JPS63119590A - Magnetoelectric transducer - Google Patents

Magnetoelectric transducer

Info

Publication number
JPS63119590A
JPS63119590A JP61265296A JP26529686A JPS63119590A JP S63119590 A JPS63119590 A JP S63119590A JP 61265296 A JP61265296 A JP 61265296A JP 26529686 A JP26529686 A JP 26529686A JP S63119590 A JPS63119590 A JP S63119590A
Authority
JP
Japan
Prior art keywords
film
substrate
zno
insb
hall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61265296A
Other languages
Japanese (ja)
Inventor
Kozo Machida
町田 光三
Katsuhiko Narita
成田 克彦
Takehiko Sone
曽根 武彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP61265296A priority Critical patent/JPS63119590A/en
Publication of JPS63119590A publication Critical patent/JPS63119590A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to form a highly sensitive magnetoelectric transducer having a high Hall mobility and to simplify manufacturing process, by forming a crystallized film of ZnO on an insulating substrate, and forming a film comprising an In compound such as InSb or InAs on the crystallized film. CONSTITUTION:A crystallized film 12 of zinc oxide (ZnO) is formed on a substrate 10 having insulating property. A crystal film 13 of an In compound comprising InSb, InAs or the like is formed on said crystallized film. Thus a highly sensitive magnetoelectric transducer having a high Hall mobility is obtained. The Hall mobility of a Hall element using a substrate with said ZnO film is larger than the Hall mobility of a Hall element using a substrate without a ZnO film by about 2-4 times within a range of substrate temperature of, e.g., 300-500 deg.C. The value of 20,000-45,000 cm<2>/V.S is obtained as the Hall mobility with good reproducibility.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はホール素子、磁気抵抗効果素子等の磁電変換素
子に係り、特にホール移動度の大きな磁電変換素子に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to magnetoelectric transducers such as Hall elements and magnetoresistive elements, and particularly to magnetoelectric transducers with high Hall mobility.

(従来例とその問題点) 従来、結晶性を有するInSb膜は発電変換素子の感度
を左右するホール移動度μが数百〜数万Cm2/v 、
 Sと非常に大きく、磁気感応膜として浸れているため
、高感度ホール素子、あるいは高感度抵抗効果素子等の
磁電効果用材料として広く使用されている。
(Conventional example and its problems) Conventionally, an InSb film with crystallinity has a hole mobility μ that affects the sensitivity of a power generation conversion element, ranging from several hundred to several tens of thousands of Cm2/v.
Since it has a very large S and is used as a magnetically sensitive film, it is widely used as a material for magnetoelectric effects such as high-sensitivity Hall elements or high-sensitivity resistance effect elements.

通常In Sb Illは真空蒸着法、スパッタリング
法、イオンブレーティング法、クラスタイオンビーム蒸
着法などによって、ガラス、シリコン、グレーズドフェ
ライト(glassed rerritte) 、マイ
カ(雲母)等の基板の上に形成されるものであるが、そ
の成膜方法によって結晶化の程度が大きく異なり、ホー
ル移動度の大小に大きく影響する。
Usually, InSbIll is formed on a substrate such as glass, silicon, glazed ferrite, mica, etc. by vacuum evaporation method, sputtering method, ion blating method, cluster ion beam evaporation method, etc. However, the degree of crystallization varies greatly depending on the film formation method, which greatly affects the magnitude of hole mobility.

InSb膜の成膜方法は特許1008790号、101
3921号、特開昭57−152175゜特公昭60−
34829などに開示されているが、特に、高感度の特
性を有するInSb膜の形成方法としては、特公昭51
−45234.昭和35年2月発行の「電気学会論文誌
80巻857号P36」等に開示されている様に、マイ
カを基板として用い、この基板上に直接InSb膜を真
空蒸着法により成膜する方法が開示されている。一般に
InSb等の蒸着膜の特性はその蒸着幌材料の結晶構造
に出来るだけ近い結晶構造を有する基板に蒸着した方が
良いことが知られているが、t、 f>し、異なる結晶
構造を有する場合であっても、威膜条性を適切に設定す
ることにより、いわゆる、ヘテロエピタキシャルの膜が
成長することも知られており、結晶性ケイ酸塩鉱物であ
るマイカがIn Sb膜用の基板として使用した場合、
高感度のIn Sbの成膜を可能としている理由はここ
にあると考えられている。
The method for forming the InSb film is described in Patent Nos. 1008790 and 101.
No. 3921, JP 57-152175゜Special Publication 1986-
34829, etc., but in particular, a method for forming an InSb film having high sensitivity characteristics is disclosed in Japanese Patent Publication No. 51
-45234. As disclosed in "Transactions of the Institute of Electrical Engineers of Japan Vol. 80, No. 857, P36" published in February 1960, there is a method of using mica as a substrate and directly forming an InSb film on this substrate by vacuum evaporation. Disclosed. Generally, it is known that the properties of a deposited film such as InSb are better when deposited on a substrate with a crystal structure as close as possible to that of the material for which it is deposited. It is also known that a so-called heteroepitaxial film can be grown by appropriately setting the film striations, even in the case where mica, a crystalline silicate mineral, is used as a substrate for InSb films When used as
This is believed to be the reason why it is possible to form a highly sensitive InSb film.

