JPS63113935A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPS63113935A
JPS63113935A JP26169986A JP26169986A JPS63113935A JP S63113935 A JPS63113935 A JP S63113935A JP 26169986 A JP26169986 A JP 26169986A JP 26169986 A JP26169986 A JP 26169986A JP S63113935 A JPS63113935 A JP S63113935A
Authority
JP
Japan
Prior art keywords
film layer
protective film
plasma
layer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26169986A
Other languages
Japanese (ja)
Inventor
Minoru Ichijo
稔 一條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP26169986A priority Critical patent/JPS63113935A/en
Publication of JPS63113935A publication Critical patent/JPS63113935A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To improve durability by forming a magnetic layer on a substrate, forming a protective film layer by a vapor deposition method on said layer and exposing the protective film layer to the gas of an org. compd. having carbon-carbon multiple bonds of <=8C. CONSTITUTION:A polyester film 1 on which a thin ferromagnetic metallic film layer is formed by using a plasma treatment device is moved along the peripheral side face of a cylindrical can 5 rotating across treating tanks 3, 4 separated above and below from a stock roll 2 and is so set as to be taken up on a take-up roll. The film 1 is then run along the peripheral side face of the can 5 and plasma polymn. is executed by impressing a high frequency from an electrode 8 under 0.05Torr gaseous pressure to form the plasma-polymerized protective film layer on the film to 200Angstrom thickness. Gaseous butadiene is the introduced into the treatment vessel 3 and the film 1 is exposed to the gas. After the film is cut to a prescribed width, the thin ferromagnetic metallic film layer 10 and the plasma-polymerized protective film layer 11 are successively laminated on the film 1. A magnetic tape A is thus prepd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は磁気記録媒体の製造方法に関し、さらに詳し
くは耐久性に優れた磁気記録媒体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a magnetic recording medium, and more particularly to a method of manufacturing a magnetic recording medium with excellent durability.

〔従来の技術〕[Conventional technology]

一般に、金属もしくはそれらの合金などを真空蒸着、ス
パッタリング等によって基体フィルム上に被着するか、
あるいは磁性粉末を結合剤成分とともに基体フィルム上
に結着してつくられる磁気記録媒体は、記録再生時に磁
気ヘッド等と激しく摺接するため磁性層が摩耗されやす
く、特に真空蒸着等によって形成される強磁性金属薄膜
層は、高密度記録に適した特性を有する反面、磁気ヘッ
ドとの摩擦係数が太き(て摩耗や損傷を受けやすい。
Generally, metals or their alloys are deposited on a base film by vacuum evaporation, sputtering, etc.
Alternatively, magnetic recording media made by bonding magnetic powder together with a binder component onto a base film are susceptible to abrasion of the magnetic layer due to violent sliding contact with a magnetic head etc. during recording and reproduction. Although the magnetic metal thin film layer has characteristics suitable for high-density recording, it has a large coefficient of friction with the magnetic head (and is susceptible to wear and damage).

このため、磁性層の耐久性を改善する方法として、近年
、ベーパーディポジション法により保護膜層を磁性層上
に形成することが試みられており、たとえば、有機化合
物の七ツマーガスをプラズマ重合して、有機化合物のプ
ラズマ重合保護膜層を設けたり(特開昭58−8882
8号、特開昭58−102330号、特開昭57−82
229号、特開昭58−60427号)、あるいは、ス
パッタリング法やCVD法やイオン化蒸着法などによっ
てカーボンからなる保護膜層を設ける(特公昭60−2
3406号、特開昭60−157726号)ことなどが
提案されている。
Therefore, as a method to improve the durability of the magnetic layer, attempts have been made in recent years to form a protective film layer on the magnetic layer using the vapor deposition method. , providing a plasma polymerized protective film layer of an organic compound (Japanese Patent Laid-Open No. 58-8882)
No. 8, JP-A-58-102330, JP-A-57-82
229, JP-A No. 58-60427), or a protective film layer made of carbon is provided by a sputtering method, a CVD method, an ionized vapor deposition method, etc. (JP-A No. 60-60-2
No. 3406, JP-A-60-157726), etc. have been proposed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、これら従来のプラズマ重合、スパンタリング
、CVDなどのベーパーディポジション法によって得ら
れる保護膜層は、−旦モツマー分子やターゲットをラジ
カル等に解離して保護膜層を形成させるので、保護膜層
中に未反応の活性なラジカルが大量に残存してしまい、
保護膜層が経時変化を引き起こして、保護膜層としての
機能の劣化やばらつきを起こし易いという難点がある。
However, in the protective film layer obtained by these conventional vapor deposition methods such as plasma polymerization, sputtering, and CVD, the protective film layer is formed by first dissociating motumer molecules and targets into radicals, etc. A large amount of unreacted active radicals remain inside,
There is a drawback in that the protective film layer tends to change over time, resulting in deterioration and variation in its function as a protective film layer.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、かかる現状に鑑み種々検討を行った結果な
されたもので、まず、磁性層の表面にベーパーディポジ
ション法により保護膜層を形成したのち、この保護膜層
を炭素原子数8以下の炭素−炭素多重結合を有する有機
化合物のガス中にさらすことによって、保護膜層中の活
性な残存ラジカルを減らし、保護膜層の経時的な劣化を
防止して、耐久性を充分に向上させたものである。
This invention was made as a result of various studies in view of the current situation. First, a protective film layer is formed on the surface of the magnetic layer by a vapor deposition method, and then this protective film layer is Exposure to a gas containing an organic compound containing carbon-carbon multiple bonds reduces active residual radicals in the protective film layer, prevents deterioration of the protective film layer over time, and sufficiently improves durability. It is something.

