JPS6116026A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPS6116026A
JPS6116026A JP13552684A JP13552684A JPS6116026A JP S6116026 A JPS6116026 A JP S6116026A JP 13552684 A JP13552684 A JP 13552684A JP 13552684 A JP13552684 A JP 13552684A JP S6116026 A JPS6116026 A JP S6116026A
Authority
JP
Japan
Prior art keywords
film layer
plasma
protective film
layer
polymerized protective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13552684A
Other languages
Japanese (ja)
Inventor
Fumio Komi
文夫 小海
Tsunemi Oiwa
大岩 恒美
Takashi Kubota
隆 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP13552684A priority Critical patent/JPS6116026A/en
Publication of JPS6116026A publication Critical patent/JPS6116026A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)
  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To decrease the coefft. of friction of the thin ferromagnetic metallic film layer formed on a base body and to improve the corrosion resistance thereof by providing a plasma-polymerized protective layer consisting of an org. compd. on said layer then irradiating UV rays to the protective layer. CONSTITUTION:The thin ferromagnetic metallic film layer 12 consisting of a metal or the alloy thereof is provided on the base body 1 and the plasma-polymerized protective layer 13 consisting of the org. compd. is formed thereon; thereafter UV rays are irradiated to the layer 13. The crosslinking density of the layer 13 is increased and the hard layer 13 can be formed by irradiating the UV rays to the layer 13 in the above-mentioned manner, by which the excellent wear resistance is obtd. The durability and corrosion resistance of a magnetic recording medium are thus improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は強磁性金属薄膜層を磁気記録層とする磁気記
録媒体の製造方法に関しさらに詳しくは、耐久性および
耐食性に優れた前記の磁気記録媒体の製造方法に関する
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for manufacturing a magnetic recording medium having a ferromagnetic metal thin film layer as a magnetic recording layer, and more particularly, to a method for manufacturing a magnetic recording medium having excellent durability and corrosion resistance. The present invention relates to a method for producing a medium.

〔従来の技術〕[Conventional technology]

強磁性金属薄膜層を磁気記録層とする磁気記録媒体は、
通常、金属もしくはそれらの合金などを真空蒸着等によ
って基体フィルム上に被着してつくられ、高密度記録に
通した特性を有するが、反面磁気ヘッドとの摩擦係数が
大きくて摩耗や損傷を受は易く、また空気中で徐々に酸
化を受けて最大磁束密度などの磁気特性が劣化するなど
の難点がある。
A magnetic recording medium whose magnetic recording layer is a ferromagnetic metal thin film layer is
It is usually made by depositing metals or their alloys on a base film by vacuum deposition, etc., and has characteristics suitable for high-density recording, but on the other hand, it has a high coefficient of friction with the magnetic head and is susceptible to wear and damage. It also has disadvantages such as gradual oxidation in the air and deterioration of magnetic properties such as maximum magnetic flux density.

