垂直応力かせん断応力のどちらかである。垂直応力による疲労特性を高速に評価するため、超音波軸荷重疲労試験機( 完全両振り) が市販されてから数年が経つ。それに対し、せん断応力による疲労特性を高速に評価するための超音波ねじり疲労試験の研究はほとんど行われておらず、これまでに評価された材料は最大せん断応力振幅(完全両振り) が250MPa以下で疲労破壊する軟鋼やアルミ合金である。それに対し、転がり軸受の動定格荷重及び定格寿命の規格であるISO-281:2007で定められている転がり軸受の疲労限面圧は1500MPaであり、線接触状態を考えると、そのときに表層内部に作用する最大交番せん断応力振幅はτ0 =375MPaである。したがって、375MPa以上の最大せん断応力振幅で評価できる超音波ねじり試験機が必要であるが、このような大きな最大せん断応力振幅で評価できる超音波ねじり試験機は、従来に例がない。そのため、この発明は、超音波ねじり試験機の開発と、表層内部に作用する最大交番せん断応力振幅τ0 が前記せん断疲労強度τ1imに等しくなる負荷が作用するときの最大接触面圧Pmax を疲労限面圧Pmax 1imとして推定できるという知見との、総合的な案出によりなされたものである。 It should be noted that the stress governing the fatigue fracture of the material is either normal stress or shear stress. Several years have passed since the ultrasonic axial load fatigue tester (full swing) was put on the market to evaluate fatigue characteristics due to normal stress at high speed. On the other hand, there has been little research on ultrasonic torsional fatigue tests to evaluate fatigue characteristics due to shear stress at high speed, and materials evaluated so far have a maximum shear stress amplitude (full swing) of 250 MPa or less. It is a mild steel or aluminum alloy that undergoes fatigue failure. On the other hand, the fatigue limit surface pressure of rolling bearings defined in ISO-281: 2007, which is the standard of dynamic load rating and rated life of rolling bearings, is 1500 MPa. The maximum alternating shear stress amplitude acting on τ 0 = 375 MPa. Therefore, an ultrasonic torsion tester that can be evaluated with a maximum shear stress amplitude of 375 MPa or more is required, but there is no example of an ultrasonic torsion tester that can be evaluated with such a large maximum shear stress amplitude. Therefore, the present invention develops an ultrasonic torsion tester and determines the maximum contact surface pressure P max when a load is applied in which the maximum alternating shear stress amplitude τ 0 acting inside the surface layer is equal to the shear fatigue strength τ 1im. This is based on a comprehensive idea with the knowledge that the fatigue limit surface pressure P max can be estimated as 1 im .
この実施形態の鉄道車両用転がり軸受材料の選定方法は、この発明の上記いずれかの構成の疲労限面圧の推定方法により推定された疲労限面圧が、定められた疲労限面圧以上である金属材料を、鉄道車両用の転がり軸受の軌道輪または転動体の材料として使用するものである。
この実施形態の疲労限面圧の推定方法によれば、短時間の疲労試験の結果から、転がり軸受用の金属材料の疲労限面圧を精度良く推定することができる。そのため、転がり軸受の軌道輪または転動体に使用する材料の試験項目の一つとして疲労限面圧を採用することができる。実際に疲労試験して求めた疲労限面圧が、定められた疲労限面圧以上である材料のみを軸受材料として用いることで、鉄道車両用転がり軸受の信頼性向上に大きく役立つ。疲労限面圧を使用材料の試験項目の一つとして採用することは、従来では試験に長年かかり、あまりにも実情から離れていて発想になかったが、この方法によると、実用化が可能であり、その採用により軸受の信頼性向上に役立てることができる。なお、判定基準となる「定められた疲労限面圧」は、目的等に応じて適宜設定すれば良い。また、疲労限面圧の推定は、例えば、材料のロット毎や、一度に購入した量毎、購入先毎等に行う。
According to this embodiment, the rolling bearing material for a railway vehicle is selected so that the fatigue limit surface pressure estimated by the fatigue limit surface pressure estimation method according to any one of the above configurations of the present invention is equal to or greater than a predetermined fatigue limit surface pressure. A certain metal material is used as a material for a bearing ring or rolling element of a rolling bearing for a railway vehicle.
According to the fatigue limit surface pressure estimation method of this embodiment, the fatigue limit surface pressure of a metal material for a rolling bearing can be accurately estimated from the results of a short-time fatigue test. Therefore, fatigue limit surface pressure can be adopted as one of the test items of the material used for the bearing ring or rolling element of the rolling bearing. By using only a material having a fatigue limit surface pressure obtained by an actual fatigue test that is equal to or higher than a predetermined fatigue limit surface pressure as a bearing material, it greatly helps to improve the reliability of rolling bearings for railway vehicles. Employing fatigue limit surface pressure as one of the test items for the materials used has traditionally required many years of testing and was too far from the actual situation, but this method can be put to practical use. By adopting it, it can be used to improve the reliability of the bearing. In addition, what is necessary is just to set "the defined fatigue limit surface pressure" used as a criterion suitably according to the objective. In addition, the fatigue limit surface pressure is estimated, for example, for each lot of material, for each purchased amount, for each supplier, and the like.
図2は、上記推定方法に用いる転がり接触金属材料の疲労限面圧の推定システムの概念構成を示す。この推定システムは、超音波ねじり疲労試験機2と、図1のせん断疲労強度決定過程(S2)および疲労限面圧計算過程(S3)の処理を行う疲労限面圧の推定装置5とで構成される。
FIG. 2 shows a conceptual configuration of a system for estimating a fatigue limit surface pressure of a rolling contact metal material used in the estimation method. This estimation system includes an ultrasonic torsional
図2において、超音波ねじり疲労試験機2は、試験機本体3と試験機制御装置4とで構成される。試験機本体3は、フレーム6の上部に設置したねじり振動コンバータ7に、下向きに突出する振幅拡大ホーン8を取付け、その先端に試験片1を着脱可能に取付け、ねじり振動コンバータ7で発生した超音波振動を、振幅拡大ホーン8の軸心回りの正逆回転方向の振動として拡大して試験片1に伝えるものである。
In FIG. 2, the ultrasonic torsional
試験機制御装置4は、コンピュータ10と、このコンピュータ10で実行可能な試験機制御プログラム11とで構成される。コンピュータ10は、デスクトップ型等のパーソナルコンピュータであり、中央処理装置12、メモリ等の記憶手段13、および入出力インタフェース14を備える。記憶手段13に上記試験機制御プログラム11が記憶され、記憶手段13の残りの記憶領域が、データ記憶エリア13aや作業エリアとなる。この他に、キーボードやマウス等の入力装置15と、液晶表示装置等の画像を表示する表示装置やプリンタ等の出力装置16が、コンピュータ10の一部として、またはコンピュータ10に接続して設けられている。
