JPS62297296A - Vapor phase epitaxy process - Google Patents

Vapor phase epitaxy process

Info

Publication number
JPS62297296A
JPS62297296A JP14255586A JP14255586A JPS62297296A JP S62297296 A JPS62297296 A JP S62297296A JP 14255586 A JP14255586 A JP 14255586A JP 14255586 A JP14255586 A JP 14255586A JP S62297296 A JPS62297296 A JP S62297296A
Authority
JP
Japan
Prior art keywords
growth
susceptor
base plate
center
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14255586A
Other languages
Japanese (ja)
Inventor
Hiromi Ito
伊藤 弘巳
Junji Komeno
純次 米野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP14255586A priority Critical patent/JPS62297296A/en
Publication of JPS62297296A publication Critical patent/JPS62297296A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:The crystal-growing base plate is allowed to rotate in the reaction tube to effect the crystal growth as the base is reciprocated in the cross direction to the gas flow whereby the characteristics on the center of the rotation in the growth layer is brought close to those in the other parts. CONSTITUTION:A GaAs base plate 3 as a crystal-growing plate is placed on the susceptor in the horizontal quartz reaction tube 1. The susceptor 2 is allowed to rotate through the shaft 4 by an external driving force whereby the base plate 3 is allowed to rotate around its center. Further, bellows 6 is reciprocated so that the susceptor 2 is reciprocated through the shaft 5 in the cross direction to the gas flow. The power is applied to the induction heating coil 9 to heat the base plate up to about 650 deg.C and a mixture of H2+TMG+AsH4+SiH4 is introduced from the inlet 7 using H2 from the inlet 8 as a carrier gas where the epitaxial growth of GaAs is effected on the base plate 8.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔概要〕 成長層を均一化するため、通常被成長基板を回転させな
がら成長を行うが、この場合は回転中心で成長層のキャ
リア濃度が高くなる。そのために被成長基板を回転と同
時に原料ガスの流れ方向と交差する方向に往復運動させ
る成長方法を提起し、成長層のキャリア濃度分布が均一
になるようにする。
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Summary] In order to make the growth layer uniform, growth is usually performed while rotating the growth substrate, but in this case, the carrier concentration of the growth layer is reduced at the center of rotation. It gets expensive. To this end, we propose a growth method in which the growth substrate is rotated and simultaneously moved back and forth in a direction that intersects the flow direction of the source gas, thereby making the carrier concentration distribution of the growth layer uniform.

〔産業上の利用分野〕[Industrial application field]

本発明は化合物半導体等の成長層のキャリア濃度の均一
化を改善した気相成長方法に関する。
The present invention relates to a vapor phase growth method that improves the uniformity of carrier concentration in a growth layer of a compound semiconductor or the like.

気相成長方法、例えば有機金属化学気相成長(MOCV
D)法は有機金属を原料ガスとして用い、これを反応管
に導入して被成長基板上で熱分解してエピタキシャル成
長を行う。
Vapor phase growth methods, such as metal organic chemical vapor deposition (MOCV)
Method D) uses organic metal as a raw material gas, introduces it into a reaction tube, and thermally decomposes it on the growth target substrate to perform epitaxial growth.

〔従来の技術〕[Conventional technology]

第4図は従来方法を実施するMOCVD装置を説明する
平面図である。
FIG. 4 is a plan view illustrating an MOCVD apparatus that implements the conventional method.

図において、横型の反応管1内のサセプタ2上に被成長
基板3としてQaAs基板を載せる。
In the figure, a QaAs substrate is placed on a susceptor 2 in a horizontal reaction tube 1 as a growth substrate 3.

被成長基′ui3はその中心を回転中心として回転でき
るように、反応管1の外部より回転伝達軸4を経由して
サセプタ2を回転させる。
The susceptor 2 is rotated from outside the reaction tube 1 via the rotation transmission shaft 4 so that the growth substrate 'ui3 can rotate around its center.

誘導加熱コイル9にパワーを印加し、被成長基板を加熱
し、有機金属ガスを含む原料ガスをガス4人ロアより導
入し、もう1つのガス導入口8よリキャリアガスを導入
して化合物半導体層をエピタキシャル成長する。
Power is applied to the induction heating coil 9 to heat the substrate to be grown, a raw material gas containing an organometallic gas is introduced from the gas lower 4, and a recarrier gas is introduced from the other gas inlet 8 to form a compound semiconductor. Grow the layers epitaxially.