このため、従来から強磁性金属薄膜層上に種々の保護膜
層を設けるなどして耐久性および耐食性を改善すること
が行われており、近年、たとえば、フッ素系有機化合物
のモノマーガスをプラズマ重合して、フッ素系有機化合
物のプラズマ重合保護膜層を強磁性金属薄膜層上に設け
たり(特開昭58−88828号、特開昭58−102
330号)、あるいは、ケイ素系有機化合物のモノマー
ガスをプラズマ重合して、ケイ素系有機化合物のプラズ
マ重合保護膜層を強磁性金属薄膜層上に設ける(特開昭
57−82229号、特開昭58−60427号)こと
が提案されている。
For this reason, efforts have been made to improve durability and corrosion resistance by providing various protective film layers on the ferromagnetic metal thin film layer, and in recent years, for example, plasma polymerization of fluorine-based organic compound monomer gas Then, a plasma-polymerized protective film layer of a fluorine-based organic compound is provided on a ferromagnetic metal thin film layer (JP-A-58-88828, JP-A-58-102).
No. 330), or a plasma-polymerized protective film layer of a silicon-based organic compound is provided on a ferromagnetic metal thin film layer by plasma polymerizing a monomer gas of a silicon-based organic compound (JP-A No. 57-82229, JP-A-Sho 57-82229; No. 58-60427) has been proposed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、この従来の方法によって得られる有機化合物
のプラズマ重合保護膜層は架橋密度が未だ充分でないた
め、耐久性および耐食性の改善がいまひとつ充分でな(
、特にプラズマ重合時のガス圧を高くしたりして被着速
度を速くすると、架橋密度が低くプラズマ重合されて硬
い保護膜層が得られず、良好な耐摩耗性が得られないと
いう難点があった。
However, the plasma-polymerized protective film layer of an organic compound obtained by this conventional method still does not have sufficient crosslinking density, so improvements in durability and corrosion resistance are still insufficient (
In particular, if the deposition speed is increased by increasing the gas pressure during plasma polymerization, the problem is that the crosslinking density is low and plasma polymerization is performed, making it impossible to obtain a hard protective film layer and good abrasion resistance. there were.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、かかる現状に鑑み種々検討を行った結果な
されたもので、まず、強磁性金属薄膜層の表面に有機化
合物のプラズマ重合保護膜層を形成したのち、このプラ
ズマ重合保護膜層に紫外線を照射することによって、プ
ラズマ重合保護膜層の架橋密度を向上させ、比較的硬い
プラズマ重合保護膜層を形成し、耐摩耗性を充分に向上
させて、得られる磁気記録媒体の耐久性および耐食性を
充分に向上させたものである。
This invention was made as a result of various studies in view of the current situation. First, a plasma-polymerized protective film layer of an organic compound is formed on the surface of a ferromagnetic metal thin film layer, and then the plasma-polymerized protective film layer is coated with ultraviolet light. By irradiating the plasma-polymerized protective film layer with It has been sufficiently improved.

この発明において、強磁性金属S膜層上へのプラズマ重
合保護膜層の形成は、処理槽内で、炭化水素系化合物、
フッ素系有機化合物およびケイ素系有機化合物等のモノ
マーガスを、高周波によりプラズマ重合させて、強磁性
金属薄膜層上に被着することによって形成される。この
プラズマ重合保護膜層を形成するのに使用するモノマー
ガスとしては、たとえば、プロパン、エチレン、プロピ
レンなどの炭化水素系化合物のモノマーガス、C2F4
.C3Fsなどのフッ素系有機化合物のモノマーガスお
よびテトラメチルシラン、オクタメチルシクロテトラシ
ロキサン、ヘキサメチルジシラザンなどのケイ素系有機
化合物のモノマーガス等が好ましく使用され、これらの
有機化合物のモノマーカスは、高周波によりラジカルが
生成され、この生成されたラジカルが反応し重合して被
膜となる。またこれらのモノマーガスをプラズマ重合す
る際、アルゴンガス、ヘリウムガスおよび酸素ガス等の
キャリアガスを併存させると七ツマーガスを単独でプラ
ズマ重合する場合に比べて3〜5倍の速度で被着される
ため、これらのキャリアガスを併存させて行うのが好ま
しい。これらのキャリアガスと併存させる際、その組成
割合はキャリアガス対前記有機化合物の七ツマーガスの
比にして1対1〜20対1の範囲内で併存させるめが好
ましく、キャリアガスが少なすぎると被着速度が低下し
、多すぎると七ツマーガスが少なくなってプラズマ重合
反応に支障をきたす。なお、炭化水素系化合物のモノマ
ーガスを使用するときは、酸素ガスをキャリアガスとし
て使用すると酸化反応が生じるため、酸素ガスをキャリ
アガスとして使用するのは好ましくない。
In this invention, the plasma polymerized protective film layer is formed on the ferromagnetic metal S film layer in a treatment tank using a hydrocarbon compound,
It is formed by subjecting monomer gases such as fluorine-based organic compounds and silicon-based organic compounds to plasma polymerization using high frequency waves and depositing them on the ferromagnetic metal thin film layer. Examples of the monomer gas used to form this plasma-polymerized protective film layer include monomer gases of hydrocarbon compounds such as propane, ethylene, and propylene, and C2F4.
.. Monomer gases of fluorine-based organic compounds such as C3Fs and monomer gases of silicon-based organic compounds such as tetramethylsilane, octamethylcyclotetrasiloxane, and hexamethyldisilazane are preferably used. Radicals are generated, and the generated radicals react and polymerize to form a film. In addition, when plasma polymerizing these monomer gases, if a carrier gas such as argon gas, helium gas, or oxygen gas is coexisting, the deposition rate is 3 to 5 times faster than when plasma polymerizing monomer gases alone. Therefore, it is preferable to use these carrier gases together. When coexisting with these carrier gases, it is preferable that the composition ratio be within the range of 1:1 to 20:1 in terms of the ratio of carrier gas to 70% gas of the organic compound; too little carrier gas may cause damage. The deposition rate decreases, and if the amount is too high, the amount of 7-mer gas decreases, which interferes with the plasma polymerization reaction. Note that when using a monomer gas of a hydrocarbon compound, it is not preferable to use oxygen gas as a carrier gas because an oxidation reaction will occur if oxygen gas is used as a carrier gas.

