JPH0499026A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0499026A
JPH0499026A JP20867190A JP20867190A JPH0499026A JP H0499026 A JPH0499026 A JP H0499026A JP 20867190 A JP20867190 A JP 20867190A JP 20867190 A JP20867190 A JP 20867190A JP H0499026 A JPH0499026 A JP H0499026A
Authority
JP
Japan
Prior art keywords
film
semiconductor device
passivation film
passivation
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20867190A
Other languages
Japanese (ja)
Inventor
Yasutsugu Suzuki
康嗣 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP20867190A priority Critical patent/JPH0499026A/en
Publication of JPH0499026A publication Critical patent/JPH0499026A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To improve humidity resistance, thermal conductivity, thermal shock characteristics and chemical stability, by forming a passivation film constituted of a layer whose main component is boron, carbon and nitrogen, on the surface. CONSTITUTION:A passivation film formed on the surface of a semiconductor device is constituted of a layer whose main component is boron, carbon and nitrogen. The passivation film may be contained in a plurality of layers formed on the surface of the semiconductor device. For example, an interlayer insulating film 1 is formed on the whole upper surface of the semiconductor device, and a wiring is formed on the film 1 by using aluminum metal 2. A PSG film 3 is formed on the surfaces of the film 1 and the metal 2, and further the surface of the film 3 is covered with a thin BCxNy film (passivation film) 4. PSG is excellent in the resistance to alkali ion, but humidity resistance is insufficient. By forming the BCxNy film 4 excellent in humidity resistance on the uppermost surface, the absorption of water content occurring by the lower PSG film 3 is prevented, and the resistance to alkali ion is more improved as compared with the case where only the BCxNy film 4 is formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はパッシベーション膜またはこれを含む複数層が
表面に形成された半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device having a passivation film or a plurality of layers including the passivation film formed on the surface thereof.

〔従来技術〕[Prior art]

半導体装置の表面安定化の為に、その表面に形成される
パッシベーション膜には優れた表面被覆性、耐湿性、耐
アルカリイオン性、良好な密着性が要求される。
In order to stabilize the surface of a semiconductor device, a passivation film formed on the surface thereof is required to have excellent surface coverage, moisture resistance, alkali ion resistance, and good adhesion.

従来の半導体装置には、シリコン酸化膜、このシリコン
酸化膜にリンを添加したリンガラス膜、そしてプラズマ
CVD法で形成されるシリコン窒化膜をパッシベーショ
ン膜とするものが知られている。
Conventional semiconductor devices are known to use a silicon oxide film, a phosphorus glass film obtained by adding phosphorus to the silicon oxide film, and a silicon nitride film formed by a plasma CVD method as passivation films.

シリコン酸化膜は多層配線のパッシベーション膜として
使用されているが、耐湿性、耐アルカリイオン性が低い
という短所を有する。
Silicon oxide films are used as passivation films for multilayer interconnections, but they have the disadvantage of low moisture resistance and alkali ion resistance.

また、シリコン酸化膜にリンを添加したリンガラス膜は
シリコン酸化膜よりも耐アルカリイオン性は高いが、耐
湿性が低いという短所を有する。
Further, a phosphorus glass film obtained by adding phosphorus to a silicon oxide film has higher alkali ion resistance than a silicon oxide film, but has a disadvantage of lower moisture resistance.

さらに、シリコン窒化膜は耐湿性、耐アルカリイオン性
ともに優れ、膜を低温で形成することができるという長
所を有するが、線膨脹係数が石英ガラスより大きく、S
iO膜との密着性が悪いX という短所を有する。
Furthermore, silicon nitride film has excellent moisture resistance and alkali ion resistance, and has the advantage of being able to be formed at low temperatures; however, its linear expansion coefficient is larger than that of quartz glass, and S
It has the disadvantage of poor adhesion to the iO film.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このように、従来の半導体装置に使用されてきたパッシ
ベーション膜は単層で耐湿性およびSiO膜との密着性
が良いものはなかった。
As described above, the passivation films used in conventional semiconductor devices have not been single-layered and have good moisture resistance and adhesion to the SiO film.

