JPS63120413A - Molecular beam cell - Google Patents

Molecular beam cell

Info

Publication number
JPS63120413A
JPS63120413A JP26728786A JP26728786A JPS63120413A JP S63120413 A JPS63120413 A JP S63120413A JP 26728786 A JP26728786 A JP 26728786A JP 26728786 A JP26728786 A JP 26728786A JP S63120413 A JPS63120413 A JP S63120413A
Authority
JP
Japan
Prior art keywords
molecular beam
cylinder
heater wire
providing
disks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26728786A
Other languages
Japanese (ja)
Inventor
Hajime Asahi
一 朝日
Nobuhiro Kawaguchi
悦弘 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP26728786A priority Critical patent/JPS63120413A/en
Publication of JPS63120413A publication Critical patent/JPS63120413A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To realize a uniform strength of molecular beams on substrate crystals and to enable an introduced organic metal compound material to reach the substrate crystals effectively, by providing a heater wire between inner and outer insulating cylinders, arranging disks having holes formed at positions deviated from each other and providing a thermal shield plate on the outside. CONSTITUTION:A molecular beam cell used for a molecular beam growth in which organic metal compound gas is used as a depositing material is constructed by spacing two or more disks 16, 17 in a first insulating cylinder 12, the disks having holes opened at position deviated from each other; providing a heater wire 14 on the periphery of the first insulating cylinder 13; providing a second insulating cylinder 13 outside of the heater wire 14; and providing a thermal shield plate 15 outside of the second insulating cylinder 13. For example, thatalum heater wire 14 is provided between an inner quartz cylinder 12 having a quartz introduction tube 11 and an outer quartz cylinder 13, and a tantalum plate as the thermal shield plate 15 is rolled around the outer quartz cylinder 13. Tantalum disks 16, 17 having holes formed at positions deviated from each other are arranged within the inner quartz cylinder 12 with tantalum rings 18 interposed therebetween.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は有機金属化合物ガスを含む気体を成長用基板表
面に照射し結晶を成長させる分子線成長装置で用いる分
子線セルに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a molecular beam cell used in a molecular beam growth apparatus that grows crystals by irradiating the surface of a growth substrate with a gas containing an organometallic compound gas.

〔従来の技術〕[Conventional technology]

膜厚制御性にすぐれた薄膜半導体エピタキシャル結晶成
長技術として、分子線エピタキシ法(以下MHD法と略
称する)と有機金属気相エピタキシ法(略称MOVPI
(法)があシ、光デバイス・電子デバイスの製作に用い
られている。しかし、これらには種々の欠点があり、こ
れらの欠点を解決するために、近年、有機金属化合物ガ
スを成長原料として用いた分子線成長法(以下MOMB
E法と略称する)が提案され(朝日、大石、永井、籍願
昭夕J−J−7り3g)、開発された(例えば、Y、 
Kawaguchi+1−1− Asahi + Ho
Nagai + Japan J−Appl−Phys
−23(/りざグ)L737)。
Molecular beam epitaxy (hereinafter abbreviated as MHD method) and metal organic vapor phase epitaxy method (abbreviated as MOVPI) are thin film semiconductor epitaxial crystal growth techniques with excellent film thickness controllability.
It is used in the production of optical and electronic devices. However, these methods have various drawbacks, and in order to solve these drawbacks, in recent years, the molecular beam growth method (hereinafter referred to as MOMB) using organometallic compound gas as a growth material has been developed.
(abbreviated as E method) was proposed (Asahi, Oishi, Nagai, J-J-7ri 3g) and developed (for example, Y,
Kawaguchi+1-1- Asahi + Ho
Nagai + Japan J-Appl-Phys
-23 (/Rizag) L737).

MOMBIii法では、成長原料は分子線の形で供給さ
れるため、エピタキシャル結晶面内での組成および厚さ
の均一な結晶を得るためには、基板結晶面上での分子線
強度が均一となるように供給する必要がある。このだめ
の分子線セルとしては、従来第3図のものがある。第3
図において、/はキャピラリー管、!はビーム分散室、
3はガス分散板、グは分子線出射口である。
In the MOMBII method, the growth raw material is supplied in the form of molecular beams, so in order to obtain crystals with uniform composition and thickness within the epitaxial crystal plane, the molecular beam intensity must be uniform on the substrate crystal plane. It is necessary to supply it as follows. As a conventional molecular beam cell for this purpose, there is one shown in FIG. Third
In the figure, / is a capillary tube, ! is the beam dispersion chamber,
3 is a gas dispersion plate, and G is a molecular beam exit port.