この発明におけるベーパーディポジション法は、気体ま
たは液体、固体の蒸気を、プラズマ、熱、光などによっ
て活性な種として基体上に被着させ、重合や化学反応を
起こさせて薄膜層を形成する方法であり、たとえば、気
体または充分な蒸気圧を持つ液体、固体の原料のモノマ
ーガスを、プラズマ、熱、光励起などの方法によって分
解し、この分解された活性種を基体上に被着させ、重合
反応を起こさせて膜を成長させるプラズマ重合法(プラ
ズマCVD法)、熱CVD法、光CVD法などのCVD
法、固体原料を希ガスのプラズマなどによって気化させ
基体上に被着させるスパッタリング法、固体原料を加熱
して蒸着させ基体上に被着させる真空蒸着法、ガス状原
料を電子線照射などによりイオン化させて基体上に被着
させ重合反応を起こさせて膜を成長させるイオン化蒸着
法など、ガス状にして活性化させた種を基体に被着させ
膜を成長させる方法一般を包含する。
The vapor deposition method in this invention is a method in which gas, liquid, or solid vapor is deposited on a substrate as an active species using plasma, heat, light, etc., and polymerization or chemical reaction occurs to form a thin film layer. For example, a gaseous or liquid or solid raw material monomer gas with sufficient vapor pressure is decomposed by a method such as plasma, heat, or optical excitation, and the decomposed active species are deposited on a substrate and polymerized. CVD methods such as plasma polymerization method (plasma CVD method), thermal CVD method, and photoCVD method, which grow a film by causing a reaction.
method, sputtering method in which a solid raw material is vaporized by rare gas plasma etc. and deposited on a substrate, vacuum evaporation method in which a solid raw material is heated and vaporized and deposited on a substrate, and gaseous raw material is ionized by electron beam irradiation etc. It includes general methods in which a gaseous and activated species is deposited on a substrate to grow a film, such as an ionized vapor deposition method in which a species is deposited on a substrate to cause a polymerization reaction to grow a film.

このようにプラズマ重合やイオン化蒸着法によって保護
膜層を形成する際に使用される原料としては、たとえば
、気体であるメタン、エチレン、プロパン、テトラフル
オロエチレン、充分な蒸気圧を持つ液体であるベンゼン
、ヘキサン、テトラメチルシラン、ヘキサメチルジシラ
ザン、充分な蒸気圧を持つ固体であるフェロセンなど、
気体または充分な蒸気圧を持つ液体、固体原料であれば
いずれも好適に使用される。またスパッタリング法によ
って保護膜層を形成する際に使用される固体原料として
は、グラファイト、5i02、ボロンカーバイドなどの
無機原料、またはポリイミド、ポリエステル、ポリテト
ラフルオロエチレンなどの合成樹脂原料などが好ましく
使用され、さらに真空茅着法によって保護膜層を形成す
る隙に使用される固体原料としては、B 、T a −
、T tなどの無機原料およびステアリン酸、ベヘン酸
などの有機原料が好ましく使用される。
The raw materials used to form the protective film layer by plasma polymerization or ionized vapor deposition include, for example, gases such as methane, ethylene, propane, and tetrafluoroethylene, and liquids with sufficient vapor pressure such as benzene. , hexane, tetramethylsilane, hexamethyldisilazane, ferrocene, which is a solid with sufficient vapor pressure, etc.
Any gas, liquid or solid raw material with sufficient vapor pressure is suitably used. In addition, as the solid raw material used when forming the protective film layer by the sputtering method, inorganic raw materials such as graphite, 5i02, boron carbide, etc., or synthetic resin raw materials such as polyimide, polyester, polytetrafluoroethylene, etc. are preferably used. , Furthermore, the solid raw materials used in the gap for forming the protective film layer by the vacuum mowing method include B, Ta-
, T t and organic raw materials such as stearic acid and behenic acid are preferably used.

このようにしてベーパーディポジション法によって形成
された保護膜層は、次いで、炭素原子数8以下の炭素−
炭素多重結合を有するを機化合物のガス中にさらすと、
この有機化合物の炭素−炭素結合が開裂し、ベーパーデ
ィポジション法によって形成された保護膜層中に、未反
応、未結合、未架橋などによって多量残存するラジカル
と結合してグラフト的に成長し、保護膜層中の残存ラジ
カルが減少する。従って、保護膜層の経時的な劣化が抑
制され、良好な保護膜層が形成されて耐久性が充分に向
上される。
The protective film layer thus formed by the vapor deposition method is then coated with a carbon-carbon compound having 8 or less carbon atoms.
When a carbon compound with multiple bonds is exposed to organic compound gas,
The carbon-carbon bond of this organic compound is cleaved and grows in a graft-like manner by combining with a large amount of radicals remaining unreacted, unbonded, uncrosslinked, etc. in the protective film layer formed by the vapor deposition method. Remaining radicals in the protective film layer are reduced. Therefore, deterioration of the protective film layer over time is suppressed, a good protective film layer is formed, and the durability is sufficiently improved.

このように、ベーパーディポジション法によって形成さ
れた保護膜層を、炭素原子数8以下の炭素−炭素多重結
合を有する有機化合物のガス中にさらす際、真空中でこ
れらのガスを導入してさらすのが好ましいが、短時間で
あれば、大気に保護膜層をさらした後、これらの有機化
合物のガスにさらしてもよい。このような炭素原子数8
以下の炭素−炭素多重結合を有する有機化合物のガスと
しては、たとえば、エチレン、ブタジェン、1−ヘキセ
ン、アセチレン、プロピレン、テトラフルオロエチレン
、アクリル酸、スチレン等のガスが好ましく使用される
In this way, when exposing the protective film layer formed by the vapor deposition method to the gas of an organic compound having carbon-carbon multiple bonds having 8 or less carbon atoms, these gases are introduced in a vacuum and exposed. However, for a short time, the protective film layer may be exposed to the atmosphere and then exposed to the gas of these organic compounds. Such a number of carbon atoms is 8
As the gas of the organic compound having carbon-carbon multiple bonds, for example, gases such as ethylene, butadiene, 1-hexene, acetylene, propylene, tetrafluoroethylene, acrylic acid, and styrene are preferably used.

このようにして形成される保護膜層の膜厚は、20〜1
000人の範囲内であることが好ましく、膜厚が薄すぎ
るとこの保護膜層による耐久性の効果が充分に発揮され
ず、厚すぎるとスペーシングロスが大きくなりすぎて電
磁変換特性に悪影響を及ぼす。
The thickness of the protective film layer thus formed is 20 to 1
It is preferable that the thickness be within the range of 0.000 people. If the film thickness is too thin, the durability effect of this protective film layer will not be fully exhibited, and if it is too thick, the spacing loss will be too large, which will adversely affect the electromagnetic conversion characteristics. affect

基体上に形成される磁性層は、γ−Fe203粉末、F
e3O4粉末、Co含有r−Fe203粉末、CO含有
Fe3O4粉末、Fe粉末、C。
The magnetic layer formed on the substrate is made of γ-Fe203 powder, F
e3O4 powder, Co-containing r-Fe203 powder, CO-containing Fe3O4 powder, Fe powder, C.

粉末、Fe−Ni粉末などの磁性粉末を結合剤成分およ
び有機溶剤等とともに基体上に塗布、乾燥するか、ある
いは、Co、、Fe、N15Co−Ni合金、Co−C
r合金、Co−P合金、Co−N1−P合金などの強磁
性材を、真空蒸着、イオンブレーティング、スパッタリ
ング、メッキ等の手段によって基体上に被着するなどの
方法で形成される。
Magnetic powder such as powder, Fe-Ni powder, etc. is coated on the substrate together with a binder component and an organic solvent, etc. and dried, or Co, Fe, N15Co-Ni alloy, Co-C
It is formed by depositing a ferromagnetic material such as r alloy, Co--P alloy, Co--N1-P alloy, etc. on a substrate by means such as vacuum evaporation, ion blasting, sputtering, and plating.

また、磁気記録媒体としては、ポリエステルフィルム、
ポリイミドフィルムなどの合成樹脂フィルムを基体とす
る磁気テープ、合成樹脂フィルム、アルミニウム板およ
びガラス板等からなる円盤やドラムを基体とする磁気デ
ィスクや磁気ドラムなど、磁気ヘッドと摺接する構造の
種々の形態を包含する。
In addition, as magnetic recording media, polyester film,
Various types of structures that come into sliding contact with magnetic heads, such as magnetic tapes based on synthetic resin films such as polyimide films, magnetic disks and magnetic drums based on disks and drums made of synthetic resin films, aluminum plates, glass plates, etc. includes.

〔実施例〕〔Example〕

次に、この発明の実施例について説明する。 Next, embodiments of the invention will be described.

実施例1 厚さ10μmのポリエステルフィルムを真空蒸着装置に
装置し、lXl0−51−−ルの真空下でコバルトを加
熱蒸発させてポリエステルフィルム上に厚さ1000人
のコバルトからなる強磁性金属薄膜層を形成した。次い
で、第1図に示すプラズマ処理装置を使用し、強磁性金
属薄膜層を形成したポリエステルフィルム1を原反ロー
ル2から上下に分離された処理槽3,4に跨って回転す
る円筒状キャン5の周側面に沿って移動させ、巻き取り
ロール6に巻き取るようにセットした。次に、ポリエス
テルフィルム1を円筒状キャン5の周側面に沿って2m
/minの走行速度で走行させながら、処理槽4に取り
つけたガス導入管7からテトラメチルシランのモノマー
ガスを50secmの流量で導入し、ガス圧を0.05
 )−ルとして、電極8で13.56MHzの高周波を
0 、5 W / cIl!の電力密度で印加してプラ
ズマ重合を行い、プラズマ重合保護膜層を形成した。こ
のときのプラズマ重合保護膜層の膜厚は200人であっ
た。次いで、処理槽3に取りつけたガス導入管9からブ
タジェンガスを300secmの流量で導入してガス圧
を100トールとし、プラズマ重合保護膜層が形成され
たポリエステルフィルムを0.1m/minの走行速度
で逆回転させて20分間さらした。しかる後、プラズマ
処理装置から取り出し、所定の巾に裁断して、第2図に
示すようなポリエステルフィルム1上に強磁性金属薄膜
層10およびプラズマ重合保護膜層11を順次に積層形
成した磁気テープAをつくった。なお、第1図中12お
よび13はそれぞれ処理槽3および4を減圧するための
排気系であり、14は電極8に高周波を印加するための
高周波電源である。
Example 1 A polyester film with a thickness of 10 μm was placed in a vacuum evaporation apparatus, and cobalt was heated and evaporated under a vacuum of lXl0-51-1 to form a ferromagnetic metal thin film layer of cobalt with a thickness of 1000 μm on the polyester film. was formed. Next, using the plasma processing apparatus shown in FIG. 1, the polyester film 1 having a ferromagnetic metal thin film layer formed thereon is placed in a rotating cylindrical can 5 spanning treatment tanks 3 and 4 that are vertically separated from the original roll 2. The sheet was moved along the circumferential side of the sheet and set so as to be wound onto the winding roll 6. Next, the polyester film 1 is stretched for 2 m along the circumferential side of the cylindrical can 5.
/min, monomer gas of tetramethylsilane was introduced at a flow rate of 50 seconds from the gas introduction pipe 7 attached to the processing tank 4, and the gas pressure was set to 0.05 seconds.
)-le, a high frequency of 13.56 MHz is applied to the electrode 8 at 0,5 W/cIl! Plasma polymerization was performed by applying power at a power density of , to form a plasma polymerized protective film layer. The thickness of the plasma polymerized protective film layer at this time was 200. Next, butadiene gas was introduced at a flow rate of 300 sec from the gas introduction pipe 9 attached to the processing tank 3 to make the gas pressure 100 Torr, and the polyester film on which the plasma polymerized protective film layer was formed was run at a running speed of 0.1 m/min. It was rotated in the opposite direction and exposed for 20 minutes. Thereafter, the magnetic tape is taken out from the plasma processing apparatus and cut to a predetermined width, and a ferromagnetic metal thin film layer 10 and a plasma polymerized protective film layer 11 are sequentially laminated on a polyester film 1 as shown in FIG. I made A. In FIG. 1, 12 and 13 are exhaust systems for reducing the pressure in the processing tanks 3 and 4, respectively, and 14 is a high frequency power source for applying high frequency to the electrode 8.

実施例2 実施例1において、ガス導入管9からブタジェンガスに
代えてスチレンガスをガス圧が15トールになるまで導
入し、30分間さらした以外は実施例1と同様にしてプ
ラズマ重合保護膜層を形成し、磁気テープAをつくった
Example 2 A plasma-polymerized protective film layer was formed in the same manner as in Example 1, except that styrene gas was introduced from the gas introduction pipe 9 in place of butadiene gas until the gas pressure reached 15 Torr and exposed for 30 minutes. A magnetic tape A was produced.

実施例3 円盤状のアルミニウム基体上に、コバルト−ニッケル合
金をメッキし、厚さ1000人のコバルト−ニッケル合
金からなる強磁性金属薄膜層を形成した。次いで、第3
図に示すスパッタリング装置を使用し、強磁性金属薄膜
層を形成したアルミニウム基体15を処理槽16内の基
板電極17にセットした。次に、処理槽16に取りつけ
たガス導入管18からArガスを20secmの流量で
導入して、ガス圧を0.005トールとし、グラファイ
トからなるターゲット19をセットした電極20に13
.56MHzの高周波電力を100OWで印加してスパ
ッタリングし、厚さ500人のカーボンからなる保護膜
層を形成した。次いで、処理槽16に取りつけたガス導
入管18からブタジェンガスを300secmの流量で
導入してガス圧を100トールとし、プラズマ重合保護
膜層が形成されたアルミニウム基体15を30分間さら
し、磁気ディスクをつくった。なお、第3図中21は処
理槽16を減圧するための排気系であり、22は電極2
0に高周波を印加するための高周波電源である。
Example 3 A cobalt-nickel alloy was plated on a disc-shaped aluminum substrate to form a ferromagnetic metal thin film layer of cobalt-nickel alloy with a thickness of 1000 mm. Then the third
Using the sputtering apparatus shown in the figure, an aluminum substrate 15 on which a ferromagnetic metal thin film layer was formed was set on a substrate electrode 17 in a processing tank 16. Next, Ar gas was introduced at a flow rate of 20 sec from the gas introduction pipe 18 attached to the processing tank 16, and the gas pressure was set to 0.005 torr, and the target 19 made of graphite was set on the electrode 20.
.. Sputtering was performed by applying a high frequency power of 56 MHz at 100 OW to form a protective film layer made of carbon with a thickness of 500 MW. Next, butadiene gas was introduced at a flow rate of 300 sec through the gas introduction pipe 18 attached to the processing tank 16 to make the gas pressure 100 Torr, and the aluminum substrate 15 on which the plasma polymerized protective film layer was formed was exposed for 30 minutes to produce a magnetic disk. Ta. In addition, 21 in FIG. 3 is an exhaust system for reducing the pressure in the processing tank 16, and 22 is an exhaust system for reducing the pressure in the processing tank 16.
This is a high frequency power supply for applying high frequency to 0.

比較例1 実施例1において、ブタジェンガス中にさらす処理を省
いた以外は、実施例1と同様にして磁気テープをつくっ
た。
Comparative Example 1 A magnetic tape was produced in the same manner as in Example 1, except that the process of exposing it to butadiene gas was omitted.

比較例2 実施例3において、ブタジェンガス中にさらす処理を省
いた以外は、実施例3と同様にして磁気ディスクをつく
った。
Comparative Example 2 A magnetic disk was produced in the same manner as in Example 3, except that the process of exposing it to butadiene gas was omitted.

各実施例および比較例で得られた磁気テープおよび磁気
ディスクについて、製造直後と、60’C190%RH
の条件下に7日間放置した後の摩擦係数を測定し、g擦
係数の経時変化を調べた。
Regarding the magnetic tapes and magnetic disks obtained in each example and comparative example, immediately after manufacturing and at 60'C190%RH.
The friction coefficient was measured after being left for 7 days under the following conditions, and changes in the g-friction coefficient over time were investigated.

下表はその結果である。The table below shows the results.

〔発明の効果〕〔Effect of the invention〕

上表から明らかなように、この発明で得られた磁気テー
プおよび磁気ディスク(実施例1ないし3)は、いずれ
も比較例1および2で得られた磁気テープおよび磁気デ
ィスクに比し、放置後の摩擦係数が小さく、このことか
らこの発明の製造方法によれば、摩擦係数の経時変化が
良好に抑制され、耐久性が一段と向上されていることが
わかる。
As is clear from the above table, the magnetic tapes and magnetic disks obtained by the present invention (Examples 1 to 3) had a lower resistance after being left in comparison with the magnetic tapes and magnetic disks obtained in Comparative Examples 1 and 2. The coefficient of friction is small, and this shows that according to the manufacturing method of the present invention, changes in the coefficient of friction over time are well suppressed and the durability is further improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は保護膜層を形成する際に使用するプラズマ処理
装置の1例を示す概略断面図、第2図はこの発明の製造
方法によって得られた磁気テープの部分拡大断面図、第
3図は保護膜層を形成する際に使用するスパッタリング
装置の1例を示す概略断面図である。 1・・・ポリエステルフィルム(基体)、10・・・強
磁性金属薄膜層(磁性層)、11・・・プラズマ重合保
護膜層(保護膜層)、15・・・アルミニウム基体、A
・・・磁気テープく磁気記録媒体)特許出願人  日立
マクセル株式会社 第2図 1ポリエステルフイルム
FIG. 1 is a schematic sectional view showing an example of a plasma processing apparatus used in forming a protective film layer, FIG. 2 is a partially enlarged sectional view of a magnetic tape obtained by the manufacturing method of the present invention, and FIG. 3 FIG. 1 is a schematic cross-sectional view showing an example of a sputtering apparatus used when forming a protective film layer. DESCRIPTION OF SYMBOLS 1... Polyester film (substrate), 10... Ferromagnetic metal thin film layer (magnetic layer), 11... Plasma polymerized protective film layer (protective film layer), 15... Aluminum substrate, A
...Magnetic tape (magnetic recording medium) Patent applicant Hitachi Maxell Ltd. Figure 2 1 Polyester film

Claims (1)

【特許請求の範囲】[Claims] 1、基体上に磁性層を形成し、次いで、この磁性層上に
ベーパーディポジション法により保護膜層を形成したの
ち、この保護膜層を炭素原子数8以下の炭素−炭素多重
結合を有する有機化合物のガス中にさらすことを特徴と
する磁気記録媒体の製造方法
1. Form a magnetic layer on a substrate, then form a protective film layer on this magnetic layer by vapor deposition method, and then replace this protective film layer with an organic material having carbon-carbon multiple bonds having 8 or less carbon atoms. A method for producing a magnetic recording medium, which comprises exposing it to a compound gas.
JP26169986A 1986-10-31 1986-10-31 Production of magnetic recording medium Pending JPS63113935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26169986A JPS63113935A (en) 1986-10-31 1986-10-31 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26169986A JPS63113935A (en) 1986-10-31 1986-10-31 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS63113935A true JPS63113935A (en) 1988-05-18

Family

ID=17365483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26169986A Pending JPS63113935A (en) 1986-10-31 1986-10-31 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS63113935A (en)

Similar Documents

Publication Publication Date Title
JP2761859B2 (en) Magnetic recording media
JPH0437484B2 (en)
JPS63113935A (en) Production of magnetic recording medium
JPS62279521A (en) Production of magnetic recording medium
JPS6116028A (en) Magnetic recording medium and its production
JPS62172521A (en) Magnetic recording medium
JPS6122433A (en) Production of magnetic recording medium
JPH01264632A (en) Method and apparatus for producing magnetic recording medium
JPS62167616A (en) Magnetic recording medium and its production
JPS62167615A (en) Magnetic recording medium and its production
JPS61214138A (en) Production of magnetic recording medium
JPS6122430A (en) Production of magnetic recording medium
JPS6344318A (en) Production of magnetic recording medium
JPH038117A (en) Manufacture of magnetic recording tape
JPH02214017A (en) Magnetic recording tape
KR890001948B1 (en) The method of manufacturing magnetic record carrier
JP2548231B2 (en) Method of manufacturing magnetic recording medium
JPS61214137A (en) Production of magnetic recording medium
JPS63121124A (en) Production of magnetic recording medium
JPS62157324A (en) Magnetic recording medium and its production
JPH0528465A (en) Production of protective film for magnetic disk
JPS61211833A (en) Production of magnetic recording medium
JPS63183608A (en) Magnetic recording medium
JPS63183609A (en) Magnetic recording medium
JPS62236138A (en) Production of magnetic recording medium