例えば、シリコン酸化膜が表面に形成された半導体装置
は耐湿性、耐アルカリイオン性が低いため、配線の信頼
性に悪影響を与えるという欠点があった。
For example, a semiconductor device having a silicon oxide film formed on its surface has low moisture resistance and alkali ion resistance, which has the disadvantage of adversely affecting the reliability of wiring.

また、リンガラス膜が表面に形成された半導体装置は耐
湿性が低いため、吸湿された水分と膜中のリンの反応に
よりリン酸が形成され、これが半導体装置の配線材料を
腐蝕させるという欠点があった。この場合、リンガラス
膜の膜厚が厚(なるとクラック等が生じ、段差被覆性が
劣化する。
In addition, semiconductor devices with a phosphorus glass film formed on their surfaces have low moisture resistance, so the reaction between absorbed moisture and phosphorus in the film forms phosphoric acid, which corrodes the wiring material of the semiconductor device. there were. In this case, if the thickness of the phosphor glass film becomes too large, cracks etc. will occur and the step coverage will deteriorate.

さらに、シリコン窒化膜が表面に形成された半導体装置
は、石英ガラスの線膨脹係数(約0.4X 10−6(
K−1) )に対する窒化ケイ素の線膨脹係数(約3 
X 10−6(K−’) )の差により、熱膨脹差によ
るクラックが発生しやすい。
Furthermore, a semiconductor device with a silicon nitride film formed on the surface has a linear expansion coefficient of quartz glass (approximately 0.4X 10-6).
The coefficient of linear expansion of silicon nitride (approximately 3
Due to the difference in X 10-6(K-')), cracks are likely to occur due to the difference in thermal expansion.

そこで本発明は、上記欠点のない半導体装置を提供する
ことを目的とする。
Therefore, an object of the present invention is to provide a semiconductor device free from the above-mentioned drawbacks.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を達成する為、本発明は表面にパッシベーショ
ン膜が形成された半導体装置であって、前記パッシベー
ション膜が、ホウ素、炭素、窒素を主成分とする層で構
成されていることを特徴とする。
In order to achieve the above object, the present invention provides a semiconductor device having a passivation film formed on its surface, wherein the passivation film is composed of a layer containing boron, carbon, and nitrogen as main components. .

この場合、上記パッシベーション膜は半導体装置の表面
に形成された複数層に含まれてもよい。
In this case, the passivation film may be included in multiple layers formed on the surface of the semiconductor device.

〔作用〕[Effect]

本発明に係る半導体装置は、耐湿性が高いパッシベーシ
ョン膜で表面が覆われているので、パッシベーション膜
の下部に水分が吸湿されにくい。
Since the surface of the semiconductor device according to the present invention is covered with a passivation film having high moisture resistance, moisture is hardly absorbed under the passivation film.

また、このパッシベーション膜はSiOに近い線膨脹係
数を有するので、半導体装置上のパッシベーション膜と
SiOの密着性が良くなり、半導体装置において熱膨張
によるクラックは発生しない。
Further, since this passivation film has a coefficient of linear expansion close to that of SiO, the adhesion between the passivation film on the semiconductor device and SiO is improved, and cracks due to thermal expansion do not occur in the semiconductor device.

〔実施例〕〔Example〕

以下、この発明の一実施例に係る半導体装置を添附図面
に基づき説明する。なお、説明において同一要素には同
一符号を使用し、重複する説明は省略する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A semiconductor device according to an embodiment of the present invention will be described below with reference to the accompanying drawings. In addition, in the description, the same reference numerals are used for the same elements, and redundant description will be omitted.