試験機制御装置4は、試験機本体3のねじり振動コンバータ7を制御する装置であり、制御出力は、入出力インタフェース14から、アンプ17を介して振動コンバータ7に与えられる。この試験機制御装置4は、試験機制御プログラム11に従って次の処理を行う。まず、図19に画面例を示すように、試験条件(出力、間欠運転と連続運転のいずれとするか、試験終了条件、データ採取条件等)の入力を促す画面を出力装置16となる表示装置に出力し、入力装置15から上記試験条件が入力され、試験開始命令が入力されると、入力された条件に従って試験機本体3を駆動し制御する。なお、最大せん断応力振幅の値は、入力した出力Pに対し、後述の(9)式によって換算表示される。
The test
The test
図2において、疲労限面圧の推定装置5は、コンピュータ10と、このコンピュータ10で実行可能な疲労限面圧推定プログラム19とで構成される。コンピュータ10は、試験機制御装置4を構成するコンピュータと同じものであっても良く、また別のものであってよく、中央処理装置12、メモリ等の記憶手段13、および入出力インタフェース14を備える。また上記入力装置15および出力装置16が、コンピュータ10の一部として、またはコンピュータ10に接続して設けられている。図3は、試験機制御プログラム11と疲労限面圧推定プログラム19とを同じコンピュータ10に記憶させ、試験機制御装置兼疲労限面圧の推定装置9とした例を示す。
In FIG. 2, the fatigue limit surface
疲労限面圧の推定装置5は、コンピュータ10と前記疲労限面圧推定プログラム11とで、図4に概念構成で示す各手段が構成されたものである。この疲労限面圧の推定装置5は、転がり接触する金属材料の疲労限面圧Pmax 1imを推定する装置であって、入力手段22、せん断疲労強度決定手段23、および疲労限面圧計算手段24を備え、また記憶手段13、出力手段4Aが構成されている。
The fatigue limit surface
入力手段22は、完全両振りの超音波ねじり疲労試験によって求められた金属材料のせん断応力振幅と負荷回数の関係を、記憶手段13の定められた記憶領域に記憶させる手段である。入力手段22は、詳しくは、キーボート等の手入力を行う入力装置や、記録媒体の読み出し装置、通信ネットワークなどを用いて、例えば、前記金属材料のせん断応力振幅と負荷回数の関係を纏めたファイルを、後の計算のために、定められた記憶領域、またはその記憶場所が特定できるように記憶させる手段である。
せん断疲労強度決定手段23は、前記記憶領域に記憶されたせん断応力振幅と負荷回数の関係から超長寿命領域におけるせん断疲労強度τ1imを、定められた基準に従って決める手段である。せん断疲労強度決定手段23で行う具体的な処理内容は、図1の疲労限面圧計算過程(S3)について説明するとおりである。
疲労限面圧計算手段24は、前記金属材料で製造される物体M1およびこの物体M1に対して転がり接触する物体M2の互いに接触する面の形状,寸法と接触面圧を与える負荷とから決まる前記金属材料の物体M1の表層内部に作用する最大交番せん断応力振幅τ0が、前記せん断疲労強度τ1imに等しくなる前記負荷が作用するときの最大接触面圧Pmaxを定められた計算式によって求め、この最大接触面圧Pmax を疲労限面圧Pmax 1imの推定値とする手段である。疲労限面圧計算手段24で行う具体的な処理内容は、図1の疲労限面圧計算過程(S3)について説明するとおりである。
The input means 22 is a means for storing the relationship between the shear stress amplitude of the metal material and the number of loads obtained by a complete double swing ultrasonic torsional fatigue test in a predetermined storage area of the storage means 13. The input means 22 is a file that summarizes the relationship between the shear stress amplitude of the metal material and the number of loads, for example, using an input device for manual input such as a keyboard, a reading device for a recording medium, a communication network, etc. Is stored so that a predetermined storage area or its storage location can be specified for later calculation.
The shear fatigue
The fatigue limit surface
次に、超音波ねじり疲労試験機2の詳細、およびこの疲労限面圧の推定方法の詳細を説明する。この超音波ねじり疲労試験機2は、転がり軸受用鋼に極めて高速にせん断疲労が与えられる完全両振りの超音波ねじり疲労試験機として設計したものである。ねじり振動コンバータ7の加振周波数範囲は20000±500Hzである。なお、超音波軸荷重疲労試験に用いられる縦振動コンバータには様々な出力のものがあるのに対し、ねじり振動コンバータの市販品は低出力のものしかなく、自作することも実質不可能であった。したがって、振幅拡大ホーン8と試験片1の形状を最適化して高強度な転がり軸受用鋼にねじり疲労を与える必要があった。
Next, details of the ultrasonic torsional
振幅拡大ホーン8は、指数関数型であり、ねじり振動コンバータ7に固定する大径側端面の直径は38mm、試験片1を固定する小径側端面の直径は13mmである。なるべく拡大率(小径側のねじり角の大径側のねじり角に対する比)を大きく、かつ20000Hz付近で共振するように設計・調整されている。なお、振幅拡大ホーン8の大径側の端面にはねじり振動コンバータに固定するための雄ねじ部が軸方向に突出して設けられ、小径側の端面には試験片を固定するための雌ねじが開けられている。振幅拡大ホーン8の素材はチタン合金である。ヤング率E、ポアソン比ν、密度ρを実測した結果、それぞれE=1.16×1011Pa、ν=0.27、ρ=4460kg/m3であった。FEM解析ソフト(Marc Mentat 2008 r1)(登録商標)を用い、上記のE 、ν、ρを物性値として、自由ねじり共振の固有値解析を行った。その結果、拡大率は43.1倍になった。
The
図6に試験片の模式図を示す。実際の試験片1の一端には、振幅拡大ホーン8の先端に固定するための雄ネジ部が設けられている。図6において、試験片1はダンベル型で、肩部長さL1、半弦長さL2、肩部半径R2、最小半径R1、円弧半径Rで決定される。
FIG. 6 shows a schematic diagram of the test piece. One end of the actual test piece 1 is provided with a male screw portion for fixing to the tip of the
試験片1の設計にあたっては、半弦長さL2、肩部半径R2 、最小半径R1 を適当に与え(いずれも単位はm)、共振周波数f(=20000Hz) ,ヤング率E ,ポアソン比ν,密度ρ( 標準熱処理した軸受鋼SUJ2の実測値はE=2.04×1011Pa,ν=0.29 ,ρ=7800kg/m3) とともに、次式(1) 〜(6) 式に代入すれば肩部長さL1が求まる(単位はm)。円弧半径RはR1,R2,L2から求まる。 In designing the test piece 1, a half chord length L 2 , a shoulder radius R 2 , and a minimum radius R 1 are appropriately given (all units are m), resonance frequency f (= 20000 Hz), Young's modulus E, Poisson Ratio ν, density ρ (measured values of standard heat-treated bearing steel SUJ2 are E = 2.04 × 10 11 Pa, ν = 0.29, ρ = 7800 kg / m 3 ), and are substituted into the following equations (1) to (6) if the shoulder length L 1 is obtained (in m). The arc radius R is obtained from R 1 , R 2 and L 2 .
ここで、なるべく大きなせん断応力が試験片最小径部の表面に作用するように事前検討したL2=0.0065m,R2=0.0045m,R1=0.002m を、上記のf ,E ,ν,ρとともに(1) 〜(6) 式に代入するとL1=0.00753m となる。しかし、標準焼入焼戻した軸受鋼SUJ2でL1=0.00753m とした試験片を製作したところ共振しなかった。そこで,FEM 解析ソフト(Marc Mentat 2008 r1) (登録商標)を用い、上記のf ,E ,ν,ρを物性値として自由ねじり共振の固有値解析を行った。その結果,L1=0.00753m でねじり共振する周波数は19076Hz となり、ねじり振動コンバータの加振周波数範囲である20000 ±500Hz を外れていた。そのため、20000Hz でねじり共振するL1を求めた結果、L1=0.00677m となった。標準焼入焼戻した軸受鋼SUJ2でL1=0.00677m とした試験片を製作したところ20000Hz 付近で共振した。図7に試験片図面を示す(単位はmm)。 Here, L 2 = 0.0065 m, R 2 = 0.0045 m, and R 1 = 0.002 m, which have been studied in advance so that as much shear stress as possible acts on the surface of the minimum diameter portion of the test piece, are changed to the above f, E, ν, Substituting into the equations (1) to (6) together with ρ results in L 1 = 0.00753 m. However, when a test piece with L 1 = 0.00753 m was manufactured using standard hardened and tempered bearing steel SUJ2, it did not resonate. Therefore, using the FEM analysis software (Marc Mentat 2008 r1) (registered trademark), eigenvalue analysis of free torsional resonance was performed using the above-mentioned f, E, ν, and ρ as physical properties. As a result, the frequency of torsional resonance at L 1 = 0.00753 m was 19076 Hz, which was outside the range of 20000 ± 500 Hz, which is the excitation frequency range of the torsional vibration converter. Therefore, as a result of obtaining L 1 that torsionally resonates at 20000 Hz, L 1 = 0.00677 m. When a specimen with L 1 = 0.00677m was made with the standard hardened and tempered bearing steel SUJ2, it resonated around 20000Hz. FIG. 7 shows a test piece drawing (unit: mm).