プラズマ重合を行う場合のガス圧および高周波の電力は
、ガス圧が高くなるほど被着速度が速くなる反面モノマ
ーガスが比較的架橋密度低くプラズマ重合されて硬い保
護膜層が得られず、またガス圧を低くして高周波電力を
高くすると被着速度が遅くなる反面架橋密度が比較的高
い保護膜層が得られるが、ガス圧を低くして高周波電力
を高くしすぎると、モノマーガスが粉末化してしまいプ
ラズマ重合保護膜層が形成されないため、ガス圧を0.
001〜5トールの範囲内とし、平方センナあたりの高
周波電力を0.03〜5 W / ctの範囲内とする
のが好ましく、ガス圧を0.003〜1トールとし、平
方センナあたりの高周波電力を0.05〜3W/dの範
囲内とするのがより好ましい。このようにしてプラズマ
重合によって被着形成される有機化合物のプラズマ重合
保護膜層は緻密で摩擦係数も小さく、従ってこの有機化
合物のプラズマ重合保護膜層が形成されると耐摩耗性お
よび耐食性が一段と向上する。このような有機化合物の
プラズマ重合保護膜層の膜厚は、20〜1000人の範
囲内であることが好ましく、膜厚が薄すぎるとこの保護
膜層による耐久性および耐食性の効果が充分に発揮され
ず、厚すぎるとスペーシングロスが大きくなりすぎて電
磁変換特性に悪影響を及ぼす。
When performing plasma polymerization, the higher the gas pressure and the higher the high frequency power, the higher the deposition speed, but the monomer gas has a relatively low crosslinking density and plasma polymerization makes it difficult to obtain a hard protective film layer. If the gas pressure is lowered and the radio frequency power is increased too much, the deposition rate will be slow, but at the same time a protective film layer with relatively high crosslinking density will be obtained. However, if the gas pressure is lowered and the radio frequency power is too high, the monomer gas will turn into powder. If the plasma polymerized protective film layer is not formed, the gas pressure is reduced to 0.
It is preferable that the high frequency power per square senna is within the range of 0.001 to 5 Torr, and the high frequency power per square senna is within the range of 0.03 to 5 W/ct, the gas pressure is 0.003 to 1 Torr, and the high frequency power per square senna is within the range of 0.003 to 5 W/ct. is more preferably within the range of 0.05 to 3 W/d. The plasma-polymerized protective film layer of an organic compound that is formed by plasma polymerization in this way is dense and has a small coefficient of friction. Therefore, when the plasma-polymerized protective film layer of this organic compound is formed, the wear resistance and corrosion resistance are further improved. improves. The thickness of such a plasma-polymerized protective film layer of an organic compound is preferably within the range of 20 to 1000. If the film thickness is too thin, the durability and corrosion resistance effects of this protective film layer will not be sufficiently exhibited. If the thickness is too large, the spacing loss will be too large, which will adversely affect the electromagnetic conversion characteristics.