第3図の分子線セルにおいては、分子線セルに導入され
た原t1ガスはガス分散板のために、分子線出射口へ直
進するととができず、多重散乱を受は分子線強度の均一
化が行なわれる。しかし、高純度のエビタギシA・ル結
晶を得るためには、・一般に、分子線セルの回りは液体
窒素を満たし7だシュラウドを設ける。このため、分子
線セルは冷やされ、原料ガスである有機金属化合物が分
子線セル内部に吸着され、分子線強度の制御を困難とす
ると同時に、有機金属化合物原料が有効に使用でき々い
という欠点があった3、更に、第3図の従来形のセルで
は分子線強度の均一性が充分なく、セルと基板の間の距
離が/ j anの配置において/夕朋×/J’111
mの範囲においてのみ均一であるという欠点があ−った
〇 し発明の目的〕 本発明のL1的は、これらの欠点を解法し、かつ、低価
格の有機金属化合物用分子線セルを提供することにある
In the molecular beam cell shown in Fig. 3, the original T1 gas introduced into the molecular beam cell cannot travel straight to the molecular beam exit port due to the gas dispersion plate, and is subjected to multiple scattering to ensure uniform molecular beam intensity. conversion is carried out. However, in order to obtain high-purity Evitagishel crystals, - Generally, a shroud filled with liquid nitrogen is provided around the molecular beam cell. For this reason, the molecular beam cell is cooled and the organometallic compound, which is the raw material gas, is adsorbed inside the molecular beam cell, making it difficult to control the molecular beam intensity, and at the same time, the organometallic compound raw material cannot be used effectively. Furthermore, in the conventional cell shown in Fig. 3, the molecular beam intensity was not sufficiently uniform, and the distance between the cell and the substrate was
The object of the present invention is to solve these drawbacks and to provide a low-cost molecular beam cell for organometallic compounds. There is a particular thing.

〔発明の構成〕[Structure of the invention]

本発明は、2本の同心軸の絶縁性筒の間にヒータ線を有
し、その内部に、中心に穴の空いだ円板と中心よりずれ
/こ位W4に穴の空いた円板を2枚以−ト交互に間隔を
1〆tい−r配(6し、該−重の絶縁性筒の外部に熱j
!:B蔽仮を有することを主要な特徴とする。従来技術
とは、ヒータ線を配することにより有機金属化合物の吸
着を抑制する構成となっている点、穴の位16を違えた
円板を交互に間隔を置いて積層するという簡便−でかつ
確実に分子線強度を均、−化Jる構成となっている点で
異なる。
The present invention has a heater wire between two concentric insulating cylinders, and inside the heater wire, there is a disk with a hole in the center and a disk with a hole at the off-center position W4. Two or more sheets are arranged alternately at intervals of 1 inch (6), and heat is applied to the outside of the heavy insulating cylinder.
! :The main feature is that it has a B mask. The conventional technology differs from the conventional technology in that it has a structure that suppresses the adsorption of organometallic compounds by arranging heater wires, and is simple in that it has a structure in which disks with different hole positions (16) are stacked alternately at intervals. It differs in that it has a structure that reliably evens out the molecular beam intensity.

〔実施例〕〔Example〕

第1図Ul2、本発明の詳細な説明する図であって、/
/はイJ機金属化合物ガスの石英製導入管、/21tJ
、内部の石英製円筒、/3は外部の石英製円筒であって
、/、2./3は同心軸の関係にある。
FIG. 1 Ul2 is a diagram illustrating the present invention in detail,
/ 21tJ quartz introduction tube for metal compound gas
, an inner quartz cylinder, /3 an outer quartz cylinder, /,2. /3 has a concentric axis relationship.

/4tIJ、タンタル製ヒータ線であって、/、2./
3により電気的絶縁が実現されている。/jはタンタル
製熱遮蔽板で、外部の石英製円筒の回りにタンタル板を
巻きつけた構成となっている。/乙は第2図(a)に示
すように中心に穴の空いたタンタル円板、/7は第2図
(b)に示すように中心からずれだ位16に穴の空いた
タンタル円板、/rは円板/ly、/7を一定の間隔に
保つための第2図fc)に示すタンタル製リング、/り
、2θはタンタル製熱遮蔽板である。
/4tIJ, tantalum heater wire, /,2. /
3 realizes electrical insulation. /j is a tantalum heat shield plate, which is constructed by wrapping a tantalum plate around an external quartz cylinder. /B is a tantalum disk with a hole in the center as shown in Figure 2 (a), /7 is a tantalum disk with a hole at 16 degrees off center as shown in Figure 2 (b) , /r is a tantalum ring shown in FIG.