図8は、図7の試験片モデルで自由ねじり共振の固有値解析を行って得たねじり角θと表面のせん断応力τである。図8は端面ねじり角θend が0.01rad の場合であり、このときの試験片最小径部の表面に作用する最大せん断応力τmaxは526.18MPa となった。
すなわち、線形弾性の範疇では、端面ねじり角θend と試験片最小径部における表面の最大せん断応力τmax の関係は(7) 式のようになる。ただし,τmax の単位はMPa 、θend は無次元である。
τmax =52618θend (7)
FIG. 8 shows a torsion angle θ and a surface shear stress τ obtained by eigenvalue analysis of free torsional resonance using the test piece model of FIG. FIG. 8 shows the case where the end surface twist angle θ end is 0.01 rad, and the maximum shear stress τ max acting on the surface of the minimum diameter portion of the test piece at this time is 526.18 MPa.
That is, in the category of linear elasticity, the relationship between the torsion angle θ end of the end surface and the maximum shear stress τ max of the surface at the minimum diameter portion of the test piece is expressed by equation (7). However, the unit of τ max is MPa, and θ end is dimensionless.
τ max = 52618θ end (7)
図7の形状の標準焼入焼戻した軸受鋼SUJ2製の試験片1を3本用い、アンプ出力P(%)を変えて端面ねじり角θend を測定した。表1に試験片素材の合金成分を示す。硬さは722HV であった。 Using three specimens 1 made of standard hardened and tempered bearing steel SUJ2 having the shape shown in FIG. 7, the end face twist angle θ end was measured while changing the amplifier output P (%). Table 1 shows the alloy components of the specimen material. The hardness was 722HV.
加振中の試験片肩部下端の写真をデジタルマイクロスコープ( キーエンス製VHX-900)にて200倍で撮影した。それに先立ち、ボール盤で試験片肩部にエメリー研磨(#500 ,#2000)とダイヤモンドラッピング(1μm)を施して鏡面状態にした。試験片を試験機に取り付けた後、肩部にカラーチェックの現像剤を塗布した。図9は静止時の写真であり、所々に現像剤が塗布されない箇所ができる。それら塗布されない箇所の加振時の挙動を観察した。図9の場合、矢印を付した箇所の挙動に着目した。アンプ出力Pを10% から90% まで5%刻みで変えて1 秒間加振し、その間にシャッタースピード1/15sec で写真撮影した。図10はP=50%で加振中に撮影した写真で、範囲2aが図9の着目箇所の軌跡である。 A photograph of the lower end of the shoulder of the test piece during vibration was taken at 200 times with a digital microscope (VHX-900 manufactured by KEYENCE). Prior to that, emery polishing (# 500, # 2000) and diamond wrapping (1 μm) were applied to the shoulder of the test piece with a drilling machine to obtain a mirror surface state. After attaching the test piece to the testing machine, a color check developer was applied to the shoulder. FIG. 9 is a photograph at rest, where there are places where the developer is not applied. The behavior at the time of vibration was observed in the uncoated areas. In the case of FIG. 9, attention is paid to the behavior of the part with an arrow. The amplifier output P was changed from 10% to 90% in 5% increments, and was shaken for 1 second, during which time a photo was taken at a shutter speed of 1/15 sec. FIG. 10 is a photograph taken during vibration with P = 50%, and the range 2a is the locus of the point of interest in FIG.
アンプ出力P(%)を変えて測定した範囲2aから、図11のように端面ねじり角θend を求めた。その結果、図12のように、3本の試験片1とも、Pとθend の間にはほぼ同一の直線関係が見られ、回帰直線として(8) 式が得られた。 From the range 2a measured by changing the amplifier output P (%), the end surface torsion angle θ end was obtained as shown in FIG. As a result, as shown in FIG. 12, all the three test pieces 1 showed almost the same linear relationship between P and θ end , and equation (8) was obtained as a regression line.
(7) 式と(8) 式から、アンプ出力Pと試験片最小径部における表面の最大せん断応力振幅τmaxの関係は(9) 式のようになった。(9) 式から、P=90%でτmax=951MPaとなり、高強度な転がり軸受用鋼にねじり疲労を与えられることが十分に見込める。 From the equations (7) and (8), the relationship between the amplifier output P and the maximum shear stress amplitude τ max of the surface at the minimum diameter portion of the test piece is as shown in the equation (9). From equation (9), τ max = 951 MPa at P = 90%, and it is fully expected that torsional fatigue can be given to high strength rolling bearing steel.
製作した超音波ねじり疲労試験機2は、図2と共に前述したパーソナルコンピュータ10および試験機制御プログラム11で構成した試験機制御装置4で、アンプ17を制御するようになっている。図19に、超音波ねじり疲労試験機2の試験条件を入力する画面を示す。図20は試験過程の詳細の流れ図であり、試験過程では、入力された試験条件に従って、同図のようにアンプ出力の制御や、連続発振または間欠発振を選択した制御、情報取得(周波数とアンプ状態の取得)、試験の終了等の制御等が行われる。
The manufactured ultrasonic
図19の入力画面例で、計測準備の欄に共振周波数が19.97 と表示されているのは、出力10%で試験片が19.97kHzで共振したことを示しており、ねらいの20000Hzにほぼ等しい。この試験機制御装置4によると、計測条件の欄にアンプ出力を入力すると、あらかじめ初期設定画面に入力した(9) 式の直線の傾きと切片から、最大せん断応力振幅に変換される。同欄では、加振し続ける連続運転か、加振と休止を交互に繰り返す間欠運転のどちらかを選択する。
In the example of the input screen shown in FIG. 19, the fact that the resonance frequency is displayed as 19.97 in the column for measurement preparation indicates that the test piece resonated at 19.97 kHz with an output of 10%, which is almost equal to the target 20000 Hz. According to this
き裂が発生し、ある程度の寸法に成長すると、試験片1の共振周波数が低下する。同欄の周波数変動幅に50.00 と入力されているのは、共振周波数が試験時よりも50Hz以上低下したら疲労破壊したとして試験を停止させるためである。なお、この値は可変であり、試験片材質に応じて適切な値を入力すべきである。図13にねじり疲労破壊した試験片の例を示す。軸方向のせん断き裂が発生し、ある程度の長さに成長した後、引張型に遷移して斜め方向に逸れていったことを示している。 When a crack occurs and grows to a certain size, the resonance frequency of the test piece 1 decreases. The reason why 50.00 is entered in the frequency fluctuation range in the same column is to stop the test because the fatigue failure occurs when the resonance frequency is lowered by 50 Hz or more from the time of the test. This value is variable, and an appropriate value should be input according to the test piece material. FIG. 13 shows an example of a test piece subjected to torsional fatigue failure. It shows that an axial shear crack occurred, grew to a certain length, then shifted to a tensile mold and deviated obliquely.