このようにして形成されたプラズマ重合保護膜層の架橋
密度を向上させ、プラズマ重合保護膜層を硬化させるに
際して使用される紫外線源としては、水銀ランプ、キセ
ノンランプ、ArFやKrF等のエキシマレーザ−およ
びN2レーザーなどがいずれも好適に使用される。この
ような紫外線は、照射量が0.1〜5 m W / c
aの範囲内となるように照射するのが好ましく、照射量
が少なすぎると前記プラズマ重合保護膜層の架橋結合が
不充分で充分に硬化されず、所期の効果が得られない。
The ultraviolet light source used to improve the crosslinking density of the plasma polymerized protective film layer thus formed and to cure the plasma polymerized protective film layer includes a mercury lamp, a xenon lamp, and an excimer laser such as ArF and KrF. and N2 laser are preferably used. Such ultraviolet rays have an irradiation dose of 0.1-5 mW/c
It is preferable to irradiate within the range of a. If the irradiation amount is too small, the plasma polymerized protective film layer will not be sufficiently cross-linked and will not be cured sufficiently, making it impossible to obtain the desired effect.

強磁性金属薄膜層の形成材料としては、Co、Fe、N
i、Co−Ni合金、Co−Cr合金、Co−P合金、
Co−N1−P合金などの強磁性材が使用され、これら
の強磁性材からなる強磁性金属薄膜層は、真空蒸着、イ
オンブレーティング、スパッタリング、メッキ等の手段
によって基体上に被着形成される。
Materials for forming the ferromagnetic metal thin film layer include Co, Fe, and N.
i, Co-Ni alloy, Co-Cr alloy, Co-P alloy,
A ferromagnetic material such as a Co-N1-P alloy is used, and a ferromagnetic metal thin film layer made of these ferromagnetic materials is deposited on a substrate by means such as vacuum evaporation, ion blasting, sputtering, or plating. Ru.

また、磁気記録媒体としては、ポリエステルフィルム、
ポリイミドフィルムなどの合成樹脂フィルムを基体とす
る磁気テープ、合成樹脂フィルム、アルミニウム板およ
びガラス板等からなる円盤やドラムを基体とする磁気デ
ィスクや磁気ドラムなど、磁気ヘッドと摺接する構造の
種々の形態を包含する。
In addition, as magnetic recording media, polyester film,
Various types of structures that come into sliding contact with magnetic heads, such as magnetic tapes based on synthetic resin films such as polyimide films, magnetic disks and magnetic drums based on disks and drums made of synthetic resin films, aluminum plates, glass plates, etc. includes.

〔実施例〕〔Example〕

次に、この発明の実施例について説明する。 Next, embodiments of the invention will be described.

実施例1 厚さ10μのポリエステルフィルムを真空落着装置に装
填し、lXl0−51−ルの真空下でコバルトを加熱蒸
発させてポリエステルフィルム上に厚さ1000人のコ
バルトからなる強磁性金属薄膜層を形成した。次いで、
第1図に示すプラズマ処理装置を使用し、強磁性金属薄
膜層を形成したポリエステルフィルム1を処理槽2内で
原反ロール3から円筒状キャン4の周側面に沿って移動
させ、巻き取りロール5に巻き取るようにセントした。
Example 1 A polyester film with a thickness of 10 μm was loaded into a vacuum deposition device, and cobalt was heated and evaporated under a vacuum of 1×10−51 μl to form a ferromagnetic metal thin film layer of cobalt with a thickness of 100 μm on the polyester film. Formed. Then,
Using the plasma processing apparatus shown in FIG. 1, a polyester film 1 on which a ferromagnetic metal thin film layer is formed is moved from a raw roll 3 along the circumferential side of a cylindrical can 4 in a processing tank 2, and then rolled onto a take-up roll. I rolled it up to 5 cents.

次いで、ポリエステルフィルム1を円筒状キャン4の周
側面に沿って0.5m/minの走行速度で走行させな
がら、処理槽2に取りつけたガス導入管6からテトラフ
ルオロエチレンのモノマーガスを200secmの流量
で導入し、ガス圧を0.05)−ルとして電極7で13
.56MHzの高周波を0.2W/ ciの電力密度で
印加してプラズマ重合を行い、プラズマ重合保護膜層を
形成した。このときのプラズマ重合保護膜層の膜厚は2
00人であった。
Next, while running the polyester film 1 along the circumferential surface of the cylindrical can 4 at a running speed of 0.5 m/min, tetrafluoroethylene monomer gas was supplied from the gas introduction pipe 6 attached to the processing tank 2 at a flow rate of 200 sec. 13 at electrode 7 with a gas pressure of 0.05)
.. Plasma polymerization was performed by applying a high frequency of 56 MHz at a power density of 0.2 W/ci to form a plasma polymerized protective film layer. The thickness of the plasma polymerized protective film layer at this time is 2
There were 00 people.