しかし、マイカは男開性を有するため強度的に弱く、素
子の薄膜基板として使用するには長期的に見て、信頼性
に乏しいという欠点があった。
However, mica has erectile properties and is therefore weak in strength, and has the drawback of poor long-term reliability when used as a thin film substrate for an element.

そのため、前記特公昭51−45234ではマイカ基板
上に形成したIn Sb IIIをエポキシ樹脂を介し
てフェライト基板上へ接着し、その後、マイカを剥離す
る方法が開示されているが、この方法によれば、煩雑な
接着工程や剥離工程を必要とし、工数の増加と歩留率の
低下をもたらし、コスト高の原因となる等の問題点があ
った。
Therefore, Japanese Patent Publication No. 51-45234 discloses a method in which InSb III formed on a mica substrate is bonded onto a ferrite substrate via an epoxy resin, and then the mica is peeled off. However, there are problems in that it requires a complicated adhesion process and a peeling process, resulting in an increase in the number of man-hours and a decrease in the yield rate, resulting in an increase in cost.

(問題点を解決するための手段) 本発明は上記問題点を解決するためになされたものであ
り、絶縁性を有する基板上に酸化亜鉛(Zn O)の結
晶化膜を形成し、この結晶化膜上にIn Sb又はIn
As等からなるIn化合物の結晶膜を成膜したことを特
徴とする磁電変換素子を提供するものである。
(Means for Solving the Problems) The present invention has been made to solve the above problems, and consists of forming a crystallized film of zinc oxide (ZnO) on an insulating substrate, and InSb or In
The present invention provides a magnetoelectric transducer characterized by forming a crystalline film of an In compound made of As or the like.

(実施例) 本発明は基板上に結晶性のIn Sb膜を形成するに際
して、前記へテロエピタキシャル関係の成立し易い基板
の材料を発明者等が数多くの実験を積重ねながら追求し
た結果、経験的に発見されたいくつかの事実に基いてな
されたものである。
(Example) In the present invention, when forming a crystalline InSb film on a substrate, the inventors have conducted numerous experiments to find a material for the substrate that can easily form the heteroepitaxial relationship. This was based on several facts discovered in the

第1図(a )〜(C)は本発明の一実施例を示す主要
工程の概略説明図であり、以下同図を用いて製造方法な
らびに磁電変換素子の構成を説明する。
FIGS. 1A to 1C are schematic explanatory diagrams of main steps showing an embodiment of the present invention, and the manufacturing method and the structure of the magnetoelectric transducer will be explained below using the same figures.

第1の工程は以下に示す通りであり、第1図(a ’)
に示す様に、フェライト材からなる基板10を用意し、
この基板1oの表面にSiO2又はガラス等からなる絶
縁膜11を既知の薄膜形成手段によって成膜する。
The first step is as shown below, and Fig. 1(a')
As shown in the figure, a substrate 10 made of ferrite material is prepared,
An insulating film 11 made of SiO2, glass, or the like is formed on the surface of this substrate 1o by known thin film forming means.

第2の工程は以下に示す通りであり、第1図(b)に示
す様に、前記絶縁膜11の上に高周波イオンブレーティ
ング法によってZn O(酸化亜鉛)III112ヲ形
成スルカ、コf)Zn 01112(7)作成は昭和5
4年5月に発行の「電子通信学会論文誌、791・5 
 vol 、 62−CNo 、 5.町田その他」に
詳細に記載されている如く、酸素の低温プラズマの化学
的に活性な雰囲気中に金属Znを蒸発させ、ZnO膜1
2を基板10上に合成させるものであるが、このZn 
011!の作成条件を第1表にまとめて示す。また、こ
のようにして作成されたZnO膜12の具備すべき成膜
条件は成膜方法によっても異なるが少なくともZnO膜
12の結晶面(O○2)が基板面11aに対して平行に
形成されていることである。
The second step is as shown below, and as shown in FIG. 1(b), ZnO (zinc oxide) III 112 is formed on the insulating film 11 by high-frequency ion blasting. Zn 01112 (7) Created in 1937
“Transactions of the Institute of Electronics and Communication Engineers, published in May 2015, 791.5
vol, 62-CNo, 5. As described in detail in Machida et al., metal Zn is evaporated in a chemically active atmosphere of low temperature plasma of oxygen to form a ZnO film 1.
2 is synthesized on the substrate 10, but this Zn
011! The preparation conditions are summarized in Table 1. Further, although the film forming conditions that the ZnO film 12 created in this manner should have vary depending on the film forming method, at least the crystal plane (O○2) of the ZnO film 12 is formed parallel to the substrate surface 11a. That is what we are doing.