常温大気中にて標準焼入焼戻した軸受鋼SUJ2を、加振と休止を交互に繰り返す間欠運転で評価した。最大せん断応力振幅の大小によらず、一貫して加振時間は110msec ,休止時間は1100msecとした。試験片は上記の端面ねじり角測定に用いたものと同ロットである。1010回まで損傷が起きなければ試験を打ち切った。 The bearing steel SUJ2, which was standard hardened and tempered in a normal temperature atmosphere, was evaluated by intermittent operation in which vibration and pause were alternately repeated. Regardless of the magnitude of the maximum shear stress amplitude, the excitation time was consistently 110 msec and the rest time was 1100 msec. The test piece is the same lot as that used for the above-mentioned end face twist angle measurement. The test was terminated if no damage occurred 10 times.
図15に超音波ねじり疲労試験で得られたせん断応力振幅と負荷回数の関係を示す。図15中の実線は、日本材料学会の金属材料疲労信頼性評価標準JSMS-SD-6-02の疲労限度型折れ線モデルにあてはめて求めたS-N 線図(破壊確率50%の疲労強度線図) であり、せん断疲労限度はτ1im=564MPaとなった。線接触状態を考え、τ1im=564MPaが最大交番せん断応力振幅τ0 に等しいとすると、以下の式、
(疲労限面圧Pmax 1im)=4×(せん断疲労強度τ1im)
に従って計算すれば、疲労限面圧はPmax 1im=2256MPaと推定されることになる。
なお、疲労限度型折れ線モデルではなく、連続低下型曲線モデルに当てはめてS-N 線図を求めてもよい。ただし、その場合、例えば「τ1imは1010回におけるS-N 線図上の値」などとして定義する必要がある。
FIG. 15 shows the relationship between the shear stress amplitude obtained by the ultrasonic torsional fatigue test and the number of loads. The solid line in Fig. 15 is the SN diagram (fatigue strength diagram with 50% fracture probability) obtained by fitting to the fatigue limit type broken line model of JSMS-SD-6-02, a metal material fatigue reliability evaluation standard of the Japan Society of Materials Science. The shear fatigue limit was τ 1im = 564 MPa. Considering the line contact state, if τ 1im = 564 MPa is equal to the maximum alternating shear stress amplitude τ 0 ,
(Fatigue limit surface pressure P max 1im ) = 4 × (shear fatigue strength τ 1im )
, The fatigue limit surface pressure is estimated to be P max 1im = 2256 MPa.
Note that the SN diagram may be obtained by applying a continuous decline type curve model instead of the fatigue limit type line model. In this case, however, it is necessary to define, for example, “τ 1im is a value on the SN diagram at 10 10 times”.
表1の軸受鋼SUJ2を素材に用い、図14のように、直径10mmの平行部に、超音波ねじり疲労試験片と同じ最小直径4mmの中細り部を設けたねじり疲労試験片(標準焼入焼戻)を製作した(図中の寸法の単位はmmである)。中細り部を設けたのは、危険体積を略等しくするためである。なお、図14のねじり疲労試験片はR=11.4mmに対し、超音波ねじり疲労試験片はR=9.7mmである。Rを変えた理由は応力集中係数を揃えるためである。ねじり疲労試験に先立ち、表面粗さの影響をなくす目的で、中細り部にエメリー研磨(#500、#2000)とダイヤモンドラッピング(粒径1μm)を施した。ねじり疲労試験は油圧サーボ型ねじり疲労試験機にて、完全両振り、負荷周波数10Hzで行った。その結果、図15中の白丸プロットのようになり、油圧サーボねじり疲労試験結果の時間強度は,超音波ねじり疲労試験結果のものよりも約15%低くなった。超音波ねじり疲労試験は、従来のねじり疲労試験よりも、せん断疲労強度を高めに評価する傾向がある。したがって、超音波ねじり疲労試験で得られたせん断疲労限度564MPaの85%である479MPa(図15中の破線)をτ1imとする。その場合、線接触状態を考え、τ1im=479MPaが最大交番せん断応力振幅τ0に等しいとすると、疲労限面圧はPmax 1im=1916MPaと推定されることになる。 A torsional fatigue test piece (standard quenching) using the bearing steel SUJ2 in Table 1 as a raw material and providing a thin part with the same minimum diameter of 4 mm as the ultrasonic torsional fatigue test piece at a parallel part of 10 mm in diameter as shown in FIG. (Temperature unit in the figure is mm). The reason why the thinned portion is provided is to make the dangerous volumes substantially equal. The torsional fatigue test piece in FIG. 14 has R = 11.4 mm, whereas the ultrasonic torsional fatigue test piece has R = 9.7 mm. The reason for changing R is to make the stress concentration factor uniform. Prior to the torsional fatigue test, emery polishing (# 500, # 2000) and diamond wrapping (particle size 1 μm) were applied to the thinned portion for the purpose of eliminating the influence of the surface roughness. The torsional fatigue test was performed with a hydraulic servo type torsional fatigue tester with a complete swing and a load frequency of 10 Hz. As a result, a white circle plot in FIG. 15 was obtained, and the time strength of the hydraulic servo torsional fatigue test result was about 15% lower than that of the ultrasonic torsional fatigue test result. The ultrasonic torsional fatigue test tends to be evaluated with higher shear fatigue strength than the conventional torsional fatigue test. Therefore, 479 MPa (broken line in FIG. 15), which is 85% of the shear fatigue limit 564 MPa obtained in the ultrasonic torsional fatigue test, is defined as τ 1im . In that case, if the line contact state is considered and τ 1im = 479 MPa is equal to the maximum alternating shear stress amplitude τ 0 , the fatigue limit surface pressure is estimated to be P max 1im = 1916 MPa.
ねじり疲労試験では、せん断応力は試験片表面で最大、軸芯でゼロになる。すなわち、応力勾配をもつ疲労試験である。ここで、引張圧縮疲労試験のうち、軸荷重疲労試験では平滑部断面内の垂直応力は均一であり、平滑部直径によらず一定の疲労限度を示すことが知られている。それに対し、応力勾配をもつ回転曲げ疲労試験では、平滑部直径が大きくなるにつれて疲労限度が低下し、軸荷重疲労試験での疲労限度に漸近していく寸法効果を示すことが知られている。引張強度が異なる3鋼種について、軸荷重疲労試験と平滑部直径を種々変えた回転曲げ疲労試験を行い、それぞれの疲労限度を求めた報告がある(前出の非特許文献4参照)。それによると、鋼種によらず、軸荷重疲労試験での疲労限度は、平滑部直径が4mmの回転曲げ疲労試験での疲労限度の約80%となっている。
In the torsional fatigue test, the shear stress is maximum on the specimen surface and zero on the shaft core. That is, a fatigue test with a stress gradient. Here, in the tensile compression fatigue test, it is known that in the axial load fatigue test, the vertical stress in the cross section of the smooth portion is uniform and shows a constant fatigue limit regardless of the diameter of the smooth portion. On the other hand, in the rotating bending fatigue test having a stress gradient, it is known that the fatigue limit decreases as the diameter of the smooth portion increases, and a dimensional effect that gradually approaches the fatigue limit in the axial load fatigue test is known. There is a report that the three steel types with different tensile strengths were subjected to axial load fatigue tests and rotary bending fatigue tests with various smooth part diameters, and the respective fatigue limits were determined (see
引張圧縮疲労試験では、応力勾配をもたない軸荷重疲労試験での疲労限度が安全側の基準になるが、ねじり疲労試験では、平滑部直径をいくら大きくしても応力勾配をもつため基準が存在しない。応力勾配をもつ以上、ねじり疲労試験でも寸法効果は避けられない。そこで、ねじり疲労試験についても引張圧縮疲労試験の基準がそのまま適用できると仮定する。つまり、超音波ねじり疲労試験片の最小直径は4mmなので、上記の超音波ねじり疲労試験の過大評価補正をしたせん断疲労限度479MPaの80%である383MPa(図15中の点線)をτ1imとする。その場合、線接触状態を考え、τ1im=383MPaが最大交番せん断応力振幅τ0 に等しいとすると、疲労限面圧はPmax 1im=1532MPaと推定されることになる。 In the tensile and compression fatigue test, the fatigue limit in the axial load fatigue test without a stress gradient is the safety standard, but in the torsional fatigue test, the stress gradient is maintained no matter how large the diameter of the smooth part is. not exist. As long as it has a stress gradient, dimensional effects are unavoidable even in torsional fatigue tests. Therefore, it is assumed that the standard of the tensile compression fatigue test can be applied as it is to the torsional fatigue test. That is, since the minimum diameter of the ultrasonic torsional fatigue test piece is 4 mm, 383 MPa (dotted line in FIG. 15), which is 80% of the shear fatigue limit 479 MPa corrected for overestimation in the ultrasonic torsional fatigue test, is τ 1im . . In this case, if the line contact state is considered and τ 1im = 383 MPa is equal to the maximum alternating shear stress amplitude τ 0 , the fatigue limit surface pressure is estimated to be P max 1im = 1532 MPa.