次いで、このプラズマ重合保護膜層に光透過用窓8を通
して4KWの高圧水銀ランプ9の光を1分間照射した。
Next, this plasma-polymerized protective film layer was irradiated with light from a 4KW high-pressure mercury lamp 9 for 1 minute through a light transmission window 8.

しかる後、所定の巾に裁断して第2図に示すようなポリ
エステルフィルム1上に強磁性金属薄膜N12、プラズ
マ重合保護膜M13を順次に積層形成した磁気テープA
をつくった。なお、図中10は処理槽2内を減圧するた
めの排気系であり、11は電極7に高周波を印加するた
めの高周波電源である。
Thereafter, the magnetic tape A is cut to a predetermined width and a ferromagnetic metal thin film N12 and a plasma polymerized protective film M13 are sequentially laminated on a polyester film 1 as shown in FIG.
I made it. In the figure, 10 is an exhaust system for reducing the pressure inside the processing tank 2, and 11 is a high frequency power source for applying high frequency to the electrode 7.

実施例2 実施例1におけるプラズマ重合保護膜層の形成において
、テトラフルオロエチレンの七ツマーガスに代えて、ヘ
キサメチレンジシラザンの七ツマーガスを150sec
mの流量で導入してガス圧を、0.07 )−ルに変更
した以外は実施例1と同様にしてプラズマ重合保護膜層
を形成し、磁気テープをつくった。このときのプラズマ
重合保護膜層の層厚は250人であった。
Example 2 In the formation of the plasma polymerized protective film layer in Example 1, hexamethylene disilazane hexamer gas was used for 150 sec instead of tetrafluoroethylene hexamer gas.
A plasma polymerized protective film layer was formed and a magnetic tape was produced in the same manner as in Example 1 except that the gas was introduced at a flow rate of 0.0 m and the gas pressure was changed to 0.07 m. The thickness of the plasma polymerized protective film layer at this time was 250 layers.

実施例3 実施例1におけるプラズマ重合保護膜層の形成において
、テトラフルオロエチレンの七ツマーガスに代えて、プ
ロパンのモノマーガスを300secmの流量で導入し
てガス圧を0.151.−ルとし、印加する高周波の電
力密度を0.2W/cJから0.3W/dに変更した以
外は実施例1と同様にしてプラズマ重合保護膜層を形成
し、磁気テープをつくった。。このときのプラズマ重合
保護膜層の層厚は300人であった。
Example 3 In forming the plasma-polymerized protective film layer in Example 1, propane monomer gas was introduced at a flow rate of 300 seconds in place of the tetrafluoroethylene chloride gas, and the gas pressure was adjusted to 0.151 seconds. A plasma-polymerized protective film layer was formed in the same manner as in Example 1, except that the applied high-frequency power density was changed from 0.2 W/cJ to 0.3 W/d, and a magnetic tape was produced. . The thickness of the plasma polymerized protective film layer at this time was 300 layers.

実施例4 実施例1において、4KWの高圧水銀ランプ9の光に代
えて、2KWのキセノンランプの光を、光透過用窓8を
通して2分間照射した以外は実施例1と同様にしてプラ
ズマ重合保護膜層を形成し、磁気テープをつくった。こ
のときのプラズマ重合保護膜層の層厚は300人であっ
た。
Example 4 Plasma polymerization protection was carried out in the same manner as in Example 1 except that instead of the light from the 4KW high-pressure mercury lamp 9 in Example 1, light from a 2KW xenon lamp was irradiated for 2 minutes through the light transmission window 8. A film layer was formed to create a magnetic tape. The thickness of the plasma polymerized protective film layer at this time was 300 layers.