第1図は実施例に係るパッシベーション膜が表面に形成
された半導体装置の断面構造を示す。半導体装置の上面
には層間絶縁膜1が全面に形成されており、その上面に
はアルミニウム金属2で配線されている。層間絶縁膜1
およびアルミニウム金属2の表面にはPSG膜3が形成
されており、さらに、その表面は薄いBCN  膜(バ
ッシベy −ジョンH)4で覆われている。PSGはNaイオンの
ゲッタリング効果をもち、アルカリイオン性に優れた材
質であるが、耐湿性が不十分で、吸水によるP成分の溶
出、A1配線の腐蝕不良を起こすことがあるCLSIハ
ンドブック、電子通信学会、1984、p、305)、
一方、BCxN、は高耐湿性を有するので、BCxNy
膜4を最上面に配置することにより、その下方に位置す
るPSG膜3による水分の吸湿を防止することができる
。その為、BCN  膜4のみを表面に形   y 成した半導体装置よりも耐アルカリイオン性を向上させ
ることができる。
FIG. 1 shows a cross-sectional structure of a semiconductor device having a passivation film formed on its surface according to an embodiment. An interlayer insulating film 1 is formed entirely on the upper surface of the semiconductor device, and wiring is made of aluminum metal 2 on the upper surface. Interlayer insulation film 1
A PSG film 3 is formed on the surface of the aluminum metal 2, and the surface is further covered with a thin BCN film (Bassy Bay John H) 4. PSG has a Na ion gettering effect and is a material with excellent alkaline ionic properties, but it has insufficient moisture resistance and may cause elution of P components due to water absorption and corrosion defects of A1 wiring. CLSI Handbook, Electronic Communication Society, 1984, p. 305),
On the other hand, BCxN has high moisture resistance, so BCxNy
By arranging the film 4 on the uppermost surface, it is possible to prevent the PSG film 3 located below from absorbing moisture. Therefore, the alkali ion resistance can be improved compared to a semiconductor device in which only the BCN film 4 is formed on the surface.

なお、上記実施例では表面に複数層を形成した半導体装
置を一例として説明したが、段差被覆性の良好な表面(
例えば、平坦面)を有する半導体装置に使用する場合、
あるいは段差被覆性が良好となる堆積条件を用いる場合
は単層で構成することができる。この場合、膜厚を薄く
することができるので、クラックの発生を防止すること
ができる。
In the above embodiments, a semiconductor device with multiple layers formed on the surface was explained as an example, but a surface with good step coverage (
For example, when used in a semiconductor device having a flat surface,
Alternatively, when using deposition conditions that provide good step coverage, a single layer can be used. In this case, since the film thickness can be reduced, cracks can be prevented from occurring.

また、PSG膜3の代わりに、シリコン酸化膜又は/及
びシリコン窒化膜を使用することができる。例えば、B
CN  膜とシリコン酸化膜を併   y 用した場合にはBCN  膜をシリコン酸化膜の   
y 上に積層することによりシリコン酸化膜における耐湿性
の不十分さをBCN  膜で補うことかで    y きるので、シリコン酸化膜をパッシベーション膜とする
半導体装置より耐湿性を改善することができる。
Furthermore, instead of the PSG film 3, a silicon oxide film and/or a silicon nitride film can be used. For example, B
When a CN film and a silicon oxide film are used together, the BCN film is replaced by a silicon oxide film.
By stacking it on y, the insufficient moisture resistance of the silicon oxide film can be compensated for by the BCN film, so the moisture resistance can be improved compared to a semiconductor device using a silicon oxide film as a passivation film.

また、BCN  膜とシリコン窒化膜を併用しy た場合にはBCN  膜の低熱膨張性により熱にy よる全体としての膨張の程度が緩和されるので、シリコ
ン窒化膜をパッシベーション膜とする半導体装置より熱
膨脹差によるクラックの発生を低減することができる。
In addition, when a BCN film and a silicon nitride film are used together, the overall degree of expansion due to heat is reduced due to the low thermal expansion of the BCN film, so that the semiconductor device uses a silicon nitride film as a passivation film. It is possible to reduce the occurrence of cracks due to differences in thermal expansion.

この場合、半導体装置の上にBCN  膜を介在してシ
リコン窒化膜を形成しy でもよい。
In this case, a silicon nitride film may be formed on the semiconductor device with a BCN film interposed therebetween.

さらに、BCN  膜、シリコン酸化膜およびy シリコン窒化膜を併用した場合、上述したBCxN 膜
の性質により、シリコン酸化膜およびシリコン窒化膜の
短所が補われるので、半導体装置の耐湿性改善、熱膨脹
差によるクラック発生の低減化を図ることができる。
Furthermore, when a BCN film, a silicon oxide film, and a silicon nitride film are used together, the above-mentioned properties of the BCxN film compensate for the shortcomings of the silicon oxide film and silicon nitride film. It is possible to reduce the occurrence of cracks.