上記の応力勾配をもつ疲労試験で現れる寸法効果は、応力勾配という力学的要因と、大きな負荷を受ける体積(危険体積) が増減するという統計的要因によってもたらされる。統計的要因という観点から、複数応力水準で複数本の評価を行ってP-S-N 線図を得ればよい。しかしながら、時間的制約から実施が困難な場合が多いであろう。図15でせん断疲労限度τ1imを求めるのに日本材料学会の金属材料疲労信頼性評価標準JSMS-SD-6-02を用いた。それには少ないデータ数でP-S-N 線図を得る機能がある。図16は、それによって得た破壊確率10%のP-S-N 線図(図16中の破線)であり、10%せん断疲労限度は500MPaとなった。その値に対し、上記の超音波ねじり疲労試験の過大評価補正をすると、500×0.85=425MPaとなる(図16中の点線)。さらに、上記の寸法効果補正をすると、425×0.8=340MPa(図16中の一点鎖線)となる。この値が最も安全なτ1imの見積といえる。線接触状態を考え、τ1im=340MPaとして、それが最大交番せん断応力振幅τ0 に等しいとすると、疲労限面圧はPmax 1im=1360MPaと推定されることになる。ここでは適当な破壊確率として10%としたが、超音波ねじり疲労試験片の危険体積と実際の転がり軸受の危険体積を比較し、妥当な破壊確率を考慮すべきである。 The size effect that appears in fatigue tests with the above stress gradient is caused by a mechanical factor called stress gradient and a statistical factor that increases or decreases the volume subjected to a large load (dangerous volume). From the viewpoint of statistical factors, a PSN diagram may be obtained by evaluating multiple lines at multiple stress levels. However, it will often be difficult to implement due to time constraints. The metal material fatigue reliability evaluation standard JSMS-SD-6-02 of the Japan Society of Materials was used to determine the shear fatigue limit τ 1im in FIG. It has a function to obtain a PSN diagram with a small number of data. FIG. 16 is a PSN diagram (broken line in FIG. 16) with a fracture probability of 10% obtained thereby, and the 10% shear fatigue limit was 500 MPa. When the overestimation correction of the ultrasonic torsional fatigue test is performed on the value, 500 × 0.85 = 425 MPa (dotted line in FIG. 16). Furthermore, when the above-described dimensional effect correction is performed, 425 × 0.8 = 340 MPa (the chain line in FIG. 16). This value is the safest estimate of τ 1im . Considering a line contact state, assuming that τ 1im = 340 MPa, which is equal to the maximum alternating shear stress amplitude τ 0 , the fatigue limit surface pressure is estimated as P max 1im = 1360 MPa. Here, the appropriate failure probability is set to 10%. However, a reasonable failure probability should be considered by comparing the dangerous volume of the ultrasonic torsional fatigue test piece with the dangerous volume of the actual rolling bearing.
上記のように、超音波ねじり疲労試験(完全両振り) によって転がり軸受用鋼のせん断応力振幅と負荷回数の関係を求め、それから超長寿命領域におけるせん断疲労強度(またはせん断疲労限度)τ1imを決め、転がり軸受の接触寸法諸元から表層内部に作用する最大交番せん断応力振幅τ0 がせん断疲労強度τ1imに等しくなる負荷が作用するときの最大接触面圧Pmaxを疲労限面圧Pmax 1imとして推定する方法を示した。 As described above, the relationship between the shear stress amplitude of the rolling bearing steel and the number of loads is obtained by an ultrasonic torsional fatigue test (full swing), and then the shear fatigue strength (or shear fatigue limit) τ 1im in the ultralong life region is calculated . Determine the maximum contact surface pressure P max when a load is applied in which the maximum alternating shear stress amplitude τ 0 acting inside the surface layer is equal to the shear fatigue strength τ 1im from the contact dimension specifications of the rolling bearing, and the fatigue limit surface pressure P max The method of estimating as 1 im was shown.
ところで、図17に線接触状態でPmax =1500MPaが作用する場合の接触面下の周方向断面の交番せん断応力τyzと深さ方向の垂直応力σz の分布を示す(y: 周方向,z:深さ方向) 。座標は接触楕円の単軸半径bで無次元化してある。交番せん断応力τyzは点線の深さで絶対値が最大になる。図18は、はく離が起きる前に転がり疲労試験を中止し、周方向断面を観察したところ、交番せん断応力の絶対値が最大になる深さ辺りに見られた表面に平行な微小き裂である。表面に平行に進展した駆動力は交番せん断応力と考えられる。つまり、き裂の進展様式はモードII型(面内せん断型) である。図17に示したように、き裂面に垂直な方向の垂直応力σz は圧縮なので、モードI型(引張型) は有り得ず、かつσz はき裂面間を干渉させるため、モードII進展を妨げるように作用する。 Incidentally, FIG. 17 shows the distribution of the alternating shear stress τ yz in the circumferential section below the contact surface and the vertical stress σ z in the depth direction when P max = 1500 MPa acts in the line contact state ( y : circumferential direction, z : depth direction). The coordinates are made dimensionless by the single axis radius b of the contact ellipse. The alternating shear stress τ yz has a maximum absolute value at the depth of the dotted line. FIG. 18 shows a microcrack parallel to the surface seen near the depth at which the absolute value of the alternating shear stress is maximum when the rolling fatigue test was stopped before peeling occurred and the circumferential cross section was observed. . The driving force developed parallel to the surface is considered as alternating shear stress. In other words, the crack propagation mode is mode II (in-plane shear type). As shown in FIG. 17, since the normal stress σ z in the direction perpendicular to the crack surface is compression, there is no mode I type (tensile type), and σ z interferes between the crack surfaces, so mode II Acts to hinder progress.
一方、超音波ねじり疲労試験で発生、進展するモードIIき裂(図13中のせん断き裂) については、き裂面に垂直な圧縮応力は作用しない。したがって、超音波ねじり疲労試験で求める超長寿命領域におけるせん断疲労強度τ1imから推定する疲労限面圧Pmax1imは、実際より低めの値、安全側の値を与えるといえる。 On the other hand, for mode II cracks (shear cracks in FIG. 13) that are generated and propagated in the ultrasonic torsional fatigue test, compressive stress perpendicular to the crack surface does not act. Therefore, it can be said that the fatigue limit surface pressure P max1im estimated from the shear fatigue strength τ 1im in the ultralong life region obtained by the ultrasonic torsional fatigue test gives a value lower than the actual value and a value on the safe side.