第2図は高周波イオンブレーティング法で形成したZn
 011112のX −Ray回折パターンを示すグラ
フであり、横軸に2θ回折角をとり縦軸には回折線の相
対強度をとっである。第2図によると26回折角が約3
2°のところで結晶面(002)の回折ピークが現れて
おり、この回折ピーク値が大きく、半値幅の小さいもの
程結晶性が優れていると考えられる。
Figure 2 shows Zn formed by high frequency ion blating method.
This is a graph showing the X-Ray diffraction pattern of 011112, in which the horizontal axis represents the 2θ diffraction angle and the vertical axis represents the relative intensity of the diffraction lines. According to Figure 2, the 26 diffraction angle is approximately 3
A diffraction peak of the crystal plane (002) appears at an angle of 2°, and it is considered that the larger the diffraction peak value and the smaller the half width, the better the crystallinity.

第3の工程は以下に示す通りであり、第2図(C)に示
す様に、第2の工程で成膜されたZnO膜12の上にI
n Sb膜13を真空蒸着法によって成膜するが、その
時の1n3b膜13の作成条件は、第2表に示す各項目
の設定範囲を少なくとも満足する必要がある。
The third step is as shown below, and as shown in FIG. 2(C), I
The nSb film 13 is formed by a vacuum evaporation method, and the conditions for forming the 1n3b film 13 at that time must at least satisfy the setting ranges of each item shown in Table 2.

第1表 ZnO膜の作成条件 上記の工程により得られた基板10上のIn Sb膜1
3をフォトリゾグラフィ工程により所定の形状を有する
複数のホール素子群に形成したのち、基板を切断するこ
とにより単体のホール素子を得る。また、成膜時の基板
温度はInSbの結晶性の良否を決める一つの要因とな
っていることがよく知られている。
Table 1 Conditions for creating ZnO film InSb film 1 on substrate 10 obtained by the above steps
3 is formed into a plurality of Hall element groups having a predetermined shape by a photolithography process, and then a single Hall element is obtained by cutting the substrate. Furthermore, it is well known that the substrate temperature during film formation is one of the factors that determines the quality of the crystallinity of InSb.

第3図は本発明になるZnO膜付基板により製造された
ホール素子とZnO膜なし基板以外は同一条件のもとで
製造された他のホール素子についてInSb膜13の成
膜時における基板温度とホール移動度μとの関係を示し
たグラフである。
FIG. 3 shows the substrate temperature at the time of forming the InSb film 13 for a Hall element manufactured using a substrate with a ZnO film according to the present invention and another Hall element manufactured under the same conditions except for a substrate without a ZnO film. It is a graph showing the relationship with hole mobility μ.

第3図から明らかな様に、基板温度が300〜500℃
の範囲内で、本発明になるZnO膜付基板を用いたホー
ル素子のホール移動度はZnO膜なし基板を用いたホー
ル素子のホール移動度と比較すると約2〜4倍程度大き
くなっており、ホール移動度μとして20,000〜4
5,000cm2/v 、sの値が再現性良く得られて
いる。
As is clear from Figure 3, the substrate temperature is 300 to 500℃.
Within the range of , the Hall mobility of the Hall element using the ZnO film-coated substrate according to the present invention is about 2 to 4 times larger than that of the Hall element using the ZnO film-free substrate. 20,000 to 4 as Hall mobility μ
Values of 5,000 cm2/v and s were obtained with good reproducibility.

膜の付着力、平滑性についても良好に膜質を示し、ホー
ル素子、磁気抵抗効果素子への応用に対して充分な実用
性を確しかめ得た。
The film exhibited good film quality in terms of adhesion and smoothness, and was able to confirm sufficient practicality for application to Hall elements and magnetoresistive elements.