本分子線セルにおいては、ヒータ線に電流を流すことに
より有機金属化合物が熱分解せず、かつセル内部に吸着
しない適当な温度(!0〜/ 00′C)に加熱するこ
とにより、導入された有機金属化合物はセル内部に吸着
することなく有効に基板結晶上に到達する。このため、
セルへの導入甥を制御することにより精度良く分子線強
度が制@1できる。
In this molecular beam cell, the organic metal compound is introduced by passing a current through the heater wire and heating it to an appropriate temperature (!0~/00'C) at which the organometallic compound will not be thermally decomposed and will not be adsorbed inside the cell. The organometallic compound effectively reaches the substrate crystal without being adsorbed inside the cell. For this reason,
By controlling the amount introduced into the cell, the molecular beam intensity can be controlled with high precision.

また、穴の位置が異なった円板を交互に重ねであるため
、有機金属化合物はセル内部で直進すると占ができず、
多重散乱を受け、空間的に均一な強度をもつ有機金属化
合物分子線が得られる。そしてタンタル円板の枚数2間
隔を適当に選ぶことにより容易に大面積の基板結晶表面
において均一な強度の分子線を発生させることができる
。更に、2重の石英製円筒によりヒータ線をd:さみ込
んだ構成上なっているため、簡便にかつ、安価に吸着の
問題を抑制することができる3、 本実施例による分子線セルを用い、■装置子線原料とし
て有機金属化合物なるトリメチルインジウムとトリエチ
ルガリウムを、V装置子線原料と]2てアルシンを用い
ることにより、InP基板上にIn<)aAs化合物半
導体エピタキシャル結晶をセルと基板との間の距離が/
 j tynの配置で成長させ、2結晶X線回折パター
ンの半値幅として、27秒と狭く、2インチ径の基板−
1−でのInGaAs層の組成のずれが十〇:、#%と
高均一であり、かつ、77にでの電子移動度が’10,
000*/ V・Sと高品質のエヒリギシャル結晶か得
られた。また、同じ厚さの結晶を成長した時の不接金属
化合物の消耗量は、第8図の従来形のセルを用いた場合
に肚べて20分の/以下となった。これdl、従来形の
セルでは、セルに吸着されて121つて成長にあずから
ない有機金属化合物が大部分で、ごくわずかだけが成長
にあずかっていたのに対して、本実施例のセルでd2、
有機金属化合物がセルに吸着されることなく、基板上に
供給されるためである。
In addition, since the disks with different hole positions are stacked alternately, organometallic compounds cannot be predicted if they move straight inside the cell.
As a result of multiple scattering, an organometallic compound molecular beam with spatially uniform intensity is obtained. By appropriately selecting the number of tantalum disks at intervals of two, it is possible to easily generate a molecular beam of uniform intensity on a large area of the substrate crystal surface. Furthermore, since the heater wire is sandwiched between double quartz cylinders, the problem of adsorption can be easily and inexpensively suppressed. By using trimethylindium and triethylgallium, which are organometallic compounds, as raw materials for device beams, and arsine as raw materials for V device, an In<)aAs compound semiconductor epitaxial crystal was formed on an InP substrate as a cell and substrate. The distance between /
It was grown in a 2-inch diameter substrate with a narrow half-width of 27 seconds as a double-crystal X-ray diffraction pattern.
The composition deviation of the InGaAs layer at 1- is highly uniform at 10:, #%, and the electron mobility at 77 is '10, #%.
000*/V・S and high quality formal crystals were obtained. Further, when growing a crystal of the same thickness, the amount of consumption of the non-contact metal compound was less than 20 minutes when the conventional cell shown in FIG. 8 was used. In the conventional cell, most of the organometallic compounds were adsorbed to the cell and did not participate in growth, and only a small amount participated in growth, whereas in the cell of this example, d2 ,
This is because the organometallic compound is supplied onto the substrate without being adsorbed to the cell.

〔発明の効果〕〔Effect of the invention〕

以上説明したように1本発明によれば、基板結晶上で均
一な分子線強度を実現し、かつ、導入有機金属化合物原
料が有効に基板結晶上に到達させられるので、結晶組成
および結晶厚さの均一な高品質エピタキシャル結晶を成
長させられる利点がある。更に、本発明による分子線セ
ルは単純な構造となっているため、簡便でかつ安価な分
子線セルをうろことができる利点がある。
As explained above, according to the present invention, uniform molecular beam intensity can be achieved on the substrate crystal, and the introduced organometallic compound raw material can effectively reach the substrate crystal, so that the crystal composition and crystal thickness can be reduced. It has the advantage of being able to grow uniform, high-quality epitaxial crystals. Furthermore, since the molecular beam cell according to the present invention has a simple structure, it has the advantage that it can be used as a simple and inexpensive molecular beam cell.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の分子線セルの断面図、第2図は本発明
の分子線セルの構成部品の一部を示した図、第3図は従
来の分子線セルの断面図である。 /・・・キャピラリー管、2・・・ビーム分散室、3・
・・ガス分散板、グ・・・分子線出射口、//・・・石
英製導入管、/2./3・・・石英製円筒、/り°・・
タンタル製ヒータ線、/1.・・・第3図(a)のタン
タル円板、/7・・・第2図(b)のタンタル円板、/
I・・・第2図(C)のタンタル・リング、/J−、/
9.20・・・タンタル製熱処蔽板。
FIG. 1 is a sectional view of a molecular beam cell of the present invention, FIG. 2 is a diagram showing some of the constituent parts of the molecular beam cell of the present invention, and FIG. 3 is a sectional view of a conventional molecular beam cell. /... Capillary tube, 2... Beam dispersion chamber, 3...
...Gas distribution plate, G...Molecular beam exit port, //...Quartz introduction tube, /2. /3...Quartz cylinder, /ri°...
Tantalum heater wire, /1. ...Tantalum disk in Fig. 3(a), /7...Tantalum disk in Fig. 2(b), /
I... Tantalum ring in Figure 2 (C), /J-, /
9.20...Tantalum heat treated shield plate.