第2図は本実施例に係る半導体装置に用いられたパッシ
ベーション膜の吸湿性に関する実験結果であり、PSG
膜上にBCN  膜を形成したパ   y ッシベーション膜のBCN  膜を形成した直後y と、3か月間空気中に放置した後の赤外吸収スペクトル
の差スペクトルを示すグラフである。
Figure 2 shows the experimental results regarding the hygroscopicity of the passivation film used in the semiconductor device according to this example.
It is a graph showing the difference spectrum of the infrared absorption spectrum of a passivation film with a BCN film formed on the film, y immediately after the BCN film was formed, and after being left in the air for 3 months.

この実験では、Si基板上に形成された膜厚的0.8μ
mのPSG膜と、この上に膜厚的0.2μmで堆積させ
たBCN  膜を使用した。PSy G膜は、層間絶縁膜上にAI配線を形成した後、SiH
−0−PH4−N2系混合ガスを用い4ま た常圧CVD法により堆積した。また、BCxN 膜は
、基板温度350℃、RFパワー100W1圧力2 T
o r r s各ガス流量B2H6(95%のAr希釈
)/CH4/N2/H2が20/30/20 / 50
 (sees)の条件下で堆積した。このグラフから約
3か月の間、空気中に放置したにも拘らず、吸湿および
膜中の未分解種による崩壊に起因する経時表化は認めら
れなかった。
In this experiment, a film with a thickness of 0.8μ formed on a Si substrate was used.
A PSG film with a thickness of 0.2 μm and a BCN film deposited thereon with a thickness of 0.2 μm were used. After forming the AI wiring on the interlayer insulating film, the PSy G film is made of SiH
Deposition was carried out by atmospheric pressure CVD using a -0-PH4-N2 mixed gas. In addition, the BCxN film was prepared at a substrate temperature of 350°C, RF power of 100W, pressure of 2T.
o r r sEach gas flow rate B2H6 (95% Ar dilution)/CH4/N2/H2 is 20/30/20/50
(sees) conditions. From this graph, even though the film was left in the air for about 3 months, no changes over time due to moisture absorption and disintegration due to undecomposed species in the film were observed.

なお、上記実施例ではパッジベージジン膜の一例として
BCN  膜を使用したが、パッシベー   y ジョン膜にホウ素、炭素、窒素以外の物質が含まれてい
てもよい。
In the above embodiments, the BCN film was used as an example of the passivation film, but the passivation film may contain substances other than boron, carbon, and nitrogen.

また、耐アルカリイオン性に優れた材料はPSGに限定
されるものではない。例えば、PSGにボロンを添加し
たBPSGを使用することができる。
Furthermore, materials with excellent alkali ion resistance are not limited to PSG. For example, BPSG in which boron is added to PSG can be used.

〔発明の効果〕〔Effect of the invention〕

本発明゛は、以上説明したように構成されているので、
段差被覆性の良い表面にボロン、カーボン、窒素を主成
分とするパッシベーション膜を形成すれば、半導体装置
の耐湿性、熱伝導性、低膨脹性、熱衝撃特性、化学的安
定性を向上させることができる。
Since the present invention is configured as explained above,
Forming a passivation film mainly composed of boron, carbon, and nitrogen on a surface with good step coverage can improve the moisture resistance, thermal conductivity, low expansion, thermal shock characteristics, and chemical stability of semiconductor devices. I can do it.

また、半導体装置の表面に複数層が形成されている場合
、その中にボロン、カーボン、窒素を主成分とするパッ
シベーション膜の他に、別の特性を有する膜を含めるこ
とにより、全体として半導体装置の特性(耐アルカリイ
オン性など)を向上させることができる。
In addition, when multiple layers are formed on the surface of a semiconductor device, in addition to the passivation film whose main components are boron, carbon, and nitrogen, by including a film with other characteristics, the semiconductor device as a whole can be properties (alkali ion resistance, etc.) can be improved.

形成されたパッシベーション膜の吸湿性に関する実験結
果を示すグラフである。
It is a graph showing experimental results regarding the hygroscopicity of the formed passivation film.