第5図は回転をあたえて成長した場合の被成長基板内の
キャリア濃度の分布図である。
FIG. 5 is a distribution diagram of the carrier concentration within the growth substrate when the growth is performed by applying rotation.

図において、横軸は被成長基板の中心からの距離、縦軸
はキャリア濃度である。
In the figure, the horizontal axis is the distance from the center of the growth substrate, and the vertical axis is the carrier concentration.

図示のように、被成長基板の中心(回転中心)付近で特
異点ができ、キャリア濃度が高くなっている。
As shown in the figure, a singular point is formed near the center (rotation center) of the growth substrate, and the carrier concentration is high.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のMOCVDの反応管内で被成長基板を回転させた
とき、エピタキシャル成長層は非常に均一であるが、回
転中心付近でキャリア濃度が他の部分より高くなるとい
う欠点があった。
When a substrate to be grown is rotated in a conventional MOCVD reaction tube, the epitaxially grown layer is very uniform, but there is a drawback that the carrier concentration is higher near the center of rotation than in other parts.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点の解決は、反応管内の被成長基板を回転させ
、かつ原料ガスの流れ方向に交差して往復運動させなが
ら成長を行う気相成長方法により達成される。
The above-mentioned problems can be solved by a vapor phase growth method in which growth is performed while rotating the growth substrate in a reaction tube and making it reciprocate in a direction intersecting the flow direction of the raw material gas.

これを実現するために、ベローズを用いて反応管の外よ
りサセプタに往復運動をあたえるようにする。
To achieve this, a bellows is used to apply reciprocating motion to the susceptor from outside the reaction tube.

〔作用〕 被成長基板を回転してエピタキシャル成長を行った場合
、回転中心は常に同じ位置にあり他の部分は移動してい
るため、成長層の回転中心は他の部分とは違った特性を
もつようになる。
[Operation] When epitaxial growth is performed by rotating the growth substrate, the center of rotation is always at the same position and other parts are moving, so the center of rotation of the growth layer has different characteristics from other parts. It becomes like this.

その対策として、回転中心自身を運動させることにより
、成長層の回転中心の特性を他の部分に近づけるように
したものである。
As a countermeasure to this, the characteristics of the rotation center of the growth layer are brought closer to those of other parts by moving the rotation center itself.

〔実施例〕〔Example〕

第1図は本発明を実施するMOCVD装置を説明する平
面図である。
FIG. 1 is a plan view illustrating an MOCVD apparatus implementing the present invention.

図において、石英よりなる横型の反応管1内のサセプタ
2上に被成長基板3としてGaAs基板を載せる。
In the figure, a GaAs substrate is placed as a growth substrate 3 on a susceptor 2 in a horizontal reaction tube 1 made of quartz.

被成長基板3はその中心を回転中心として回転できるよ
うに、反応管1の外部より回転伝達軸4を経由してサセ
プタ2を回転させる。
The susceptor 2 is rotated from outside the reaction tube 1 via the rotation transmission shaft 4 so that the growth substrate 3 can rotate around its center.

さらに、ベローズ6に往復運動をあたえ、これに取りつ
けられた支持軸5を経由して、サセプタ2を原料ガスの
流れに交差して振幅2cm程度の往復運動をさせる。
Further, the bellows 6 is given a reciprocating motion, and the susceptor 2 is caused to reciprocate with an amplitude of about 2 cm across the flow of the raw material gas via the support shaft 5 attached to the bellows 6.

誘導加熱コイル9にパワーを印加し、被成長基板を65
0℃に加熱し、有機金属としてTMG(トリメチルガリ
ウム)を用い、ガス導入ロアよりH2+TMG + A
stl) 十SiH4を導入し、もう1つのガス導入口
8よりキャリアガスとしてH2のみを導入してGaAs
をエピタキシャル成長した。
Applying power to the induction heating coil 9, the substrate to be grown is heated 65
Heating to 0℃, using TMG (trimethyl gallium) as the organic metal, H2 + TMG + A from the gas introduction lower
stl) 10 SiH4 is introduced, and only H2 is introduced as a carrier gas from the other gas inlet 8 to form GaAs.
was grown epitaxially.