実施例5 厚さ50μのポリイミドフィルムを真空蒸着装置に装填
し、ポリイミドフィルムを300℃に加熱しながら3X
10−6トールの真空下でコバルト−クロ11合金を加
熱蒸発させて、ポリイミドフィルム上に厚さ3500人
のコバルト−クロム合金(モル比82:18)からなる
強磁性金属薄膜層を形成した。次いで、これに実施例1
と同様にしてプラズマ重合保護膜層を形成し、磁気テー
プをつくった。
Example 5 A polyimide film with a thickness of 50μ was loaded into a vacuum evaporation apparatus, and the polyimide film was heated to 300°C while being heated 3X.
The cobalt-chromium 11 alloy was heated and evaporated under a vacuum of 10-6 Torr to form a ferromagnetic metal thin film layer of 3,500 mm thick cobalt-chromium alloy (82:18 molar ratio) on the polyimide film. Next, Example 1 was added to this.
A plasma polymerized protective film layer was formed in the same manner as described above, and a magnetic tape was manufactured.

比較例1 実施例1において、プラズマ重合保護膜層への高圧水銀
ランプの光の照射を省いた以外は実施例1と同様にして
磁気チー・プをつくった。
Comparative Example 1 A magnetic chip was produced in the same manner as in Example 1, except that the irradiation of the plasma-polymerized protective film layer with light from a high-pressure mercury lamp was omitted.

比較例2 実施例2において、プラズマ重合保護膜層−・の高圧水
銀ランプの光の照射を省いた以外は実施例2と同様にし
て磁気テープをつくった。
Comparative Example 2 A magnetic tape was produced in the same manner as in Example 2, except that the irradiation of the plasma polymerized protective film layer with light from a high-pressure mercury lamp was omitted.

比較例3 実施例3において、プラズマ重合保護膜層への高圧水銀
ランプの光の照射を省いた以外は実施例3と同様にして
磁気テープをつくった。
Comparative Example 3 A magnetic tape was produced in the same manner as in Example 3, except that the plasma polymerized protective film layer was not irradiated with light from a high-pressure mercury lamp.

比較例4 実施例5において、プラズマ重合保護膜層の形成を省い
た以外は実施例5と同様にして磁気テープをつくった。
Comparative Example 4 A magnetic tape was produced in the same manner as in Example 5 except that the formation of the plasma polymerized protective film layer was omitted.

各実施例および比較例で得られた磁気テープについて、
摩擦係数を測定し、耐久性および耐食性を試験した。耐
久性試験は摺動試験機を用いて得られた磁気テープを摺
動試験し、強磁性金属vi#膜層表面に傷がつくまでの
摺動回数を測定して行った。また耐食性試験は得られた
磁気テープを6゜°C190%RUTの条件下に7日間
放置して最大磁束密度を測定し、放置前の磁気テープの
最大磁束密度を100%とし、これと比較した値でその
劣化率を調べて行った。また耐食性試験とともにその表
面を肉眼で観察したところ、比較例4で得られた磁気テ
ープでは思い点食が多数認められたが、各実施例および
その他の比較例で得られた磁気テープでは、表面の光沢
などに異常は認められなかった。
Regarding the magnetic tapes obtained in each example and comparative example,
The coefficient of friction was measured and the durability and corrosion resistance were tested. The durability test was carried out by subjecting the obtained magnetic tape to a sliding test using a sliding testing machine, and measuring the number of times of sliding until the surface of the ferromagnetic metal vi# film layer was scratched. In addition, for the corrosion resistance test, the obtained magnetic tape was left under the conditions of 6°C 190% RUT for 7 days, the maximum magnetic flux density was measured, and the maximum magnetic flux density of the magnetic tape before being left was taken as 100%, and compared with this. The deterioration rate was investigated based on the value. In addition, when the surface of the magnetic tape obtained in Comparative Example 4 was observed with the naked eye in addition to the corrosion resistance test, many spot corrosion was observed in the magnetic tape obtained in Comparative Example 4. No abnormality was observed in the gloss or the like.

下表はその結果である。The table below shows the results.