<実施例1>;鉄道車両用転がり軸受の軌道輪または転動体となる金属材料の疲労限面圧Pmax 1imを推定する。
前記金属材料として、SNCM420、SUJ2、SUJ3、SCr420等が挙げられる。実施例3では、SNCM420素材に熱処理等を施した試験片と、SUJ3素材に熱処理等を施した試験片とを用いて各試験片のせん断疲労特性を求め、このせん断疲労特性から疲労限面圧を推定した。各試験片として図7に示した試験片を用いた。
<Example 1>: Fatigue limit surface pressure P max 1im of a metal material used as a race or rolling element of a rolling bearing for a railway vehicle is estimated.
Examples of the metal material include SNCM420, SUJ2, SUJ3, and SCr420. In Example 3, the shear fatigue characteristics of each test piece are obtained using a test piece obtained by heat-treating the SNCM420 material and a test piece obtained by heat-treating the SUJ3 material. Estimated. The test piece shown in FIG. 7 was used as each test piece.
表2に、試験片に用いたSNCM420素材、SUJ3素材の合金成分を示す。
上記表2のSNCM420素材を順次、旋削 → 熱処理 → 研削仕上げして試験片を製作した。この場合の熱処理は、浸炭焼入れ、2次焼入れ、焼戻し(浸炭: 920℃×4h,RXガス雰囲気,カーボンポテンシャルを1.2に保持 → 拡散: 920℃×3h,RXガス雰囲気 → 加熱: 800℃×70min. → 油焼入 → 焼戻し: 180℃×120min.)である。
The SNCM420 material shown in Table 2 above was sequentially turned, heat treated, and ground to produce test pieces. Heat treatment in this case is carburizing quenching, secondary quenching, tempering (carburization: 920 ° C. × 4 h, RX gas atmosphere, carbon potential is maintained at 1.2 → diffusion: 920 ° C. × 3 h, RX gas atmosphere → heating: 800 °
また上記表2のSUJ3素材を順次、旋削 → 熱処理 → 研削仕上げして試験片を製作した。この場合の熱処理は、SUJ3素材全体を焼入れするいわゆるずぶ焼入と焼戻し(加熱: 810℃×80min. → 油焼入 → 焼戻し: 180℃×180min.)である。 In addition, a test piece was manufactured by sequentially turning the SUJ3 material shown in Table 2 to turning → heat treatment → grinding. The heat treatment in this case is so-called quenching and tempering (heating: 810 ° C. × 80 min. → oil quenching → tempering: 180 ° C. × 180 min.) For quenching the entire SUJ3 material.
得られたせん断疲労特性とそれらから求めた疲労限面圧について
図24は、SNCM420浸炭の試験片のせん断疲労特性を示す図である。同図中の実線は、日本材料学会の金属材料疲労信頼性評価標準JSMS-SD-6-02の疲労限度型折れ線モデルにあてはめて求めたS-N線図であり、せん断疲労限度τw0は526MPaとなった。このせん断疲労限度τw0に対し、それぞれ破壊確率補正(破壊確率10%),寸法効果補正,過大評価補正をして、線接触状態における疲労限面圧Pmax 1imを求めた。この疲労限面圧Pmax 1imの推定結果を表3に示す。
FIG. 24 is a diagram showing shear fatigue characteristics of SNCM420 carburized specimens. The solid line in the figure is an SN diagram obtained by applying to the fatigue limit type broken line model of JSMS-SD-6-02, a metal material fatigue reliability evaluation standard of the Japan Society of Materials, and the shear fatigue limit τ w0 is 526 MPa. became. Fracture probability correction (
図25は、SUJ3標準の試験片のせん断疲労特性を示す図である。同図中の実線は、日本材料学会の金属材料疲労信頼性評価標準JSMS-SD-6-02の疲労限度型折れ線モデルにあてはめて求めたS-N線図であり、せん断疲労限度τw0は547MPaとなった。このせん断疲労限度τw0に対し、それぞれ破壊確率補正(破壊確率10%),寸法効果補正,過大評価補正をして、線接触状態における疲労限面圧Pmax 1imを求めた。この疲労限面圧Pmax 1imの推定結果を表4に示す。
FIG. 25 is a diagram showing shear fatigue characteristics of SUJ3 standard test pieces. The solid line in the figure is an SN diagram obtained by applying to the fatigue limit type broken line model of JSMS-SD-6-02, a metal material fatigue reliability evaluation standard of the Japan Society of Materials, and the shear fatigue limit τ w0 is 547 MPa. became. Fracture probability correction (
実施例1によると、鉄道車両用転がり軸受の軌道輪または転動体となる金属材料についても、疲労試験を超音波ねじり疲労試験で行うことで、極めて高速な負荷が可能で、短時間(例えば、半日乃至1週間)で各金属材料のせん断応力振幅と負荷回数の関係を求めることができる。この関係から疲労限面圧Pmax 1imを精度良く推定することができる。そのため、鉄道車両用の転がり軸受の軌道輪または転動体に使用する材料の試験項目の一つとして疲労限面圧を採用することができる。実際に疲労試験して求めた疲労限面圧が、定められた疲労限面圧以上である材料のみを軸受材料として用いることで、鉄道車両用の転がり軸受の信頼性向上に大きく役立つ。疲労限面圧を使用材料の試験項目の一つとして採用することは、従来では試験に長年かかり、あまりにも実情から離れていて発想になかったが、この方法によると、実用化が可能であり、その採用により軸受の信頼性向上に役立てることができる。 According to Example 1, a metal material that is used as a rolling ring or rolling element of a rolling bearing for a railway vehicle can be subjected to an extremely high speed load by performing a fatigue test by an ultrasonic torsional fatigue test. The relationship between the shear stress amplitude of each metal material and the number of loadings can be obtained in half a day to one week). From this relationship, the fatigue limit surface pressure P max 1im can be accurately estimated. Therefore, the fatigue limit surface pressure can be adopted as one of the test items of the material used for the bearing ring or rolling element of the rolling bearing for the railway vehicle. By using only a material whose fatigue limit surface pressure obtained by actual fatigue tests is equal to or higher than a predetermined fatigue limit surface pressure as a bearing material, it greatly helps to improve the reliability of rolling bearings for railway vehicles. Employing fatigue limit surface pressure as one of the test items for the materials used has traditionally required many years of testing and was too far from the actual situation, but this method can be put to practical use. By adopting it, it can be used to improve the reliability of the bearing.
1…試験片
2…超音波ねじり疲労試験機
3…超音波ねじり疲労試験機本体
4…試験機制御装置
5…疲労限面圧の推定装置
7…ねじり振動コンバータ
8…振幅拡大ホーン
10…コンピュータ
11…試験機制御プログラム
17…アンプ
19…疲労限面圧推定プログラム
22…入力手段
23…せん断疲労強度決定手段
24…疲労限面圧計算手段
M1…金属材料で製造される物体
M2…接する物体
DESCRIPTION OF SYMBOLS 1 ...