第2図は実施例に用いたサセプタの構造を説明する側断
面図である。
FIG. 2 is a side sectional view illustrating the structure of the susceptor used in the example.

図において、カーボンよりなるサセプタ2はサセプタ回
転部2Aとサセプタ固定部2Bとよりなる。
In the figure, a susceptor 2 made of carbon includes a susceptor rotating part 2A and a susceptor fixing part 2B.

被成長基板3を載せたサセプタ回転部2Aはカーボンよ
りなる回転伝達軸4を経由して、それぞれの接触面に切
られた傘歯車により回転が伝達される。
Rotation of the susceptor rotating section 2A on which the growth substrate 3 is placed is transmitted via a rotation transmission shaft 4 made of carbon by bevel gears cut on each contact surface.

支持軸5はサセプタ固定部2Bに固定され、紙面に垂直
方向に往復運動する。
The support shaft 5 is fixed to the susceptor fixing part 2B and reciprocates in a direction perpendicular to the plane of the paper.

この場合のサセプタの回転は10rpmで、往復運動は
振幅8 mmで10回/分である。
The rotation of the susceptor in this case is 10 rpm, and the reciprocating motion is 10 times/min with an amplitude of 8 mm.

実施例では、第3図に示されるように被成長基板3のキ
ャリア濃度の分布は均一になる。
In this embodiment, the carrier concentration distribution of the growth substrate 3 is uniform as shown in FIG.

第3図は回転と往復運動をあたえて成長した場合に対す
る、被成長基板内のキャリア濃度分布図である。
FIG. 3 is a carrier concentration distribution diagram within the growth substrate when growth is performed by applying rotation and reciprocating motion.

図において、横軸は被成長基板の中心からの距離、縦軸
はキャリア濃度である。
In the figure, the horizontal axis is the distance from the center of the growth substrate, and the vertical axis is the carrier concentration.

図示のように、被成長基板の中心付近での特異点はなく
、キャリア濃度は基板全面にわたって一様になる。
As shown in the figure, there is no singular point near the center of the growth substrate, and the carrier concentration is uniform over the entire surface of the substrate.

実施例ではMOCVD法の場合について説明したが、他
の気相成長法についても本発明の効果は同様である。
Although the MOCVD method has been described in the embodiment, the effects of the present invention are similar to other vapor phase growth methods.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、被成長基坂の回転
中心は同位置に静止しないため、回転中心部のキャリア
濃度を他の部分に近づけて基板内で均一に成長すること
ができる。
As explained above, according to the present invention, the rotation center of the growth base slope does not remain at the same position, so that the carrier concentration at the rotation center can be brought closer to other parts, allowing uniform growth within the substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するMOCVD装置を説明する平
面図、 第2図は実施例に用いたサセプタの構造を説明する側断
面図である。 第3図は回転と往復運動をあたえて成長した場合に対す
る被成長基板内のキャリア濃度分布図、第4図は従来方
法を実施するMOCVD装置を説明する平面図、 第5図は回転をあたえて成長した場合の被成長基板内の
キャリア濃度の分布図である。 図において、 1は反応管、       2はサセプタ、3は被成長
基板、     4は回転伝達軸、5は支持軸、   
    6はベローズ、7.8はガス厚入口、   9
は誘導加熱コイル太き8月才灯包Jろ1稲CVD妥置の
ザ面ロ第 l コ 基板の中1シカ\らの距離(虫仇) ロオ反と!王イ夏1動乞あ1て之A厖合の分布図2躬 
3 コ 1施例1〔用いた+fセ)・7の側討加洞第2図
FIG. 1 is a plan view illustrating an MOCVD apparatus embodying the present invention, and FIG. 2 is a side sectional view illustrating the structure of a susceptor used in an example. Fig. 3 is a carrier concentration distribution diagram in the growth substrate when growth is performed by applying rotation and reciprocating motion, Fig. 4 is a plan view illustrating an MOCVD apparatus that implements the conventional method, and Fig. 5 is a diagram showing the distribution of carrier concentration within the growth substrate when the growth is performed by applying rotation and reciprocating motion. FIG. 3 is a distribution diagram of carrier concentration within a growth target substrate during growth. In the figure, 1 is a reaction tube, 2 is a susceptor, 3 is a growth substrate, 4 is a rotation transmission shaft, 5 is a support shaft,
6 is bellows, 7.8 is gas thick inlet, 9
Is the induction heating coil thick August Saitoba Jro 1 Rice CVD installation's side Ro No. 1 Ko board medium 1 Deer \ et al distance (insect enemy) Roo anti! Wang Yixia 1 Motion Begging 1 The distribution map 2
3 KO1 Example 1 [Used +f CE]・7 side attack cave Fig. 2