〔発明の効果〕〔Effect of the invention〕

上表から明らかなように、この発明で得られた磁気テー
プ(実施例1ないし5)は、いずれも比較例1ないし4
で得られた磁気テープに比し、摩擦係数が小さく、また
摺動回数が多くて、劣化率が小さく、このことからこの
発明の製造方法によれば、プラズマ重合保護膜層が紫外
線の照射によって硬化された結果、耐久性および耐食性
が一段と向上された磁気記録媒体が得られることがわが
る。また、比較例4で得られた磁気テープは思い点食が
多数認められたが、実施例5で得られた磁気テープは表
面の光沢などに異常が認められず、耐食性が向上されて
いることがわかる。
As is clear from the above table, the magnetic tapes obtained in the present invention (Examples 1 to 5) are all the same as Comparative Examples 1 to 4.
Compared to the magnetic tape obtained in It can be seen that as a result of hardening, a magnetic recording medium with further improved durability and corrosion resistance can be obtained. In addition, the magnetic tape obtained in Comparative Example 4 had many pitting corrosions, but the magnetic tape obtained in Example 5 showed no abnormality in surface gloss, indicating improved corrosion resistance. I understand.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はプラズマ重合保護膜層を形成する際に使用する
プラズマ処理装置の1例を示す概略断面図、第2図はこ
の発明の製造方法によって得られた磁気テープの部分拡
大断面図である。
FIG. 1 is a schematic sectional view showing an example of a plasma processing apparatus used in forming a plasma polymerized protective film layer, and FIG. 2 is a partially enlarged sectional view of a magnetic tape obtained by the manufacturing method of the present invention. .

Claims (1)

【特許請求の範囲】[Claims] 1、基体上に金属もしくはそれらの合金からなる強磁性
金属薄膜層を形成し、この強磁性金属薄膜層上に有機化
合物のプラズマ重合保護膜層を形成したのち、このプラ
ズマ重合保護膜層に紫外線を照射することを特徴とする
磁気記録媒体の製造方法
1. Form a ferromagnetic metal thin film layer made of metal or an alloy thereof on a substrate, form a plasma polymerized protective film layer of an organic compound on this ferromagnetic metal thin film layer, and then apply ultraviolet rays to this plasma polymerized protective film layer. A method for manufacturing a magnetic recording medium characterized by irradiating
JP13552684A 1984-06-30 1984-06-30 Production of magnetic recording medium Pending JPS6116026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13552684A JPS6116026A (en) 1984-06-30 1984-06-30 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13552684A JPS6116026A (en) 1984-06-30 1984-06-30 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS6116026A true JPS6116026A (en) 1986-01-24

Family

ID=15153832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13552684A Pending JPS6116026A (en) 1984-06-30 1984-06-30 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS6116026A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5359891A (en) * 1991-07-08 1994-11-01 Nippondenso Co., Ltd. Thermal type flowmeter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5359891A (en) * 1991-07-08 1994-11-01 Nippondenso Co., Ltd. Thermal type flowmeter
US5509306A (en) * 1991-07-08 1996-04-23 Nippondenso Co., Ltd. Thermal type flowmeter

Similar Documents

Publication Publication Date Title
JPS6116026A (en) Production of magnetic recording medium
JPS6116028A (en) Magnetic recording medium and its production
JPS60121521A (en) Magnetic recording medium
JPS62279521A (en) Production of magnetic recording medium
JPS61104429A (en) Production of magnetic recording medium
JPH031322A (en) Magnetic recording medium and its production
JPS61211833A (en) Production of magnetic recording medium
JPS6122433A (en) Production of magnetic recording medium
JPS60101722A (en) Production of magnetic recording medium
JPS6116030A (en) Production of magnetic recording medium
JPS6057535A (en) Magnetic recording medium
JPS62273624A (en) Magnetic recording medium and its production
JPS6122429A (en) Production of magnetic recording medium
JP2594625B2 (en) Manufacturing method of magnetic recording medium
JPS62167616A (en) Magnetic recording medium and its production
JPS60237639A (en) Production of magnetic recording medium
JPS6122432A (en) Production of magnetic recording medium
JPS6057534A (en) Magnetic recording medium
JPS60145532A (en) Manufacture of magnetic recording medium
JPS6258417A (en) Magnetic recording medium and its production
JPS60237640A (en) Production of magnetic recording medium
JPS6122430A (en) Production of magnetic recording medium
JPS61214138A (en) Production of magnetic recording medium
JPS61216124A (en) Production of magnetic recording medium
JPS6122426A (en) Magnetic recording medium