JPS63120444A - Interlayer insulating film - Google Patents

Interlayer insulating film

Info

Publication number
JPS63120444A
JPS63120444A JP26627286A JP26627286A JPS63120444A JP S63120444 A JPS63120444 A JP S63120444A JP 26627286 A JP26627286 A JP 26627286A JP 26627286 A JP26627286 A JP 26627286A JP S63120444 A JPS63120444 A JP S63120444A
Authority
JP
Japan
Prior art keywords
film
boron
nitrogen
thin film
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26627286A
Other languages
Japanese (ja)
Inventor
Masahiko Maeda
前田 正彦
Takahiro Makino
牧野 孝裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP26627286A priority Critical patent/JPS63120444A/en
Publication of JPS63120444A publication Critical patent/JPS63120444A/en
Pending legal-status Critical Current

Links

Landscapes

  • Local Oxidation Of Silicon (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To form a thick interlayer insulating film in low dielectric constant having a high passivation effect by a method wherein a silicon nitride film is deposited on a thin film mainly composed of silicon boron and nitrogen or boron and nitrogen. CONSTITUTION:The title interlayer insulating film is composed of a lower layer 1 comprising a thin film mainly composed of silicon, boron and nitrogen or boron and nitrogen as well as an upper layer 2 composed of a deposited layer structure comprising a silicon nitride film as in interlayer insulating film. Said insulating thin film 1 mainly composed of silicon, boron and nitrogen or boron and nitrogen is formed using mixed gas of SiH4 B2H6-NH8 or B2H6-NH8 by, e.g., plasma CVD process while this insulating thin film 1 is made of lower dielectric constant material than that of silicon oxide film. On the other hand, the silicon nitride film 2 is formed using mixed gas of SiH4-NH8 by, e.g., plasma CVD process having a high passivation effect on the water content and alkali ions.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、低容量でかつ耐湿性、耐アルカリイオン性に
優れる層間絶縁膜に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an interlayer insulating film that has low capacity and excellent moisture resistance and alkali ion resistance.

〔従来の技術〕[Conventional technology]

従来、多層配線の層間絶縁膜として用いられてきたシリ
コン酸化膜は、その比誘電率は約4と小さいものの、耐
湿性、耐アルカリイオン性共に低く、配線の信頼性の点
で問題があった。また、シリコン酸化膜にリンを添加し
たリンガラス膜は、耐アルカリイオン性は飛躍的に向上
するものの、耐湿性は低く、吸湿した水分と膜中のリン
が反応してリン酸を形成し、それが配線材料を腐食する
という問題点があった。さらにいずれの膜においても、
膜厚を厚くするとクラック等が生じ、また段差被覆性に
劣るという欠点があった。
Although the silicon oxide film conventionally used as an interlayer insulating film for multilayer wiring has a small dielectric constant of approximately 4, it has low moisture resistance and alkali ion resistance, which poses problems in terms of wiring reliability. . In addition, although phosphorus glass film, which is made by adding phosphorus to silicon oxide film, has dramatically improved alkali ion resistance, its moisture resistance is low, and absorbed moisture reacts with phosphorus in the film to form phosphoric acid. There was a problem that it corroded the wiring material. Furthermore, in any film,
When the film thickness is increased, cracks occur, and the step coverage is poor.

一方、プラズマCVD法で形成したシリコン窒化膜は、
耐湿性、耐アルカリイオン性共に優れ、かつ低温形成が
可能なことから、特にアルミニウムを配線材料に用いる
多層配線において、シリコン酸化膜あるいはリンガラス
膜に替る層間絶縁膜として適用が図られてきている。こ
の膜は段差被覆性も良好で厚膜化してもクラックが生じ
ない。しかし、シリコン窒化膜の比誘電率は約7とシリ
コン酸化膜での値よりも大きく、特に超高速と目指すデ
バイスにおいては配線の寄生容量を低減する目的から、
シリコン窒化膜の低誘電率化が望まれていた。
On the other hand, the silicon nitride film formed by plasma CVD method is
Because it has excellent moisture resistance and alkali ion resistance, and can be formed at low temperatures, it is being used as an interlayer insulating film to replace silicon oxide films or phosphorous glass films, especially in multilayer wiring that uses aluminum as the wiring material. . This film also has good step coverage, and no cracks occur even when the film is thickened. However, the dielectric constant of silicon nitride film is approximately 7, which is higher than that of silicon oxide film, and in order to reduce the parasitic capacitance of wiring, especially in devices aiming for ultra-high speed,
It has been desired to lower the dielectric constant of silicon nitride films.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