Claims (1)

【特許請求の範囲】[Claims] 反応管内の被成長基板を回転させ、かつ原料ガスの流れ
方向に交差して往復運動させながら成長を行うことを特
徴とする気相成長方法。
A vapor phase growth method characterized by performing growth while rotating a substrate to be grown in a reaction tube and making it reciprocate in a direction crossing the flow direction of a source gas.
JP14255586A 1986-06-18 1986-06-18 Vapor phase epitaxy process Pending JPS62297296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14255586A JPS62297296A (en) 1986-06-18 1986-06-18 Vapor phase epitaxy process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14255586A JPS62297296A (en) 1986-06-18 1986-06-18 Vapor phase epitaxy process

Publications (1)

Publication Number Publication Date
JPS62297296A true JPS62297296A (en) 1987-12-24

Family

ID=15318062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14255586A Pending JPS62297296A (en) 1986-06-18 1986-06-18 Vapor phase epitaxy process

Country Status (1)

Country Link
JP (1) JPS62297296A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02291114A (en) * 1989-04-29 1990-11-30 Toyoda Gosei Co Ltd Vapor growth apparatus for compound semiconductor
US5324386A (en) * 1991-03-19 1994-06-28 Fujitsu Limited Method of growing group II-IV mixed compound semiconductor and an apparatus used therefor
KR100603215B1 (en) 2004-12-18 2006-07-20 한국전기연구원 High temperature chemical vapor deposition system with dual gas inlets

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02291114A (en) * 1989-04-29 1990-11-30 Toyoda Gosei Co Ltd Vapor growth apparatus for compound semiconductor
US5324386A (en) * 1991-03-19 1994-06-28 Fujitsu Limited Method of growing group II-IV mixed compound semiconductor and an apparatus used therefor
US5431738A (en) * 1991-03-19 1995-07-11 Fujitsu Limited Apparatus for growing group II-VI mixed compound semiconductor
KR100603215B1 (en) 2004-12-18 2006-07-20 한국전기연구원 High temperature chemical vapor deposition system with dual gas inlets

Similar Documents

Publication Publication Date Title
US4421592A (en) Plasma enhanced deposition of semiconductors
JPS62297296A (en) Vapor phase epitaxy process
US4239584A (en) Molecular-beam epitaxy system and method including hydrogen treatment
JPH03241733A (en) Vapor growth device
JP2791444B2 (en) Vapor phase epitaxial growth method
JP2000031064A (en) Method and device for horizontal vapor phase epitaxial growth
JPH0587015B2 (en)
JPS63188932A (en) Method for vapor growth of gallium nitride compound semiconductor
JPH0343240B2 (en)
JPS63227007A (en) Vapor growth method
JPH02125485A (en) Compound semiconductor light emitting element
JPS63188935A (en) Vapor growth system for gallium nitride compound semiconductor
JPS61280613A (en) Liquid epitaxial growing process
JP2001048695A (en) Vapor phase epitaxial growth
CN114737250A (en) Equipment for preparing GaN single crystal through laser-assisted heating
JPS61242998A (en) Production of semiconductor single crystal of silicon carbide
JPH0226893A (en) Vapor growth device
JPH02151023A (en) Device for manufacturing semiconductor crystal
JPS61176111A (en) Manufacture of compound semiconductor thin film
JPS63148622A (en) Vapor growth system
JPS63242993A (en) Method for growing crystal by molecular beam
JPS61287219A (en) Vapor growth method
JPS62182196A (en) Vapor growth apparatus
JPS62291021A (en) Vapor growth device
JPH02199096A (en) Method for growth of semiconductor crystal