1nSb膜13の結晶性は、ZnO膜12の結晶性の品
位に加え、(n 3b膜13の成膜条件によって変化す
るものであるが、本実施例では表2に示す条件のもとで
、ホール移動度μm 20,000CIl12/v、S
以上の高感度膜が得られている。
The crystallinity of the 1nSb film 13 varies depending on the crystallinity quality of the ZnO film 12 as well as the deposition conditions of the n3b film 13, but in this example, under the conditions shown in Table 2, Hall mobility μm 20,000CIl12/v, S
A highly sensitive film as described above has been obtained.

上記の実施例ではZn 01!J12の成膜方法として
は高周波イオンブレーティング法を用いた例で説明した
が、スパッタリング法、CVD (Camical  
Vaper  DeposiNon )によってZn 
011912を形成しても一向にかまわない。要するに
、第3図に示したX −Ray回折パターンにおいて、
(002>面の回折ピークが明らかに認められるZnO
膜12を用いれば目的とする高感度のIn5bll!1
3が得られるものである。又、基板1oとして、フェラ
イト材からなる基板10面にSiO2膜又はガラス膜等
からなる絶縁膜11を形成した例で説明したが、基板1
0は必ずしもフェライト材からなる基板である必要はな
く、例えば、ガラス(例、コーニング7056 )材あ
るいはセラミック材等からなる絶縁性を有する基板上に
直接ZnO膜12を形成したものを使用し、その上にI
n Sb II!Iを形成しても、同様に、ホール移動
度の大きい高感の高い電磁変換素子が得られるものであ
る。
In the above example, Zn 01! The J12 film formation method was explained using the high frequency ion blating method as an example, but sputtering method, CVD (Camical
Vaper DeposiNon) by Zn
011912 may be formed. In short, in the X-Ray diffraction pattern shown in Figure 3,
(ZnO where the diffraction peak of the 002> plane is clearly observed
If film 12 is used, the desired high sensitivity In5bll! 1
3 is obtained. In addition, as the substrate 1o, an example has been described in which an insulating film 11 made of a SiO2 film or a glass film is formed on the surface of the substrate 10 made of a ferrite material.
0 does not necessarily have to be a substrate made of ferrite material; for example, a substrate with ZnO film 12 formed directly on an insulating substrate made of glass (for example, Corning 7056) or ceramic material may be used. I on top
n Sb II! Even if I is formed, an electromagnetic transducer with high hole mobility and high sensitivity can be obtained.

他の実施例としては、ZnO膜付の基板の上に、1n3
b膜と同様な成膜条件でIn AS膜を形成し、更に、
このin AS gからフォトリソグラフィの手段によ
ってホール素子を作成したが、これによるホール素子の
ホール移動度は、ZnO膜なし基板のものに比較すると
、InbsIllのものと同様に、2〜4倍程度大きな
ホール移動度を有するl5AS膜が得られることを発明
者等によって確認されている。
As another example, on a substrate with a ZnO film, 1n3
An In AS film was formed under the same film formation conditions as the b film, and
A Hall element was created from this in AS g by photolithography, and the hole mobility of the resulting Hall element was about 2 to 4 times higher than that of a substrate without a ZnO film, similar to that of InbsIll. The inventors have confirmed that an 15AS film having high hole mobility can be obtained.

(発明の効果) 上述の如く、本発明になる磁電変換素子は絶縁性を有す
る基板上にZnoの結晶化膜を形成し、この結晶化膜上
にInSb又はIn As等のln化合物からなる膜を
成膜したことによりZnO膜なし基板上にInSb又は
InAS等のln化合物の膜を成膜した磁電変換素子に
比較すると2〜4倍程度大きいホール移動度を有する高
感度の磁電変換素子が可能となる。
(Effects of the Invention) As described above, the magnetoelectric transducer of the present invention includes a crystallized Zno film formed on an insulating substrate, and a film made of an ln compound such as InSb or InAs on this crystallized film. By forming a film, it is possible to create a highly sensitive magnetoelectric transducer with a hole mobility that is approximately 2 to 4 times larger than that of a magnetoelectric transducer in which a film of an ln compound such as InSb or InAS is formed on a substrate without a ZnO film. becomes.

また、基板にはフェライトあるいはガラス等の強度があ
り、しかも、化学的に安定した材料を使用しているため
、マイカ基板を用いた時のように補強用基板を別途設け
る必要はなく、製造工程を簡易化出来る結果コスト的に
も有利になると共に信頼性の高い磁電変換素子の製造を
可能とする等の特長を有するものである。
In addition, since the substrate is made of a strong and chemically stable material such as ferrite or glass, there is no need to provide a separate reinforcing substrate like when using a mica substrate, and the manufacturing process As a result of being able to simplify the process, it is advantageous in terms of cost as well as making it possible to manufacture a highly reliable magnetoelectric transducer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a )〜(C)は本発明の一実施例を示す主要
工程の概略説明図、第2図は高周波イオンブレーティン
グ法で形成したZnO膜のX −RaV回折パターンを
示すグラフ、第3図は本発明になるZn○膜基板により
製造されたホール素子とZn’O膜なし基板以外は同一
条件のもとで製造された他のホール素子について、In
5blllの成膜時における基板温度とホール移動度μ
との関係を示したグラフである。 10・・・基板、11・・・絶縁膜、12・・・ZnO
膜、13−In Sb II。 基]見過−度(0つ− 第3図
FIGS. 1(a) to (C) are schematic explanatory diagrams of the main steps showing one embodiment of the present invention, and FIG. 2 is a graph showing the X-RaV diffraction pattern of a ZnO film formed by high-frequency ion blating method. Figure 3 shows the results of In
Substrate temperature and hole mobility μ during film formation of 5 blll
This is a graph showing the relationship between 10... Substrate, 11... Insulating film, 12... ZnO
Membrane, 13-In Sb II. Base] Oversight (0) Figure 3

Claims (1)

【特許請求の範囲】[Claims] 絶縁性を有する基板上に酸化亜鉛(ZnO)の結晶化膜
を形成し、この結晶化膜上にInSb又はInAs等か
らなるIn化合物の結晶膜を成膜したことを特徴とする
磁電変換素子。
A magnetoelectric transducer characterized in that a crystallized film of zinc oxide (ZnO) is formed on an insulating substrate, and a crystallized film of an In compound made of InSb, InAs, etc. is formed on the crystallized film.
JP61265296A 1986-11-07 1986-11-07 Magnetoelectric transducer Pending JPS63119590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61265296A JPS63119590A (en) 1986-11-07 1986-11-07 Magnetoelectric transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61265296A JPS63119590A (en) 1986-11-07 1986-11-07 Magnetoelectric transducer

Publications (1)

Publication Number Publication Date
JPS63119590A true JPS63119590A (en) 1988-05-24

Family

ID=17415232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61265296A Pending JPS63119590A (en) 1986-11-07 1986-11-07 Magnetoelectric transducer

Country Status (1)

Country Link
JP (1) JPS63119590A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0548375A1 (en) * 1991-07-16 1993-06-30 Asahi Kasei Kogyo Kabushiki Kaisha Semiconductor sensor and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0548375A1 (en) * 1991-07-16 1993-06-30 Asahi Kasei Kogyo Kabushiki Kaisha Semiconductor sensor and its manufacturing method
EP0548375A4 (en) * 1991-07-16 1994-11-09 Asahi Chemical Ind Semiconductor sensor and its manufacturing method
US5453727A (en) * 1991-07-16 1995-09-26 Asahi Kasai Kogyo Kabushiki Kaisha Semiconductor sensors and method for fabricating the same

Similar Documents

Publication Publication Date Title
US3766041A (en) Method of producing piezoelectric thin films by cathodic sputtering
US4568905A (en) Magnetoelectric transducer
JPS5928327A (en) Forming method of single crystal semiconductor film
JPS6129920B2 (en)
JP3342590B2 (en) Semiconductor integrated circuit
US5935641A (en) Method of forming a piezoelectric layer with improved texture
JPH0658891B2 (en) Thin film single crystal diamond substrate
JPS63119590A (en) Magnetoelectric transducer
EP0047651B1 (en) Method of producing image sensor
JP2002115056A (en) Manufacturing method of metal thin film consisting of large single crystal grain
JP4422678B2 (en) Method for manufacturing ferroelectric single crystal film structure using vapor deposition method
JP2856533B2 (en) Method for manufacturing polycrystalline silicon thin film
JP3180378B2 (en) Method of manufacturing semiconductor thin film and method of manufacturing semiconductor magnetoresistive element
JPS6244403B2 (en)
JPH0419699B2 (en)
JPH0784274A (en) Formation of ito thin film having preferential orientation
JPS6130018B2 (en)
JPS60147180A (en) Piezoelectric element
JPH04341005A (en) Surface acoustic wave element using diamond film
JPH021231B2 (en)
JP3664368B2 (en) Method for forming InSb film and method for manufacturing Hall element using InSb film
JPH09148653A (en) Hall element and its manufacture
JPH02241069A (en) Magnetoelectric transducer
JP2578917B2 (en) Method for producing Cd-based II-VI compound semiconductor thin film
JPH03106085A (en) Magnetoelectric transducer