1・・・層間絶縁膜、2・・・アルミニウム金属、3・
・・PSG膜、4・・・BCN  M(パッジベージ 
  y ヨン膜)。
DESCRIPTION OF SYMBOLS 1... Interlayer insulating film, 2... Aluminum metal, 3...
...PSG film, 4...BCN M (Padge Bage)
Yon membrane).

Claims (1)

【特許請求の範囲】 1、パッシベーション膜が表面に形成された半導体装置
であって、 前記パッシベーション膜が、ホウ素、炭素、窒素を主成
分とする層で構成されていることを特徴とする半導体装
置。 2、パッシベーション膜を含む複数層が表面に形成され
た半導体装置であって、 前記パッシベーション膜が、ホウ素、炭素、窒素を主成
分とする層で構成されていることを特徴とする半導体装
置。
[Claims] 1. A semiconductor device having a passivation film formed on its surface, wherein the passivation film is composed of a layer containing boron, carbon, and nitrogen as main components. . 2. A semiconductor device having a plurality of layers including a passivation film formed on its surface, wherein the passivation film is composed of a layer containing boron, carbon, and nitrogen as main components.
JP20867190A 1990-08-06 1990-08-06 Semiconductor device Pending JPH0499026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20867190A JPH0499026A (en) 1990-08-06 1990-08-06 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20867190A JPH0499026A (en) 1990-08-06 1990-08-06 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH0499026A true JPH0499026A (en) 1992-03-31

Family

ID=16560133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20867190A Pending JPH0499026A (en) 1990-08-06 1990-08-06 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0499026A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6784011B2 (en) 2001-07-23 2004-08-31 Mitsubishi Denki Kabushiki Kaisha Method for manufacturing thin-film structure
JP2005210136A (en) * 2001-03-28 2005-08-04 Watanabe Shoko:Kk Method of forming film, insulation film and semiconductor integrated circuit
JP2006287194A (en) * 2005-03-09 2006-10-19 Tokyo Electron Ltd Deposition method, deposition device, and storage medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63129631A (en) * 1986-11-20 1988-06-02 Fujitsu Ltd Semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63129631A (en) * 1986-11-20 1988-06-02 Fujitsu Ltd Semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005210136A (en) * 2001-03-28 2005-08-04 Watanabe Shoko:Kk Method of forming film, insulation film and semiconductor integrated circuit
US6784011B2 (en) 2001-07-23 2004-08-31 Mitsubishi Denki Kabushiki Kaisha Method for manufacturing thin-film structure
JP2006287194A (en) * 2005-03-09 2006-10-19 Tokyo Electron Ltd Deposition method, deposition device, and storage medium

Similar Documents

Publication Publication Date Title
US4091406A (en) Combination glass/low temperature deposited Siw Nx Hy O.sub.z
US4091407A (en) Combination glass/low temperature deposited Siw Nx Hy O.sub.z
US6017614A (en) Plasma-enhanced chemical vapor deposited SIO2 /SI3 N4 multilayer passivation layer for semiconductor applications
US4196232A (en) Method of chemically vapor-depositing a low-stress glass layer
JPH07130731A (en) Semiconductor device and its manufacturing method and apparatus
JPH0499026A (en) Semiconductor device
US5126825A (en) Wiring structure of a semiconductor device with beta tungsten
KR100248572B1 (en) Semiconductor device and method
JPH056890A (en) Semiconductor device with passivation multilayer film and manufacture thereof
KR20000055544A (en) Semiconductor device having silicon oxynitride passivation layer and method for manufacturing the same
JPH01293632A (en) Semiconductor device
CN101304002A (en) Method for manufacturing semiconductor component
JPH0499049A (en) Semiconductor device
JPH1064897A (en) Protective film for semiconductor element and its manufacturing method
JP3158835B2 (en) Semiconductor device and manufacturing method thereof
US6489255B1 (en) Low temperature/low dopant oxide glass film
JPH01207932A (en) Semiconductor device
JPS62193265A (en) Manufacture of semiconductor device
JPH10313003A (en) Formation of silicon oxide dielectric film
JPH01228135A (en) Semiconductor device
JPH07273102A (en) Semiconductor and its fabrication
KR970007968B1 (en) Formation method of layer insulator of semiconductor device
JPS6150378B2 (en)
JPS63120444A (en) Interlayer insulating film
JPS6262529A (en) Forming method for silicon nitride film