シリコン、ボロンおよび窒素を主成分とし、少おいては
膜中のボロン濃度が増加するにしたがって、膜の比誘電
率が低減しシリコン酸化膜の値よpも小さな値が実現で
きることが分っている(特願昭60−299402号)
It has been found that silicon, boron, and nitrogen are the main components, and as the boron concentration in the film increases, the dielectric constant of the film decreases and a value of p smaller than that of a silicon oxide film can be achieved. (Patent Application No. 60-299402)
.

しかしBN薄膜は、例えば1400℃程度の高温常圧C
VD法で形成した場合でも吸湿性を有することが知られ
ており、したがって、前記のシリコン。
However, the BN thin film is produced at a high temperature of about 1,400 degrees Celsius at normal pressure.
It is known that even when formed by the VD method, it has hygroscopic properties, and therefore, the above-mentioned silicon.

ボロン2および窒素を主成分とする絶縁薄膜においても
薄膜の誘電率が低減する、すなわち膜中のボロン濃度が
増加するに伴って、膜の吸湿性が増加することが懸念さ
れていた。
Even in insulating thin films containing boron 2 and nitrogen as main components, there has been concern that as the dielectric constant of the thin film decreases, that is, as the boron concentration in the film increases, the hygroscopicity of the film increases.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、パッシベーション効果の優れた低誘電
率で厚膜可能な層間絶縁膜を提供することにある。
An object of the present invention is to provide an interlayer insulating film that has an excellent passivation effect, has a low dielectric constant, and can be made thick.

〔発明の構成〕[Structure of the invention]

本発明は、シリコン、ボロンおよび窒素を主成分とする
絶縁薄膜、あるいはボロンおよび窒素を主成分とする絶
縁薄膜の上にシリコン窒化膜を積層することを最も主要
な特徴どする。従来技術による層間絶縁膜構成は単一の
層で形成されていたのに対して、本発明では積層の層間
絶縁膜構成を用いる点が異なる。
The most important feature of the present invention is that a silicon nitride film is laminated on an insulating thin film containing silicon, boron, and nitrogen as main components, or on an insulating thin film containing boron and nitrogen as main components. The interlayer insulating film structure according to the prior art is formed of a single layer, whereas the present invention is different in that a laminated interlayer insulating film structure is used.

〔実施例〕〔Example〕

第1図は本発明の絶縁膜構成を示す図であって、1はシ
リコン、ボロンおよび窒素、あるいはボロンおよび窒素
を主成分とする絶縁薄膜、2はシリコン窒化膜である。
FIG. 1 is a diagram showing the structure of an insulating film according to the present invention, where 1 is an insulating thin film mainly composed of silicon, boron and nitrogen, or boron and nitrogen, and 2 is a silicon nitride film.

プラズマCVD法によpSiH4−B 2 H6−NI
hあるいはB2’H6−NH11混合ガス系を用いて形
成された絶縁薄膜1は低比誘電率材料であり、シリコン
酸化膜での値よりも小さな比誘電率をもつ。一方、プラ
ズマCVD法により、5iH4−NHs混合ガス系を用
いて形成されたシリコン窒化膜2は水分およびアルカリ
イオンに対して極めて高いバツシベーンヨン効果を有す
ることは周知の事実である。
pSiH4-B 2 H6-NI by plasma CVD method
The insulating thin film 1 formed using the h or B2'H6-NH11 mixed gas system is a low dielectric constant material and has a dielectric constant smaller than that of a silicon oxide film. On the other hand, it is a well-known fact that the silicon nitride film 2 formed by the plasma CVD method using a 5iH4-NHs mixed gas system has an extremely high bombardment effect against moisture and alkali ions.