Claims (1)

【特許請求の範囲】[Claims] 有機金属化合物ガスを成長原料として用いた分子線成長
用の分子線セルにおいて、第1の絶縁性筒の内部に、相
互にずれた位置に穴の空いた2枚以上の円板を間隔を置
いて配置し、該第1の絶縁性筒の外部にヒータ線を設け
、該ヒータ線の外部に第2の絶縁性筒を設け、該第2の
絶縁性筒の外部に熱遮蔽板を設けたことを特徴とする分
子線セル。
In a molecular beam cell for molecular beam growth using organometallic compound gas as a growth raw material, two or more disks with holes at mutually shifted positions are spaced inside a first insulating cylinder. A heater wire is provided outside the first insulating tube, a second insulating tube is provided outside the heater wire, and a heat shielding plate is provided outside the second insulating tube. A molecular beam cell characterized by:
JP26728786A 1986-11-10 1986-11-10 Molecular beam cell Pending JPS63120413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26728786A JPS63120413A (en) 1986-11-10 1986-11-10 Molecular beam cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26728786A JPS63120413A (en) 1986-11-10 1986-11-10 Molecular beam cell

Publications (1)

Publication Number Publication Date
JPS63120413A true JPS63120413A (en) 1988-05-24

Family

ID=17442733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26728786A Pending JPS63120413A (en) 1986-11-10 1986-11-10 Molecular beam cell

Country Status (1)

Country Link
JP (1) JPS63120413A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61141119A (en) * 1984-12-13 1986-06-28 Fujitsu Ltd Device for crystal growth by molecular beam
JPS62132313A (en) * 1984-10-24 1987-06-15 コンパニイ・ジエネラル・デレクトリシテ Molecular jet generator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132313A (en) * 1984-10-24 1987-06-15 コンパニイ・ジエネラル・デレクトリシテ Molecular jet generator
JPS61141119A (en) * 1984-12-13 1986-06-28 Fujitsu Ltd Device for crystal growth by molecular beam

Similar Documents

Publication Publication Date Title
JPH0462716A (en) Crystalline carbonaceous thin-film and its deposition method
JP4751373B2 (en) Synthesis method of GaN single crystal
JP2882605B2 (en) Continuous growth method of strained layer superlattice structure
JPS63120413A (en) Molecular beam cell
JPS5936927A (en) Vapor phase growth apparatus for semiconductor
JP3923228B2 (en) Substrate holding mechanism and compound semiconductor manufacturing method using the same
JPH0246558B2 (en)
JPH03241733A (en) Vapor growth device
JPH0416597A (en) Production of silicon carbide single crystal
KR20010103984A (en) Growth method for vertically aligned carbon nanotubes by changing the morphologies of a transition metal thin films
JPS62214616A (en) Organo metallic vapor phase epitaxy equipment
JP3473251B2 (en) Multi-charge lateral vapor deposition method and apparatus
JPH0831741A (en) K cell type evaporation source
JPS6163591A (en) Installation for production of single crystal of compound semiconductor
JP2500412B2 (en) Method of forming silicon film
JPS60113420A (en) Device for manufacturing semiconductor crystal
JP2747823B2 (en) Method for producing gallium arsenide layer and method for producing gallium arsenide / aluminum gallium arsenide laminate
JPH06105687B2 (en) Molecular beam crystal growth equipment
JP3112796B2 (en) Chemical vapor deposition method
JPH0499314A (en) Optical vapor growth apparatus
JPS62297296A (en) Vapor phase epitaxy process
JPS61220420A (en) Vapor growth apparatus
JPS62149116A (en) Manufacture of thin-film layered superlattice structure
JPH0226893A (en) Vapor growth device
JPH0248404A (en) Method for forming superconducting thin film and apparatus therefor