Claims (12)
超音波ねじり疲労試験によって金属材料のせん断応力振幅と負荷回数の関係を求める試験過程と、
この求められたせん断応力振幅と負荷回数の関係から超長寿命領域におけるせん断疲労強度τlim を、定められた基準に従って決めるせん断疲労強度決定過程と、
前記金属材料で製造される物体およびこの物体に対して転がり接触する物体の互いに接触する面の形状,寸法と接触面圧を与える負荷とから決まる前記金属材料の物体の表層内部に作用する最大交番せん断応力振幅τ0 が、前記せん断疲労強度τlim に等しくなる前記負荷が作用するときの最大接触面圧Pmax を定められた計算式によって求め、この最大接触面圧Pmax を疲労限面圧Pmax lim の推定値とする疲労限面圧計算過程とを含む、
鉄道車両用転がり軸受材料の疲労限面圧の推定方法。 A method for estimating a fatigue limit surface pressure Pmax lim of a metal material used as a bearing ring or rolling element of a rolling bearing for a railway vehicle,
A test process to obtain the relationship between the shear stress amplitude of metal materials and the number of loads by ultrasonic torsional fatigue test,
The shear fatigue strength determination process for determining the shear fatigue strength τlim in the ultra-long life region from the relationship between the obtained shear stress amplitude and the number of loads, according to a predetermined criterion,
Maximum alternating force acting on the surface of the object of the metal material determined from the shape and size of the surface of the object made of the metal material and the object that is in rolling contact with the object, the size and the load that gives the contact surface pressure The maximum contact surface pressure Pmax when the load is applied with the shear stress amplitude τ 0 equal to the shear fatigue strength τlim is determined by a predetermined calculation formula, and the maximum contact surface pressure Pmax is determined from the fatigue limit surface pressure Pmax lim. Including fatigue limit surface pressure calculation process as an estimated value,
A method for estimating fatigue limit surface pressure of rolling bearing materials for railway vehicles.
(疲労限面圧Pmax lim )=4×(せん断疲労強度τlim )
である鉄道車両用転がり軸受材料の疲労限面圧の推定方法。 In Claim 1, the defined calculation formula in the fatigue limit surface pressure calculation process is:
(Fatigue limit surface pressure Pmax lim) = 4 × (shear fatigue strength τlim)
A method for estimating the fatigue limit surface pressure of rolling bearing materials for railway vehicles.
完全両振りの超音波ねじり疲労試験によって求められた金属材料のせん断応力振幅と負荷回数の関係を、定められた記憶領域に記憶させる入力手段と、
この記憶されたせん断応力振幅と負荷回数の関係から超長寿命領域におけるせん断疲労強度τlim を、定められた基準に従って決めるせん断疲労強度決定手段と、
前記金属材料で製造される物体およびこの物体に対して転がり接触する物体の互いに接触する面の形状,寸法と接触面圧を与える負荷とから決まる前記金属材料の物体の表層内部に作用する最大交番せん断応力振幅τ0 が、前記せん断疲労強度τlim に等しくなる前記負荷が作用するときの最大接触面圧Pmax を定められた計算式によって求め、この最大接触面圧Pmax を疲労限面圧Pmax lim の推定値とする疲労限面圧計算手段とを備えた、鉄道車両用転がり軸受材料の疲労限面圧の推定装置。 An apparatus for estimating a fatigue limit surface pressure Pmax lim of a metal material that is in rolling contact with a rolling ring or rolling element of a rolling bearing for a railway vehicle,
An input means for storing the relationship between the shear stress amplitude of the metal material and the number of loads obtained by a complete double-swing ultrasonic torsional fatigue test in a predetermined storage area;
A shear fatigue strength determining means for determining the shear fatigue strength τlim in the ultra-long life region from the relationship between the stored shear stress amplitude and the number of loads, according to a predetermined criterion;
Maximum alternating force acting on the surface of the object of the metal material determined from the shape and size of the surface of the object made of the metal material and the object that is in rolling contact with the object, the size and the load that gives the contact surface pressure The maximum contact surface pressure Pmax when the load is applied with the shear stress amplitude τ 0 equal to the shear fatigue strength τlim is determined by a predetermined calculation formula, and the maximum contact surface pressure Pmax is determined from the fatigue limit surface pressure Pmax lim. An apparatus for estimating a fatigue limit surface pressure of a rolling bearing material for a railway vehicle, comprising a fatigue limit surface pressure calculation means for an estimated value.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011054487A JP5718689B2 (en) | 2010-03-16 | 2011-03-11 | Method and system for estimating fatigue limit surface pressure of rolling bearing materials for railway vehicles |
PCT/JP2011/056037 WO2011115101A1 (en) | 2010-03-16 | 2011-03-15 | Method of assessing rolling contact metallic material shear stress fatigue values, and method and device using same that estimate fatigue limit surface pressure |
US13/634,412 US9234826B2 (en) | 2010-03-16 | 2011-03-15 | Assessment of shear fatigue property of rolling contact metal material and estimation of fatigue limit maximum contact pressure using same assessment |
CN201180013980.3A CN102803922B (en) | 2010-03-16 | 2011-03-15 | Method of assessing rolling contact metallic material shear stress fatigue values, and method and device using same that estimate fatigue limit surface pressure |
EP11756286.8A EP2549261B1 (en) | 2010-03-16 | 2011-03-15 | Method and device using rolling contact metallic material shear stress fatigue values in order to estimate fatigue limit surface pressure |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010059357 | 2010-03-16 | ||
JP2010059357 | 2010-03-16 | ||
JP2011054487A JP5718689B2 (en) | 2010-03-16 | 2011-03-11 | Method and system for estimating fatigue limit surface pressure of rolling bearing materials for railway vehicles |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011215139A true JP2011215139A (en) | 2011-10-27 |
JP5718689B2 JP5718689B2 (en) | 2015-05-13 |
Family
ID=44944992
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011054485A Withdrawn JP2011215137A (en) | 2010-03-16 | 2011-03-11 | Method and device for estimating fatigue limit surface pressure of light load condition rolling bearing material |
JP2011054488A Withdrawn JP2011215140A (en) | 2010-03-16 | 2011-03-11 | Method and device for assessing fatigue-limit surface pressure of rolling bearing material for wheel |
JP2011054484A Active JP5718687B2 (en) | 2010-03-16 | 2011-03-11 | Method and system for estimating fatigue limit surface pressure of rolling contact metal materials |
JP2011054487A Expired - Fee Related JP5718689B2 (en) | 2010-03-16 | 2011-03-11 | Method and system for estimating fatigue limit surface pressure of rolling bearing materials for railway vehicles |
JP2011054486A Expired - Fee Related JP5718688B2 (en) | 2010-03-16 | 2011-03-11 | Method and system for estimating fatigue limit surface pressure of rolling bearing materials for aircraft |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011054485A Withdrawn JP2011215137A (en) | 2010-03-16 | 2011-03-11 | Method and device for estimating fatigue limit surface pressure of light load condition rolling bearing material |
JP2011054488A Withdrawn JP2011215140A (en) | 2010-03-16 | 2011-03-11 | Method and device for assessing fatigue-limit surface pressure of rolling bearing material for wheel |
JP2011054484A Active JP5718687B2 (en) | 2010-03-16 | 2011-03-11 | Method and system for estimating fatigue limit surface pressure of rolling contact metal materials |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011054486A Expired - Fee Related JP5718688B2 (en) | 2010-03-16 | 2011-03-11 | Method and system for estimating fatigue limit surface pressure of rolling bearing materials for aircraft |
Country Status (1)
Country | Link |
---|---|
JP (5) | JP2011215137A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102020200297A1 (en) | 2020-01-13 | 2021-07-15 | Volkswagen Aktiengesellschaft | Method, system, computer program product and test stand arrangement for a quality assessment of a vehicle component |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103748449A (en) * | 2011-04-04 | 2014-04-23 | Skf公司 | Method for fatigue assessment of rolling bearing |
