JPS63121124A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPS63121124A
JPS63121124A JP26731986A JP26731986A JPS63121124A JP S63121124 A JPS63121124 A JP S63121124A JP 26731986 A JP26731986 A JP 26731986A JP 26731986 A JP26731986 A JP 26731986A JP S63121124 A JPS63121124 A JP S63121124A
Authority
JP
Japan
Prior art keywords
plasma
film layer
protective film
gas
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26731986A
Other languages
Japanese (ja)
Inventor
Minoru Ichijo
稔 一條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP26731986A priority Critical patent/JPS63121124A/en
Publication of JPS63121124A publication Critical patent/JPS63121124A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To improve running durability and corrosion resistance by projecting the ionized active particles or hydrogen atom ions or hydrogen molecule ions of an org. compd. simultaneously at the time of forming a plasma-polymerized protective film layer consisting of the org. compd. on the surface of a thin ferromagnetic metallic film layer. CONSTITUTION:A polyester film 1 on which the thin ferromagnetic metallic film layer 12 is formed is moved from a stock roll 2 along the peripheral side face of a cylindrical can roll 3. Gaseous monomer of tetrafluoroethylene is introduced from a gas introducing pipe 6 mounted to a treatment vessel 5 into said vessel and a high frequency is impressed thereto by an electrode 7 to effect plasma polymn. The gaseous methane is simultaneously introduced through a gas introducing port 9 into a Kaufmann type ion gun 8 to ionize the monomer gas and to project the ionized active particles to the region of the film 1 where the plasma polymn. progresses. The plasma-polymerized protective film layer 13 is thus formed. The crosslinking degree of the plasma-polymerized protective film is thereby increased and the durability and corrosion resistance of the film are improved to a greater extent.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は強磁性金属薄膜を磁気記録層とする磁気記録媒
体の製造方法に関する。更に詳細には、本発明は走行耐
久性および耐食性に優れた磁気記録媒体の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a magnetic recording medium having a magnetic recording layer made of a ferromagnetic metal thin film. More specifically, the present invention relates to a method for manufacturing a magnetic recording medium with excellent running durability and corrosion resistance.

[従来の技術] 強磁性金属薄膜を磁気記録層とする磁気記録媒体は、通
常金属もしくはそれらの合金などを真空蒸着、スパッタ
リング等の手法により基体上に被着させるこにより製造
される。このような磁気記録媒体は高密度記録に適した
特性を有するが、反面、磁気ヘッドとの摩擦係数が大き
(て摩耗や損傷を受は易く、また空気中の酸素や水分な
どにより徐々に腐食し最大磁束密度などの磁気特性が劣
化するなどの難点がある。
[Prior Art] A magnetic recording medium having a magnetic recording layer made of a ferromagnetic metal thin film is usually manufactured by depositing metals or alloys thereof on a substrate by a method such as vacuum deposition or sputtering. Such magnetic recording media have characteristics suitable for high-density recording, but on the other hand, they have a high coefficient of friction with the magnetic head (which makes them susceptible to wear and damage, and they also gradually corrode due to oxygen and moisture in the air). However, there are drawbacks such as deterioration of magnetic properties such as maximum magnetic flux density.

このため、従来から強磁性金属薄膜層上に種々の保護膜
層を設けるなどして耐久性および耐食性を改善すること
が行われている。近年、たとえば、フッ素系有機化合物
のモノマーガスをプラズマ重合して、フッ素系a機化合
物のプラズマ重合保護膜層を強磁性金属薄膜層1−に設
けたり(特開昭58−88828号、特開昭58−10
2330号)、あるいは、ケイ素系を様化合物のモノマ
ーガスをプラズマ重合して、ケイ素系有機化合物のプラ
ズマ重合保護膜層を強磁性金属薄膜層1・、に設ける(
特開昭57−82229シ)、特開昭58−604’;
、ts;−>ことが提案されている。
For this reason, attempts have been made to improve durability and corrosion resistance by providing various protective film layers on the ferromagnetic metal thin film layer. In recent years, for example, a monomer gas of a fluorine-based organic compound is plasma-polymerized to provide a plasma-polymerized protective film layer of a fluorine-based organic compound on the ferromagnetic metal thin film layer 1- (JP-A-58-88828, JP-A No. 1980-10
No. 2330), or by plasma polymerizing a monomer gas of a silicon-based compound to provide a plasma-polymerized protective film layer of a silicon-based organic compound on the ferromagnetic metal thin film layer 1 (
JP-A-57-82229), JP-A-58-604';
, ts;-> has been proposed.

[発明が解決しようとする問題点] ところが、この従来の方法によって得られる有機化合物
のプラズマ重合保護膜層は架橋密度が不七分なため、耐
久性および耐食性の改善が十分に得られなかった。特に
プラズマ重合時のガス圧を高くしたりして被着速度を速
くすると、プラズマ重合の架橋密度が低くなり、硬質の
保護膜層が形成されず、良好な耐摩耗性が得られないと
いう難点があった。保護膜が軟質だと磁性層も酸素や水
分による影響を受は易い。
[Problems to be Solved by the Invention] However, the plasma-polymerized protective film layer of an organic compound obtained by this conventional method has an uneven crosslinking density, so that sufficient improvements in durability and corrosion resistance cannot be obtained. . In particular, if the deposition speed is increased by increasing the gas pressure during plasma polymerization, the crosslinking density of the plasma polymerization decreases, and a hard protective film layer is not formed, making it difficult to obtain good wear resistance. was there. If the protective film is soft, the magnetic layer is also easily affected by oxygen and moisture.

[発明の目的コ 従って、本発明の目的は耐久性および耐食性に優れたプ
ラズマ重合保護膜を有する磁気記録媒体の製造方法を提
供することである。
[Object of the Invention] Accordingly, an object of the present invention is to provide a method for manufacturing a magnetic recording medium having a plasma polymerized protective film having excellent durability and corrosion resistance.

[問題点を解決するための手段コ 前記の従来技術の問題点を解決し、本発明の目的を達成
するために本発明者が長年にわたり広範な試作と研究を
続けた結果、強磁性金属薄膜層の表面に有機化合物のプ
ラズマ重合保護膜層を形成する際に、同時に有機化合物
のイオン化活性粒子もしくは水素原子イオンまたは水素
分子イオンを強磁性金属薄膜層表面に照射することによ
り、プラズマ重合膜の架橋度を飛躍的に向−ヒさせるこ
とができ、その結果、走行耐久性、耐食性に優れた磁気
記録媒体が得られることが発見された。
[Means for Solving the Problems] In order to solve the problems of the prior art described above and achieve the purpose of the present invention, the present inventor has continued extensive trial production and research for many years, and as a result, a ferromagnetic metal thin film has been developed. When forming a plasma-polymerized protective film layer of an organic compound on the surface of the layer, at the same time the surface of the ferromagnetic metal thin film layer is irradiated with ionized active particles of the organic compound, hydrogen atom ions, or hydrogen molecular ions. It has been discovered that the degree of crosslinking can be dramatically increased, and as a result, a magnetic recording medium with excellent running durability and corrosion resistance can be obtained.

この発明において、強磁性金属薄膜層上へのプラズマ重
合保護膜層の形成は、処理槽内で、炭化水素系化合物、
フッ素系有機化合物およびケイ素系有機化合物等のモノ
マーガスを、高周波によりプラズマ重合させて、強磁性
金属薄膜層ヒに被着することによって形成される。
In this invention, the plasma polymerized protective film layer is formed on the ferromagnetic metal thin film layer in a treatment tank using a hydrocarbon compound,
It is formed by subjecting a monomer gas such as a fluorine-based organic compound and a silicon-based organic compound to plasma polymerization using high frequency waves and depositing it on a ferromagnetic metal thin film layer.

このプラズマ重合保1膜層を形成するのに使用するモノ
マーガスとしては、たとえば、プロパン、エチレン、プ
ロピレンなどの炭化水素系化合物のモノマーガス、C2
F// 、C3F6などのフッ素系有機化合物のモノマ
ーガスおよびテトラメチルシラン、オクタメチルシクロ
テトラシロキサン、ヘキサメチルジシラザンなどのケイ
素系有機化合物のモノマーガス等が好ましく使用される
Examples of the monomer gas used to form this plasma polymerization retention film layer include monomer gas of hydrocarbon compounds such as propane, ethylene, and propylene, and C2
Monomer gases of fluorine-based organic compounds such as F//, C3F6, and monomer gases of silicon-based organic compounds such as tetramethylsilane, octamethylcyclotetrasiloxane, and hexamethyldisilazane are preferably used.

これらの自゛機化合物のモノマーガスに高周波をかける
とラジカルが生成され、この生成されたラジカルが重合
反応し架橋構造の被膜を生成する。
When a high frequency is applied to the monomer gas of these organic compounds, radicals are generated, and the generated radicals undergo a polymerization reaction to form a film having a crosslinked structure.

プラズマ重合を行う場合のガス圧と高周波電力との関係
は、ガス圧が高くなるほど被着速度が速(なる反面モノ
マーガスが比較的架橋密度低くプラズマ重合されて硬い
保、?11膜層が得られず、またガス圧を低(して高周
波電力を高くすると被着速度が遅くなる反面架橋密度が
比較的高い保護膜層が得られるが、ガス圧を低くして高
周波電力を高くしすぎると、七ツマーガスが粉末化して
しまいプラズマ重合保護膜層が形成されない。
The relationship between gas pressure and high frequency power when performing plasma polymerization is that the higher the gas pressure, the faster the deposition rate (on the other hand, the monomer gas has a relatively low crosslinking density and is plasma polymerized and remains hard, resulting in a hard film layer). In addition, lowering the gas pressure (and increasing the high-frequency power) will slow down the deposition rate, but will yield a protective film layer with relatively high crosslinking density. However, if the gas pressure is low and the high-frequency power is too high, , the plasma-polymerized protective film layer cannot be formed because the 7-mer gas turns into powder.

従って、本発明の方法を実施する際の一般的指標として
、ガス圧を0.001〜5Torrの範囲内とし、高周
波電力を0.03〜5 W/cs2の範囲内とするのが
好ましく、ガス圧を0.003〜1Torrとし、高周
波電力を0.05〜3 W/cm2の範囲内とするのが
より好ましい。
Therefore, as a general guideline when carrying out the method of the present invention, it is preferable that the gas pressure be within the range of 0.001 to 5 Torr, and the high frequency power be within the range of 0.03 to 5 W/cs2; More preferably, the pressure is 0.003 to 1 Torr, and the high frequency power is within the range of 0.05 to 3 W/cm2.

このプラズマ重合を行う際に、強磁性金属薄膜層に同時
に!!(1射する、有機化合物のイオン化活性拉rもし
くは水素原子イオンまたは水素分子イオンとは、自機化
合物もしくは水素分子が分解イオン化して生成するH+
、C+等の原子イオンおよびH2+、CH” 、CH2
”、C2Hs十等の分子イオンの混合物からなる粒子群
を意味し、有機化合物あるいは水素のガスを単独、ある
いは混合して原料ガスとし、熱フイラメント法、プラズ
マ法等により生成する。
When performing this plasma polymerization, the ferromagnetic metal thin film layer is simultaneously formed! ! (The ionizing activity of an organic compound or hydrogen atom ion or hydrogen molecular ion that is irradiated is the H+ produced by the decomposition and ionization of an organic compound or hydrogen molecule
, C+ and other atomic ions and H2+, CH", CH2
", refers to a group of particles consisting of a mixture of molecular ions such as C2Hs, and is produced by a hot filament method, a plasma method, etc. using an organic compound or hydrogen gas alone or in combination as a raw material gas.

照射されるイオン化活性粒子もしくは水素原子イオンま
たは水素分子イオンの照射量は特に限定的ではないが一
般的な指標として、イオン電流で0.05〜l Om 
A / c■2の範囲内で使用することが好ましい。
The irradiation amount of ionized active particles, hydrogen atom ions, or hydrogen molecule ions to be irradiated is not particularly limited, but as a general indicator, the ion current is 0.05 to 1 Om.
It is preferable to use it within the range of A/c■2.

照射はイオン銃等を使用することにより実施できる。こ
れ以外の照射手段も使用できる。
Irradiation can be performed using an ion gun or the like. Other irradiation means can also be used.

このようなイオン化活性粒子を電場により引き出し、プ
ラズマ重合が進′4テシている強磁性金属薄膜表面に照
射すると、イオンの運動エネルギーにより形成しつつあ
るプラズマ重合膜表面の拉r運動が活性化され、通常の
プラズマ重合膜に比べて架橋度が高く、強靭で稠密な膜
が得られ、耐摩耗性および耐食性が一段と向上する。
When these ionized active particles are extracted by an electric field and irradiated onto the surface of a ferromagnetic metal thin film where plasma polymerization is progressing, the kinetic energy of the ions activates the ablation motion on the surface of the plasma polymerized film that is being formed. Compared to ordinary plasma polymerized membranes, the degree of crosslinking is higher, a tougher and denser membrane can be obtained, and wear resistance and corrosion resistance are further improved.

イオン化活性粒子もしくは水素原子イオンまたは水素分
子イオンの照射はプラズマ重合と同時でなければならな
い。プラズマ重合後に照射すると、生成した重合膜の表
面部分だけしか硬化させることができない。プラズマ重
合と同時に照射すると、相乗的に作用して生成膜全体の
架橋度を高めるものと思われる。
Irradiation of ionized active particles or hydrogen atomic or hydrogen molecule ions must be simultaneous with plasma polymerization. When irradiated after plasma polymerization, only the surface portion of the formed polymer film can be cured. When irradiated simultaneously with plasma polymerization, it seems to act synergistically to increase the degree of crosslinking of the entire produced film.

特に、プラズマ重合のモノマーガスとして、メタン、エ
チレン、ベンゼン等の炭化水素を用い、イオン化活性粒
子を生成する際の親有機化合物としてメタン、エタン等
の炭化水素を用いると、形成されるプラズマ重合膜はダ
イヤモンド状のカーボン膜となり耐摩耗性が著しく向卜
する。
In particular, when a hydrocarbon such as methane, ethylene, or benzene is used as a monomer gas for plasma polymerization, and a hydrocarbon such as methane or ethane is used as an organophilic compound when generating ionized active particles, a plasma polymerized film is formed. forms a diamond-like carbon film, which significantly improves wear resistance.

このような有機化合物のプラズマ重合保y1膜層の膜厚
は、20〜1000人の範囲内であることが好ましい。
The thickness of the plasma polymerized y1 film layer of such an organic compound is preferably within the range of 20 to 1000 layers.

膜厚が薄すぎるとこの保!IIM層による耐久性および
耐食性の効果が1−分に発揮されず、厚すぎるとスベー
ンングロスが大きくなりすぎて電磁変換特性に悪影響を
及ぼす。
If the film thickness is too thin, this problem will occur! The durability and corrosion resistance effects of the IIM layer are not exhibited within 1 minute, and if it is too thick, the svening loss becomes too large, which adversely affects the electromagnetic conversion characteristics.

強磁性金属薄膜層の形成材料としては、C01F es
 N ilCo  N i合金、Co−Cr合金、Go
−P合金、Co−N1−P合金などの強磁性材が使用さ
れ、これらの強磁性材からなる強磁性金属薄膜層は、l
N空蒸着、イオンブレーティング、スパッタリング、メ
ッキ等の手段によって基体−ヒに被着形成される。
As a material for forming the ferromagnetic metal thin film layer, C01F es
NilCo Ni alloy, Co-Cr alloy, Go
Ferromagnetic materials such as -P alloy and Co-N1-P alloy are used, and the ferromagnetic metal thin film layer made of these ferromagnetic materials is
The material is deposited on the substrate by means such as N-vacuum deposition, ion blasting, sputtering, and plating.

また、磁気記録媒体としては、ポリエステルフィルム、
ポリイミドフィルムなどの合成樹脂フィルムを基体とす
る磁気テープ、合成樹脂フィルム、アルミニウム板およ
びガラス板等からなる円盤やドラムを基体とする磁気デ
ィスクや磁気ドラムなど、磁気ヘッドと摺接する構造の
種々の形態を包含する。
In addition, as magnetic recording media, polyester film,
Various types of structures that come into sliding contact with magnetic heads, such as magnetic tapes based on synthetic resin films such as polyimide films, magnetic disks and magnetic drums based on disks and drums made of synthetic resin films, aluminum plates, glass plates, etc. includes.

[実施例] 以下、図面を参照しながら本発明の方法の一実施例につ
いて更に詳細に説明する。
[Example] Hereinafter, an example of the method of the present invention will be described in more detail with reference to the drawings.

’XJIL肚1 厚さ10μのポリエステルフィルムを真空蒸着装置に装
填し、lXl0−5Torrのjo【李下でコバルトを
加熱蒸発させてポリエステルフィルム」二に厚さ100
0人のコバルトからなる強磁性金属薄膜層を形成した。
1. Load a polyester film with a thickness of 10 μm into a vacuum evaporation device, and heat and evaporate the cobalt under 1X10-5 Torr to make a polyester film with a thickness of 100 μm.
A ferromagnetic metal thin film layer consisting of zero cobalt was formed.

次いで第1図に示すプラズマ重合装置を使用し、強磁性
金属薄膜層を形成したポリエステルフィルムlを原反ロ
ール2から円筒状キャンロール3の周側面に沿って移動
させ、巻き取りロール4に巻き取るようにセットした。
Next, using the plasma polymerization apparatus shown in FIG. 1, the polyester film l on which the ferromagnetic metal thin film layer was formed was moved from the raw roll 2 along the circumferential side of the cylindrical can roll 3, and wound around the take-up roll 4. I set it to take it.

次いで、ポリエステルフィルム1を2m/minの走行
速度で走行させながら、処理槽5に取り付けたガス導入
管6からテトラフルオロエチレンのモノマーガスを50
sec■の流量で導入し、ガス圧を0.05Torrと
して電極7で13.58MH2の高周波を0.5W/c
m2の電力密度で印加してプラズマ重合を行った。
Next, while running the polyester film 1 at a running speed of 2 m/min, 50% of tetrafluoroethylene monomer gas was supplied from the gas introduction pipe 6 attached to the processing tank 5.
A high frequency of 13.58 MH2 was introduced at electrode 7 at a flow rate of 0.5 W/c at a gas pressure of 0.05 Torr.
Plasma polymerization was performed by applying a power density of m2.

更にこのプラズマ重合と同時に、カウフマン型イオン銃
8にガス導入口9からメタンガスを20sccmの流量
で導入し、イオン化させ、lkvの加速電圧で、ポリエ
ステルフィルムlのプラズマ取合進行領域にイオン化活
性粒子をボ1射した。
Furthermore, at the same time as this plasma polymerization, methane gas is introduced into the Kauffman type ion gun 8 from the gas inlet 9 at a flow rate of 20 sccm, ionized, and ionized active particles are transferred to the plasma absorption area of the polyester film l using an accelerating voltage of lkv. I fired one shot.

以−Lの方法により厚さ200人のプラズマ重合保護膜
層を形成した。その後所定の11に裁断して第2図に示
すような磁気テープを作った。なお第1図における符号
10は処理槽5を減圧するための排気系であり、11は
電極7に高周波を印加するための高周波電源である。ま
た第2図における符号12は強磁性金属薄膜層、13は
プラズマ重合保護膜層である。
A plasma polymerized protective film layer having a thickness of 200 mm was formed by the method described below. Thereafter, it was cut into a predetermined size of 11 to make a magnetic tape as shown in FIG. Note that the reference numeral 10 in FIG. 1 is an exhaust system for reducing the pressure in the processing tank 5, and 11 is a high frequency power source for applying high frequency to the electrode 7. Further, reference numeral 12 in FIG. 2 is a ferromagnetic metal thin film layer, and 13 is a plasma polymerized protective film layer.

尖五肚2 実施例1において、テトラフルオロエチレンノモノマー
ガスに代えてテトラメチルシランのモノマーガスを30
sec−の流量で導入し、ガス圧を00Q3Torrに
変更した以外は実施例1と同様にして磁気テープを作っ
た。このときのプラズマ重合保護膜層の厚さは250人
であった。
2. In Example 1, 30% of tetramethylsilane monomer gas was used instead of tetrafluoroethylene monomer gas.
A magnetic tape was produced in the same manner as in Example 1 except that the gas was introduced at a flow rate of sec- and the gas pressure was changed to 00Q3 Torr. The thickness of the plasma polymerized protective film layer at this time was 250 mm.

L五肚1 実施例1において、テトラフルオロエチレンのモノマー
ガスに代えてエチレンの七ツマーガスを5 Q scc
+++の流量で導入し、ガス圧を0.03Torrとし
、高周波電力を1w/cm2に変更した以外は実施例1
と同様にして磁気テープを作った。プラズマ重合保護膜
層の厚さは150人だった。
L5 1 In Example 1, 5 Q scc of ethylene 7mer gas was used instead of tetrafluoroethylene monomer gas.
Example 1 except that the gas was introduced at a flow rate of +++, the gas pressure was 0.03 Torr, and the high frequency power was changed to 1 w/cm2.
I made magnetic tape in the same way. The thickness of the plasma polymerized protective film layer was 150.

実iti 実施例2において、イオン銃に導入するガスをメタンに
代えて水素ガスを5Qsccmの流量で導入した他は、
実施例2と同様にして磁気テープを作った。プラズマ重
合保護膜層の厚さは220人だった。
In Example 2, the gas introduced into the ion gun was replaced with methane and hydrogen gas was introduced at a flow rate of 5 Qsccm.
A magnetic tape was made in the same manner as in Example 2. The thickness of the plasma polymerized protective film layer was 220.

光に叶か 実施例3において、イオン銃に導入するガスをメタンに
代えて水素ガスを5 Q seemの流量で導入した他
は、実施例3と同様にして磁気テープを作った。プラズ
マ重合保護膜層の厚さは130人だった。
A magnetic tape was produced in the same manner as in Example 3, except that the gas introduced into the ion gun was replaced with methane and hydrogen gas was introduced at a flow rate of 5 Qseem. The thickness of the plasma polymerized protective film layer was 130.

光胤匠1 実施例3において、イオン銃に導入するガスをメタンに
代えてメタンと水素の1:5体積比況合ガスを50se
c履の流除で導入した他は実施例3と同様にして磁気テ
ープを作った。プラズマ重合保護膜層の厚さは140人
だった。
Mitsutane Takumi 1 In Example 3, the gas introduced into the ion gun was replaced with methane, and a mixture of methane and hydrogen at a volume ratio of 1:5 was used for 50 se
A magnetic tape was produced in the same manner as in Example 3, except that it was introduced by removing the c-slip. The thickness of the plasma polymerized protective film layer was 140.

匿咬針上 実施例1において、イオン化活性粒子の照射を省いた他
は実施例1と同様にして磁気テープを作った。プラズマ
重合保護膜層の厚さは180人だった。
A magnetic tape was made in the same manner as in Example 1, except that the irradiation with ionized active particles was omitted. The thickness of the plasma polymerized protective film layer was 180.

止悦健1 実施例2において、イオン化活性粒子の照射を省いた他
は実施例1と同様にして磁気テープを作った。プラズマ
重合保護膜層の厚さは220人だった。
Ken Yue 1 In Example 2, a magnetic tape was produced in the same manner as in Example 1 except that irradiation with ionized active particles was omitted. The thickness of the plasma polymerized protective film layer was 220.

比佼区1 実施例3において、イオン化活性粒子の照射を省いた他
は実施例3と同様にして磁気テープを作った。プラズマ
重合保護膜層の厚さは130人だった。
Hikaku 1 A magnetic tape was produced in the same manner as in Example 3 except that the irradiation with ionized active particles was omitted. The thickness of the plasma polymerized protective film layer was 130.

比較1」工 実施例1において、プラズマ重合保sg層の形成(イオ
ン化活性粒子の照射も含めて)を省いた他は実施例1と
同様にして磁気テープを作った。
Comparison 1 A magnetic tape was produced in the same manner as in Example 1, except that the formation of the plasma polymerized SG layer (including the irradiation with ionized active particles) was omitted.

各実施例および比較例で作った磁気テープについて、走
行耐久性、および耐食性を評価した。走行耐久性はスチ
ル試験を行い、初期出力が8db低下した時点をもって
スチル寿命とした。耐食性は磁気テープを60℃、90
%RHの条件下に30日1fff放置した場合の飽和磁
化(Ms)の劣化率により評価した。結果を下表に示す
The running durability and corrosion resistance of the magnetic tapes made in each example and comparative example were evaluated. Running durability was determined by a still test, and the time when the initial output decreased by 8 db was defined as the still life. Corrosion resistance of magnetic tape at 60℃ and 90℃
Evaluation was made based on the deterioration rate of saturation magnetization (Ms) when left for 1fff for 30 days under conditions of %RH. The results are shown in the table below.

強磁性金属薄膜の磁気記録層と、有機化合物のプラズマ
重合保護膜層から成る磁気記録媒体において、プラズマ
重合保護膜層形成の際に、同時に有機化合物もしくは水
素のイオン化活性粒子を基体に照射することにより、プ
ラズマ重合膜の架橋が進行して硬くて稠密な膜となり、
走行耐久性および耐食性が一段と向1−シたことがわか
る。
In a magnetic recording medium consisting of a magnetic recording layer of a ferromagnetic metal thin film and a plasma polymerized protective film layer of an organic compound, simultaneously irradiating the substrate with ionized active particles of an organic compound or hydrogen when forming the plasma polymerized protective film layer. As a result, crosslinking of the plasma polymerized film progresses and becomes a hard and dense film.
It can be seen that the running durability and corrosion resistance were further improved.

[発明の効果コ 以上説明したように、本発明の方法によればプラズマ重
合保護膜の架橋度を高めることにより、膜の耐久性およ
び耐食性を飛躍的に向上させることができる。
[Effects of the Invention] As explained above, according to the method of the present invention, by increasing the degree of crosslinking of the plasma polymerized protective film, the durability and corrosion resistance of the film can be dramatically improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に使用するプラズマ重合装置の一例を
示す概略断面図であり、第2図は、本発明によって得ら
れた磁気テープの部分拡大断面図である。 1・・・ポリエステルフィルム、2・・・原反ロール。 3・・・キャンロール、4・・・巻き取りロール。 5・・・処理槽、6・・・ガス導入管、7・・・電極。 8・・・イオン銃、9・・・ガス導入0.10・・・排
気系11・・・高周波電源、12・・・強磁性金属薄成
層。
FIG. 1 is a schematic sectional view showing an example of a plasma polymerization apparatus used in the present invention, and FIG. 2 is a partially enlarged sectional view of a magnetic tape obtained by the present invention. 1... Polyester film, 2... Original fabric roll. 3... Can roll, 4... Winding roll. 5... Processing tank, 6... Gas introduction pipe, 7... Electrode. 8... Ion gun, 9... Gas introduction 0.10... Exhaust system 11... High frequency power supply, 12... Ferromagnetic metal thin layer.

Claims (1)

【特許請求の範囲】[Claims] (1)非磁性基体と、強磁性金属薄膜からなる磁気記録
層と、有機化合物のプラズマ重合保護膜層とから成る磁
気記録媒体において、プラズマ重合保護膜層形成の際に
、同時に有機化合物のイオン化活性粒子を、もしくは水
素原子イオンまたは水素分子イオンを基体に照射するこ
とを特徴とする磁気記録媒体の製造方法。
(1) In a magnetic recording medium consisting of a nonmagnetic substrate, a magnetic recording layer made of a ferromagnetic metal thin film, and a plasma polymerized protective film layer of an organic compound, the organic compound is simultaneously ionized during the formation of the plasma polymerized protective film layer. A method for producing a magnetic recording medium, which comprises irradiating a substrate with active particles, hydrogen atom ions, or hydrogen molecular ions.
JP26731986A 1986-11-10 1986-11-10 Production of magnetic recording medium Pending JPS63121124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26731986A JPS63121124A (en) 1986-11-10 1986-11-10 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26731986A JPS63121124A (en) 1986-11-10 1986-11-10 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS63121124A true JPS63121124A (en) 1988-05-25

Family

ID=17443167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26731986A Pending JPS63121124A (en) 1986-11-10 1986-11-10 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS63121124A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06203376A (en) * 1992-12-10 1994-07-22 Internatl Business Mach Corp <Ibm> Method for formation of polymer thin film and magnetic recording body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06203376A (en) * 1992-12-10 1994-07-22 Internatl Business Mach Corp <Ibm> Method for formation of polymer thin film and magnetic recording body

Similar Documents

Publication Publication Date Title
EP0206115A2 (en) Magnetic recording medium
JPS63121124A (en) Production of magnetic recording medium
JPH101305A (en) Carbon film and production of carbon film
JPH0223926B2 (en)
JPS6116028A (en) Magnetic recording medium and its production
JPS6122429A (en) Production of magnetic recording medium
JPS62167616A (en) Magnetic recording medium and its production
JPS6057535A (en) Magnetic recording medium
JPS60121521A (en) Magnetic recording medium
JPS61216123A (en) Production of magnetic recording medium
JPS60113330A (en) Production of magnetic recording medium
JP3831424B2 (en) Method for manufacturing magnetic recording medium
JPS61216124A (en) Production of magnetic recording medium
JP2594625B2 (en) Manufacturing method of magnetic recording medium
JPH038117A (en) Manufacture of magnetic recording tape
JPH1091958A (en) Production of magnetic recording medium
JPS61211833A (en) Production of magnetic recording medium
JPS63113935A (en) Production of magnetic recording medium
JPS62277618A (en) Magnetic recording medium and its production
JP2548231B2 (en) Method of manufacturing magnetic recording medium
JPS6116026A (en) Production of magnetic recording medium
JPS61104429A (en) Production of magnetic recording medium
JPS61113123A (en) Magnetic recording medium
JPH02240829A (en) Production of magnetic recording medium
JPS61211834A (en) Production of magnetic recording medium