以下図面にて、この積層絶縁薄膜の特性を述べる。The characteristics of this laminated insulating thin film will be described below with reference to the drawings.

第2図は、第1図に示した積層絶縁薄膜において、絶縁
薄膜1の膜厚を0.85μmとし、シリコン窒化膜2の
膜厚を帆15μmとした場合の実効的な比誘電率の絶縁
薄膜1中のボロン含有量に対するない場合に比べて比誘
電率は、7〜10%程度大きくなっているが、その値は
シリコン酸化膜の値と同等かより小さな値となっている
。なお、第2図中、横座標[B]/ ([Si) ” 
[B] + [N) ) = Oのとき[Si) = 
0.43 、 (N) = 0.57゜横座標= 0.
51 のとき[Si] = 0 、 [N] = 0.
49で、その間横座標の増加と共に[Si)、 [N)
共単調に減少している。
Figure 2 shows the effective dielectric constant of the laminated insulating thin film shown in Figure 1 when the thickness of the insulating thin film 1 is 0.85 μm and the thickness of the silicon nitride film 2 is 15 μm. The relative permittivity of the thin film 1 is about 7 to 10% higher than that of the case without boron content, but the value is equal to or smaller than that of a silicon oxide film. In addition, in Fig. 2, the abscissa [B]/([Si)”
[B] + [N)) = When O, [Si) =
0.43, (N) = 0.57° abscissa = 0.
51, [Si] = 0, [N] = 0.
49, while the abscissa increases [Si), [N]
Both are monotonically decreasing.

次に積層絶縁薄膜の耐湿性について述べる。Next, we will discuss the moisture resistance of laminated insulating thin films.

第3図は、最も吸湿性が高いボロンおよび窒素を主成分
とする絶縁薄膜について、シリコン窒化膜を積層した場
合の耐湿性改善効果を示したものである。シリコン窒化
膜を積層しない場合、堆積直後の膜とそれを3ケ月間空
気中に放置した膜との赤外吸収スペクトルの差スペクト
ル1テハ3435ern”−”付近の窒素−水素結合お
よび2510cm−”付近のボロン−水素結合の減少と
同時に、1375 emu”付近のボロン−窒素結合の
減少も観測され、吸湿による明らかな構造変化を生じて
いることを示している。しかし、シリコン窒化膜を積層
した試料においては、堆積直後の膜と3ケ月間空気中放
置した膜との赤外吸収スペクトルの差スペクトル2は、
両者の構造に有異な差が生じていないことを示しており
、シリコン窒化膜積層により、ボロンおよび窒素を主成
分とする絶縁薄膜の吸湿性が完全に防止されていること
が分る。また差スペクトル1および2の場合共、382
5 cm’−”付近に吸収の増加が観測されるが、これ
は空気中放置の間に試料表面に吸着した水分によるもの
でちゃ、吸湿によるものではない。なお1と2で縦軸の
原点の位置はずれて示しである。シリコン窒化膜は水分
だはでなくアルカリイオンに対しても高いパッシベーシ
ョン効果を有することから積層絶縁薄膜はアルカリイオ
ンに対しても高いパッシベーション効果が期待できる。
FIG. 3 shows the effect of improving moisture resistance when a silicon nitride film is laminated on an insulating thin film whose main components are boron and nitrogen, which have the highest hygroscopicity. When silicon nitride films are not stacked, the difference in infrared absorption spectra between the film immediately after deposition and the film left in the air for 3 months is the nitrogen-hydrogen bond near 3435 ern''-'' and the nitrogen-hydrogen bond near 2510 cm-''. At the same time as the boron-hydrogen bond at 1375 emu'' decreased, the boron-nitrogen bond at around 1375 emu'' was also observed to decrease, indicating a clear structural change due to moisture absorption. However, in the case of a sample with stacked silicon nitride films, the difference spectrum 2 in the infrared absorption spectra between the film immediately after deposition and the film left in the air for 3 months is as follows.
This shows that there is no significant difference between the two structures, and it can be seen that the silicon nitride film stack completely prevents the hygroscopicity of the insulating thin film whose main components are boron and nitrogen. In addition, in both cases of difference spectra 1 and 2, 382
An increase in absorption is observed near 5 cm'-'', but this is due to moisture adsorbed on the sample surface while it was left in the air, and not due to moisture absorption. Note that 1 and 2 are the origin of the vertical axis. The position of is shown as being shifted.Since the silicon nitride film has a high passivation effect not only against moisture but also against alkali ions, a laminated insulating thin film can be expected to have a high passivation effect against alkali ions as well.

本発明の積層絶縁膜はCF4/10%H2混合ガスを用
いるRIEで連続してエツチング可能である。第4図に
エツチング速度を示したが膜の組成を変化させても35
0〜480 X/minのエツチング速度が得られる。
The laminated insulating film of the present invention can be continuously etched by RIE using a CF4/10% H2 mixed gas. Figure 4 shows the etching rate, and even if the composition of the film is changed, the etching rate is 35%.
Etching rates of 0 to 480 X/min are obtained.

従って、積層構造にすることによるプロセス上の複雑さ
は生じず、シリコン窒化膜と同様にスルーホール加工が
行なえる。なお横座標の成分は第2図と同様である。
Therefore, there is no process complexity caused by the layered structure, and through-hole processing can be performed in the same way as with silicon nitride films. Note that the components of the abscissa are the same as in FIG.

なお、本実施例ではシリコン、ボロンおよび窒素を主成
分とする絶縁薄膜、あるいはボロンおよび窒素を主成分
とする絶縁薄膜、およびシリコン窒化膜の形成にプラズ
マCVD法を用いだが、これらの形成に他の方法、たと
えばスパッタリング法を用いても、あるいは両者の形成
をそれぞれ他の方法で行なう組合せによっても行えるこ
とは明らかである。
In this example, a plasma CVD method was used to form an insulating thin film containing silicon, boron, and nitrogen as main components, an insulating thin film containing boron and nitrogen as main components, and a silicon nitride film, but other methods may be used to form these. It is clear that the above method can be used, for example, a sputtering method, or by a combination of forming both using other methods.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、シリコン、ボロンおよび窒素、あ
るいはボロンおよび窒素を主成分とする絶縁薄膜とシリ
コン窒化膜の積層絶縁薄膜は厚膜化が可能で、シリコン
酸化膜の比誘電率と同等かあるいはよシ小さい比誘電率
を有し、かつ水分およびアルカリイオンに対して高いパ
ッシベーション効果を有する絶縁薄膜であるので、多層
配線における配線間および配線層間の寄生容量を低減で
きると共に、配線の信頼性を著しく向上できる利点があ
る。
As explained above, a laminated insulating thin film consisting of silicon, boron and nitrogen, or an insulating thin film mainly composed of boron and nitrogen, and a silicon nitride film can be made thicker, and has a dielectric constant equal to or equal to that of silicon oxide film. It is an insulating thin film that has a very low dielectric constant and a high passivation effect against moisture and alkali ions, so it can reduce parasitic capacitance between interconnects and interconnect layers in multilayer interconnects, and improve interconnect reliability. There are advantages that can be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の積層絶縁薄膜の構造を示す。 第2図は、絶縁薄膜の比誘電率のボロン濃度依存性を示
し、本発明の積層絶縁薄膜構造とシリコン窒化膜を積層
しない構造の特性を示す。 第3図は、堆積直後および3ケ月間空気中放置した膜の
赤外吸収スペクトルの差スペクトルを示し、同図におい
て、 1は、ボロンおよび窒素を主成分とする絶縁薄膜のみ、 2は、ボロンおよび窒素を主成分とする絶縁薄膜の上に
シリコン窒化膜を積層した試料の特性を示す。 第4図は、絶縁薄膜のRIEに対するエツチングレート
のボロン濃度依存性を示す。 第1図において、 1は低比誘電率絶縁薄膜 2はシリコン窒化膜 特許出願人 日本電信電話株式会社 代理人弁理士 玉 蟲 久 五 部(外2名)第1図 第 2 図
FIG. 1 shows the structure of the laminated insulating thin film of the present invention. FIG. 2 shows the boron concentration dependence of the dielectric constant of the insulating thin film, and shows the characteristics of the laminated insulating thin film structure of the present invention and the structure in which no silicon nitride film is laminated. Figure 3 shows the difference spectrum of the infrared absorption spectra of the film immediately after deposition and after being left in the air for three months. The characteristics of a sample in which a silicon nitride film is laminated on an insulating thin film whose main component is nitrogen are also shown. FIG. 4 shows the boron concentration dependence of the etching rate for RIE of an insulating thin film. In Figure 1, 1 is a low relative dielectric constant insulating thin film 2 is a silicon nitride film Patent applicant: Nippon Telegraph and Telephone Co., Ltd. Representative Patent Attorney Hisako Tamamushi (2 others) Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 下層としてシリコン、ボロンおよび窒素を主成分とする
薄膜あるいはボロンおよび窒素を主成分とする薄膜を使
用し、上層としてシリコン窒化膜を使用した積層構造の
層間絶縁膜。
An interlayer insulating film with a laminated structure in which the lower layer is a thin film mainly composed of silicon, boron, and nitrogen, or the main components are boron and nitrogen, and the upper layer is a silicon nitride film.
JP26627286A 1986-11-08 1986-11-08 Interlayer insulating film Pending JPS63120444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26627286A JPS63120444A (en) 1986-11-08 1986-11-08 Interlayer insulating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26627286A JPS63120444A (en) 1986-11-08 1986-11-08 Interlayer insulating film

Publications (1)

Publication Number Publication Date
JPS63120444A true JPS63120444A (en) 1988-05-24

Family

ID=17428661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26627286A Pending JPS63120444A (en) 1986-11-08 1986-11-08 Interlayer insulating film

Country Status (1)

Country Link
JP (1) JPS63120444A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03159124A (en) * 1989-11-16 1991-07-09 Nec Corp Manufacture of semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5471577A (en) * 1977-11-18 1979-06-08 Toshiba Corp Production of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5471577A (en) * 1977-11-18 1979-06-08 Toshiba Corp Production of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03159124A (en) * 1989-11-16 1991-07-09 Nec Corp Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
US6541370B1 (en) Composite microelectronic dielectric layer with inhibited crack susceptibility
US6570256B2 (en) Carbon-graded layer for improved adhesion of low-k dielectrics to silicon substrates
US5405489A (en) Method for fabricating an interlayer-dielectric film of a semiconductor device by using a plasma treatment prior to reflow
US6914335B2 (en) Semiconductor device having a low-K dielectric layer
US8114741B2 (en) Oxygen-rich layers underlying BPSG
US4582745A (en) Dielectric layers in multilayer refractory metallization structure
JPS63120444A (en) Interlayer insulating film
JPH06302704A (en) Semiconductor device
US6335274B1 (en) Method for forming a high-RI oxide film to reduce fluorine diffusion in HDP FSG process
JPH0499049A (en) Semiconductor device
JPH05121572A (en) Manufacture of semiconductor device
JPH01207932A (en) Semiconductor device
KR100331272B1 (en) Formation method of inter layer dielectric in semiconductor device
CN1510734A (en) Manufacturing method for semiconductor device
JPH10313003A (en) Formation of silicon oxide dielectric film
JPH0950995A (en) Silicon-based oxide and interlayer insulating film for semiconductor device
JPH0499026A (en) Semiconductor device
JPH0258353A (en) Semiconductor device
JP2785482B2 (en) Method for manufacturing semiconductor device
JPH08321499A (en) Silicon compound film and forming method thereof
JPH06216118A (en) Manufacture of semiconductor device
JPS6249644A (en) Manufacture of semiconductor device
JPH03276723A (en) Insulating thin film and its forming method
JPH05304218A (en) Fabrication of semiconductor device
JPH0669361A (en) Semiconductor device and its manufacture