JP6456624B2 (en) * | 2014-08-18 | 2019-01-23 | Ntn株式会社 | Rolling part, material thereof and method for manufacturing rolling part |
CN104374570B (en) * | 2014-11-24 | 2017-02-01 | 中国航空动力机械研究所 | Method for gaining service life of helicopter drive system component |
CN106802240B (en) * | 2015-11-26 | 2019-05-07 | 中国直升机设计研究所 | A kind of rotor hub connector Fatigue Testing Loads adjustment method |
CN107389481B (en) * | 2017-08-02 | 2023-05-26 | 中国地震局工程力学研究所 | Fatigue testing machine |
CN111209667B (en) * | 2020-01-03 | 2023-08-08 | 交通运输部公路科学研究所 | Axial load conversion method based on asphalt surface layer shear fatigue equivalent damage |
CN111595675B (en) * | 2020-05-25 | 2022-10-21 | 温州设计集团有限公司 | Shear nail pulling resistance test loading device matched with pressure testing machine |
EP4174472A4 (en) * | 2020-06-25 | 2023-08-09 | Fujitsu Limited | Material evaluation device, material evaluation method, and material evaluation program |
CN116026587B (en) * | 2023-03-29 | 2023-07-07 | 湖南中大创远数控装备有限公司 | Detection device for ultimate bearing strength of bearing set |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002243604A (en) * | 2001-02-21 | 2002-08-28 | Shimadzu Corp | Ultrasonic fatigue tester |
JP2002286607A (en) * | 2001-03-23 | 2002-10-03 | Sangaku Renkei Kiko Kyushu:Kk | Method of designing long-lived fatigue strength of metallic material |
JP2002286031A (en) * | 2001-03-27 | 2002-10-03 | Koyo Seiko Co Ltd | Bearing life recognizing method, bearing life recognizing index, bearing life recognizing program, recording medium recording bearing life recognizing program, transmitting medium transmitting bearing life recognizing program, and bearing life recognizing system |
JP2007017288A (en) * | 2005-07-07 | 2007-01-25 | Honda Motor Co Ltd | Ultrasonic fatigue testing apparatus and ultrasonic fatigue testing method |
JP2007032662A (en) * | 2005-07-26 | 2007-02-08 | Denso Corp | Design method for grasping damage form of rolling bearing |
-
2011
- 2011-03-11 JP JP2011054485A patent/JP2011215137A/en not_active Withdrawn
- 2011-03-11 JP JP2011054488A patent/JP2011215140A/en not_active Withdrawn
- 2011-03-11 JP JP2011054484A patent/JP5718687B2/en active Active
- 2011-03-11 JP JP2011054487A patent/JP5718689B2/en not_active Expired - Fee Related
- 2011-03-11 JP JP2011054486A patent/JP5718688B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002243604A (en) * | 2001-02-21 | 2002-08-28 | Shimadzu Corp | Ultrasonic fatigue tester |
JP2002286607A (en) * | 2001-03-23 | 2002-10-03 | Sangaku Renkei Kiko Kyushu:Kk | Method of designing long-lived fatigue strength of metallic material |
JP2002286031A (en) * | 2001-03-27 | 2002-10-03 | Koyo Seiko Co Ltd | Bearing life recognizing method, bearing life recognizing index, bearing life recognizing program, recording medium recording bearing life recognizing program, transmitting medium transmitting bearing life recognizing program, and bearing life recognizing system |
JP2007017288A (en) * | 2005-07-07 | 2007-01-25 | Honda Motor Co Ltd | Ultrasonic fatigue testing apparatus and ultrasonic fatigue testing method |
JP2007032662A (en) * | 2005-07-26 | 2007-02-08 | Denso Corp | Design method for grasping damage form of rolling bearing |
Non-Patent Citations (3)
Title |
---|
JPN6014030085; 島村佳伸,他5名: '超音波ねじり疲労試験装置の高強度鋼への適用' 日本材料学会第58期学術講演会講演論文集 58th, 20090522, pp.97-98 * |
JPN6014030086; 飯島淳,他3名: '超音波疲労試験による高サイクル捩り疲労特性' 日本機械学会東海支部総会講演会講演論文集 No.053-1,54th, 20050301, pp.131-132 * |
JPN6014030087; I.M.Garcia, et al.: 'Development of a new device to perfome torsional ultrasonic fatigue testing' International Journal of Fatigue Vol.29, 20070411, pp.2094-2101 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102020200297A1 (en) | 2020-01-13 | 2021-07-15 | Volkswagen Aktiengesellschaft | Method, system, computer program product and test stand arrangement for a quality assessment of a vehicle component |
DE102020200297B4 (en) | 2020-01-13 | 2021-11-18 | Volkswagen Aktiengesellschaft | Method, system, computer program product and test stand arrangement for a quality assessment of a vehicle component |
Also Published As
Publication number | Publication date |
---|---|
JP2011215138A (en) | 2011-10-27 |
JP5718688B2 (en) | 2015-05-13 |
JP2011215136A (en) | 2011-10-27 |
JP5718689B2 (en) | 2015-05-13 |
JP2011215140A (en) | 2011-10-27 |
JP5718687B2 (en) | 2015-05-13 |
JP2011215137A (en) | 2011-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5718689B2 (en) | Method and system for estimating fatigue limit surface pressure of rolling bearing materials for railway vehicles | |
WO2011115101A1 (en) | Method of assessing rolling contact metallic material shear stress fatigue values, and method and device using same that estimate fatigue limit surface pressure | |
JP5718691B2 (en) | Method and apparatus for evaluating characteristics of rolling bearing material | |
Wang et al. | Effect of inclusion on subsurface crack initiation and gigacycle fatigue strength | |
Sohar et al. | Gigacycle fatigue behavior of a high chromium alloyed cold work tool steel | |
Mayer et al. | Very high cycle fatigue properties of bainitic high carbon–chromium steel under variable amplitude conditions | |
Nishimura et al. | Fatigue strength of spring steel with small scratches | |
Schuller et al. | VHCF properties of nitrided 18Ni maraging steel thin sheets with different Co and Ti content | |
Fragoudakis et al. | The effect of heat and surface treatment on the fatigue behaviour of 56SiCr7 spring steel | |
WO2016208343A1 (en) | Method for producing bearing part | |
Ijiri et al. | Sustainability of compressive residual stress on the processing time of water jet peening using ultrasonic power | |
Karr et al. | Influence of load ratio on torsion very high cycle fatigue of high‐strength spring steel in the presence of detrimental defects | |
Lu et al. | Influence of inclusion size on S‐N curve characteristics of high‐strength steels in the giga‐cycle fatigue regime | |
Faccoli et al. | A small-scale experimental study of the damage due to intermittent shoe braking on the tread of high-speed train wheels | |
JP5877964B2 (en) | Method and apparatus for estimating the relative superiority or inferiority of internal origin type peeling life of rolling contact metal materials | |
Nehila et al. | Interior failure mechanism and life prediction of surface‐treated 17Cr‐Ni steel under high and very high cycle fatigue | |
Filgueiras et al. | Inducing very high cycle fretting-fatigue in the ultrasonic regime | |
Meyer et al. | Fatigue behavior of cast iron including mean stress effects | |
CN106574661B (en) | The manufacturing method of rolling member and its material and rolling member | |
Sohar et al. | Influence of surface residual stresses on gigacycle fatigue response of high chromium cold work tool steel | |
Filinov et al. | The monitoring of technological stresses by the method of magnetic noise | |
Li et al. | Interior crack initiation and growth behaviors and life prediction of a carburized gear steel under high cycle fatigue and very high cycle fatigue | |
Xue et al. | Fatigue life assessment of a high strength steel 300 M in the gigacycle regime | |
JP2021032696A (en) | Fatigue test method for cast material | |
Cho et al. | Fatigue behaviour of Ti-6Al-4V alloy under combined low and high cycle and ultrasonic loading |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130823 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140722 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140918 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150303 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150319 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5718689 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |