JPH03106085A - Magnetoelectric transducer - Google Patents

Magnetoelectric transducer

Info

Publication number
JPH03106085A
JPH03106085A JP1243692A JP24369289A JPH03106085A JP H03106085 A JPH03106085 A JP H03106085A JP 1243692 A JP1243692 A JP 1243692A JP 24369289 A JP24369289 A JP 24369289A JP H03106085 A JPH03106085 A JP H03106085A
Authority
JP
Japan
Prior art keywords
thin film
sapphire
plane substrate
film
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1243692A
Other languages
Japanese (ja)
Inventor
Toshihiro Mizuno
水野 俊宏
Susumu Shigeta
進 繁田
Shoichi Sekiguchi
関口 省一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamura Corp
Original Assignee
Tamura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamura Corp filed Critical Tamura Corp
Priority to JP1243692A priority Critical patent/JPH03106085A/en
Publication of JPH03106085A publication Critical patent/JPH03106085A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make a magnetoelectric transducer high in sensitivity and low in unbalance rate and to enable a magnetosensitive thin film to be controlled in a wide range of physical properties by a method wherein a thin film of III-V compound semiconductor is epitaxially grown in film on a mirror-polished sapphire C plane substrate through a thin film forming method, and the formed thin film is made to serve as a magnetosensitive part. CONSTITUTION:A thin film of III-V compound semiconductor (InSb, GaSb, InGaSb, or the like) is epitaxially grown in the form of a film on a mirror- polished sapphire C plane substrate through a thin film forming method, and the formed thin film is made to serve as a magnetosensitive part 2. An electrode 3 is formed on the sapphire C plane substrate 1 partially overlapping the photosensitive part 2. The electrode 3 is formed of metal which is brought into ohmic contact with a compound semiconductor and high enough in adhesive strength to the sapphire C plane substrate 1. By this setup, a photosensitive part of high quality is epitaxially grown on a sapphire C plane substrate, and is approximates to a bulk crystal in characteristics, is high in Hall mobility and Hall coefficient, so that a magetoelectric conversion element of this design can be much improved in sensitivity.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、ホール素子、磁気抵抗素子(MR素子)等の
磁電変換素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to magnetoelectric conversion elements such as Hall elements and magnetoresistive elements (MR elements).

(従来の技術) 例えば、従来の薄膜ホール素子の感磁部は、lnsb等
の化合物半導体がガラス、アルミナ等の非晶質上や多結
晶上に或膜されているため、多結晶膜が形成されている
(Prior art) For example, in the magnetically sensitive part of a conventional thin film Hall element, a compound semiconductor such as lnsb is formed on an amorphous material such as glass or alumina, or on a polycrystalline material, so a polycrystalline film is formed. has been done.

また、特公昭51−45234号公報に示されるように
、マイカ(雲母)上に感磁部(lnsb,InAs等)
を成膜することで、配向を即し上記多結晶膜の感磁部よ
り感度を改善したホール素子も考案されている。
In addition, as shown in Japanese Patent Publication No. 51-45234, magnetically sensitive parts (lnsb, InAs, etc.) are formed on mica (mica).
A Hall element has also been devised in which the sensitivity is improved by forming a film to align the orientation and improve the sensitivity compared to the magnetically sensitive part of the polycrystalline film.

一方、単結晶を用いたホール素子は、lnsb,nAa
、Ge等を用いた素子があり、これらはバルク結晶を薄
く研磨して感磁部としている。
On the other hand, Hall elements using single crystals are lnsb, nAa
There are elements using materials such as , Ge, etc., and these have a bulk crystal that is polished thin to form a magnetically sensitive part.

(発明が解決しようとする課題) 上記した従来のInSb薄膜ホール素子では、感磁部に
lnsb等の多結晶膜を蒸着等によって成膜するため、
ホール移動度、ホール係数が単結晶のそれと比べると低
く、素子として高感度化が難しい。
(Problems to be Solved by the Invention) In the conventional InSb thin film Hall element described above, a polycrystalline film such as lnsb is formed on the magnetically sensitive part by vapor deposition, etc.
The Hall mobility and Hall coefficient are lower than those of single crystals, making it difficult to achieve high sensitivity as a device.

また、多結晶膜であるため、感磁部の面内分布にばらつ
きが生じ、不平衡電圧発生の一因となっている。さらに
、m−v族化合物半導体は混晶(例えば三元、四元等)
によってその諸特性を制御し、欲する特性を得ているが
、上記多結晶膜ではその効果を得ることができないため
、材料選択範囲の狭い感磁部しかデバイス化できない。
Furthermore, since it is a polycrystalline film, variations occur in the in-plane distribution of the magnetically sensitive portion, which is a cause of unbalanced voltage generation. Furthermore, m-v group compound semiconductors are mixed crystals (e.g. ternary, quaternary, etc.)
However, since the above-mentioned polycrystalline film cannot achieve this effect, only magnetically sensitive parts with a narrow range of material selection can be made into devices.

一方、マイカ基板上に成膜した感磁部を用いたホール素
子は、多結晶上あるいは非品質上に成膜されたものより
良く配向するため、膜特性(例えばホール移動度)が向
上し、不平衡電圧も減少するが、単結晶から比べると低
い値となっている。
On the other hand, a Hall element using a magnetically sensitive part formed on a mica substrate is better oriented than one formed on a polycrystalline or non-quality surface, so the film properties (e.g. Hall mobility) are improved. The unbalanced voltage also decreases, but the value is lower than that of single crystal.

さらに、マイカ基板は壁閲しやすいため、そのままでは
デバイス化できず、マイカ基板を除去し膜面のみを使用
する特殊な製造工程が必要となる。
Furthermore, since mica substrates are easy to see through walls, they cannot be made into devices as they are, and a special manufacturing process is required in which the mica substrate is removed and only the film surface is used.

さらに、感磁部に単結晶( InSb, InAs, 
Ge等)を用いたホール素子ではバルク結晶からウエノ
\を切出して用いている。多結晶膜より電気的特性、不
平衡率共に優れているが、感度を上げるためにウエハを
研磨し、感磁部厚を薄くする必要がある。
Furthermore, single crystals (InSb, InAs,
In a Hall element using Ge, etc., Ueno\ is cut out from a bulk crystal and used. Although it has better electrical properties and unbalance rate than polycrystalline films, it is necessary to polish the wafer and reduce the thickness of the magnetically sensitive part in order to increase sensitivity.

しかし、薄膜ホール素子の感磁部膜厚と同一厚にはでき
ず、厚いためバルク本来の高特性(高ホール係数)が生
かされないばかりでなく、高価な素子となり、用途が限
定されている。
However, it cannot be made to have the same thickness as the magnetically sensitive part of a thin-film Hall element, and because of its thickness, not only the high characteristics inherent in the bulk (high Hall coefficient) are not utilized, but the element is also expensive, and its uses are limited.

また、lnsb, InGaSb等は磁界に対する感度
が大きいという特徴を持つが、実際はその温度依存性が
大きいため、温度特性を重視した用途には使用できなか
った。これに対し、n型ドーパントを用いて温度特性を
改良,する試みも多くあったが、ホール出力電圧が極端
に低下して、デバイスの特徴(高出力)を打消してしま
うこととなった。
In addition, lnsb, InGaSb, and the like have a characteristic of being highly sensitive to magnetic fields, but in reality, their temperature dependence is large, so that they cannot be used in applications where temperature characteristics are important. In response, there have been many attempts to improve the temperature characteristics by using n-type dopants, but these results in an extremely low Hall output voltage, which cancels out the characteristics of the device (high output).

本発明は、上記問題点を解決すべくなされたもので、高
感度化、低不平衡率および感磁部薄膜物性の高範囲な制
御(例えば混晶によるバンドギャップ制御)を可能とし
た製造容易で安価なホール素子、磁気抵抗素子等の磁電
変換素子を提供することを第lの目的とする。
The present invention has been made to solve the above problems, and is easy to manufacture by enabling high sensitivity, low unbalance rate, and wide control of the physical properties of the magnetically sensitive thin film (for example, band gap control using mixed crystals). The first object of the present invention is to provide an inexpensive magnetoelectric conversion element such as a Hall element or a magnetoresistive element.

さらに、本発明は、その磁電変換素子の温度依存性を改
良することを第2の目的とする。
Furthermore, a second object of the present invention is to improve the temperature dependence of the magnetoelectric conversion element.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 請求項1の発明は、m−v族化合物半導体を薄膜形成法
によって、鏡面研磨されたサファイアC面基板1上にエ
ピタキシャル成長させ、成膜された薄膜を感磁部2とし
た磁電変換素子である。
(Means for Solving the Problems) The invention of claim 1 is characterized in that an m-v group compound semiconductor is epitaxially grown on a mirror-polished sapphire C-plane substrate 1 by a thin film forming method, and the formed thin film is magnetically sensitive. This is a magnetoelectric conversion element designated as part 2.

請求項2の発明は、請求項1のnr−v族化合物半導体
感磁部2にn型ドーバントを併用した磁電変換素子であ
る。
The invention according to claim 2 is a magnetoelectric transducer in which the nr-v group compound semiconductor magnetic sensing portion 2 according to claim 1 is combined with an n-type dopant.

(作用) 請求項1の発明は、基板として鏡面に仕上げられた単結
晶サファイアC面基板1上に蒸着(MBEを含む)、ス
パッタ(DC,RF等)、CvD等の薄膜成膜方法によ
り、m−v族化合物半導体(1+sbSGash, l
nGasb等)をエピタキシャル成長させ、その薄膜感
磁部2の膜厚を均一に制御する。
(Function) The invention of claim 1 is a method for forming a thin film on a mirror-finished single crystal sapphire C-plane substrate 1 as a substrate by a thin film forming method such as evaporation (including MBE), sputtering (DC, RF, etc.), CvD, etc. m-v group compound semiconductor (1+sbSGash, l
(nGasb, etc.) is epitaxially grown, and the film thickness of the thin film magnetically sensitive portion 2 is controlled to be uniform.

請求項2の発明は、エピタキシャル膜成膜時または成膜
後に、SnSTe等のn型ドーパントを適量ドープする
According to the second aspect of the invention, an appropriate amount of an n-type dopant such as SnSTe is doped during or after epitaxial film formation.

(実施例) 以下、本発明を図面に示される実施例を参照して詳細に
説明する。
(Examples) Hereinafter, the present invention will be described in detail with reference to examples shown in the drawings.

第1図および第2図において、1は、或膜用基板であり
、表面を鏡面研磨されたサファイアC面(0 0 0 
1)である。この基板1の厚さは特に規定しないが、薄
いほうが価格的に有利である。
In FIGS. 1 and 2, reference numeral 1 denotes a substrate for a certain film, and the surface is mirror-polished with a sapphire C surface (0 0 0
1). Although the thickness of the substrate 1 is not particularly specified, the thinner the substrate 1, the more advantageous it is in terms of cost.

このサファイアC面基板↑上に感磁部2が成膜されてい
る。この感磁部2は、■−■族化合物半導体(lnsb
SGgSb, InGaSb等)が、蒸着(モリキュラ
ービームエピタキシMBEを含む)、スパッタ(DC,
RF等)、ケミカルペーパーデポジション(CVD)等
の薄膜戊膜方法により、ザファイアC面基板1上でエピ
タキシャル成長されたものである。
A magnetically sensitive part 2 is formed on this sapphire C-plane substrate ↑. This magnetic sensing part 2 is a ■-■ group compound semiconductor (lnsb
SGgSb, InGaSb, etc.), vapor deposition (including molecular beam epitaxy MBE), sputtering (DC,
RF, etc.), chemical paper deposition (CVD), etc., on the Zaphire C-plane substrate 1.

この感磁部2に一部がオーバーラップする形で、前記サ
ファイアC面基板1上に電極3が形成されている。この
電極3は、上記化合物半導体とオーミックコンタクトが
可能な金属で、かつサファイアC面基板1に対し十分な
付着強度を持つものであればよい。
An electrode 3 is formed on the sapphire C-plane substrate 1 so as to partially overlap the magnetically sensitive portion 2 . This electrode 3 may be any metal as long as it is capable of making ohmic contact with the compound semiconductor and has sufficient adhesion strength to the sapphire C-plane substrate 1.

前記成膜用基板1は、感磁部2がエピタキシャル成長で
き、かつ絶縁体で熱伝動率が良く、感磁部2の特性劣化
を誘引しないものが望ましい。
The film-forming substrate 1 is desirably one on which the magnetically sensitive part 2 can be epitaxially grown, an insulator with good thermal conductivity, and which does not induce deterioration of the characteristics of the magnetically sensitive part 2.

本発明者がサファイア単結晶基板上に化合物半導体(I
口mb, GgSb, InGISb等)を薄膜或膜方
法によってエピタキシャル成長させることを試みたとこ
ろ、サファイア基板の面方位によってエピタキシャル成
長できるものと、できないものとがあることが判明した
The present inventor has developed a compound semiconductor (I) on a sapphire single crystal substrate.
When attempting to epitaxially grow sapphire substrates (GgSb, InGISb, etc.) by a thin film method, it was found that some types of sapphire substrates can be epitaxially grown and others cannot, depending on the plane orientation of the sapphire substrate.

すなわち、サファイアA面(11.20)、R面(11
02)ではエピタキシャル成長できず、多結晶膜となり
、サファイアC面(0 0 0 1)のみがエピタキシ
ャル成長できた。
That is, sapphire A side (11.20), R side (11.20)
With 02), epitaxial growth could not be achieved, resulting in a polycrystalline film, and only the sapphire C plane (0 0 0 1) could be epitaxially grown.

次に、InSbを蒸着により成膜した例を示す。Next, an example will be shown in which InSb is formed into a film by vapor deposition.

片面鏡面研磨したサファイアA面、C面、R面の各々の
基板上にIn(6N)、Sb (6N)を同時に蒸着し
てInSb膜を作成した。基板温度460℃、真空度は
5 X 1 0−’Tarr台で行なった。第3図は、
その結果得られたA面、C面、R面の各基板上に成膜し
たlnsb膜のX線回折パターンを示す。次に示す第1
表は、各基板上のInsb膜の電気的特性を示す。
An InSb film was created by simultaneously depositing In (6N) and Sb (6N) on each of the A-side, C-side, and R-side sapphire substrates that had been mirror-polished on one side. The substrate temperature was 460° C., and the degree of vacuum was 5×10−′ Tarr. Figure 3 shows
The X-ray diffraction patterns of the lnsb films formed on the A-plane, C-plane, and R-plane substrates obtained as a result are shown. The first
The table shows the electrical properties of the Insb films on each substrate.

(以下次頁) 第1表 (van der PIIIW法によるI++Sb膜の
電気的特性)上記第3図および第1表から明らかなよう
に、サファイアA面およびR面上のInSb膜は、X線
回折パターン多結晶構造を示しており、その電気的特性
、特にホール移動度は低く、多結晶基板、非品質基板上
のI n S b膜と比べて大きな差がない値となって
いる。一方、サファイアC面基板上のlnsb膜は、X
線回折パターンから(11.1)面にエピタキシャル成
長していることがわかり、ホール移動度は5 0 , 
 0 0 0 cnr/Vsec,ホール係数It 6
 00■3/Cを示した。
(See next page) Table 1 (Electrical properties of I++ Sb film by van der PIIIW method) As is clear from the above Figure 3 and Table 1, InSb films on sapphire A-plane and R-plane are It exhibits a patterned polycrystalline structure, and its electrical properties, particularly hole mobility, are low and have values that are not significantly different from those of InSb films on polycrystalline substrates or non-quality substrates. On the other hand, the lnsb film on the sapphire C-plane substrate is
It was found from the line diffraction pattern that epitaxial growth occurred on the (11.1) plane, and the hole mobility was 50,
0 0 0 cnr/Vsec, Hall coefficient It 6
It showed 00■3/C.

次の第2表は、lnsb膜を感磁部としたホール素子(
第1図および第2図)の不平衡率を示している。
The following Table 2 shows the Hall element (
1 and 2).

この第2表から明らかなように、サファイアC面基板上
に或膜した!nSb膜はエピタキシャル膜のため欠陥が
少なく均一なため、低い不平衡率を示している。
As is clear from Table 2, a certain film was formed on the sapphire C-plane substrate! Since the nSb film is an epitaxial film, it has few defects and is uniform, so it exhibits a low unbalance rate.

これらから高ホール移動度、低不平衡率、さらに感磁部
膜厚の薄い高感度な薄膜ホール素子、磁気抵抗素子(M
R素子)の実現が可能となった。
These include high Hall mobility, low unbalance rate, and highly sensitive thin film Hall elements with thin magnetic sensing parts, and magnetoresistive elements (M
R element) has become possible.

次に、lnsb, lnGasbにおいて、Sn, T
e等のn型ドーバントを適量ドープすることで、ホール
素子の出力電圧の温度依存性を改良できることは既知で
あるが、これらは、サファイアC面基板上に成膜したI
nSb、lnGasbエピタキシャル膜において著しい
効果が現れた。
Next, in lnsb and lnGasb, Sn, T
It is known that the temperature dependence of the output voltage of a Hall element can be improved by doping an appropriate amount of an n-type dopant such as e.
Remarkable effects appeared in nSb and lnGasb epitaxial films.

例えば、lnGasbを蒸着によって成膜した例を示す
と、片面鏡面研磨したサファイアC面基板上にIn, 
Ga, Sbを同時に蒸着した。この際、Tefi度が
I X 10”/ cm3台になるよう成膜中にTeを
ドープした。基板温度は530℃、戊膜時の真空度は6
 X 1 0−8Torr台で行なった。
For example, in an example where lnGasb is formed by vapor deposition, In,
Ga and Sb were deposited simultaneously. At this time, Te was doped during film formation so that the degree of Tefi was on the order of I x 10"/cm3. The substrate temperature was 530°C, and the degree of vacuum during film formation was 6.
The test was carried out at X10-8 Torr.

この成膜にて著しく改善された例をあげると、IV定電
圧駆動LKG(キロガウス)で、ホール出力電圧60!
IL−65℃〜4120℃の温度係数は0.02%/℃
となった。
To give an example of a remarkable improvement with this film formation, with IV constant voltage drive LKG (Kilo Gauss), the Hall output voltage is 60!
Temperature coefficient from IL-65℃ to 4120℃ is 0.02%/℃
It became.

このように、高出力、低温度係数のホール素子が得られ
た。
In this way, a Hall element with high output and low temperature coefficient was obtained.

〔発明の効果〕〔Effect of the invention〕

請求項1の発明によれば、この発明によって製作したホ
ール素子、磁気抵抗素子等の磁電変換素子は、サファイ
アC面基板上にエピタキシャル成長させた高品位の感磁
部のため、バルク結晶の特性に近づき、高ホール移動度
、高ホール係数が得られることから、より高感度なデバ
イスとなった。また、バルク結晶を感磁部に使用したホ
ール素子等と比べて、感磁部の成膜を薄く製作できるこ
とから、定電流駆動時のホール電圧を高めることも同時
に可能となった。また、■−v族混晶膜(特にI++G
aSb)が、サファイアC面基板上でエピタキシャル或
長できるため、これを感磁部に適用すると高出力化、温
度特性の改良等が可能である。
According to the invention of claim 1, the magnetoelectric conversion elements such as Hall elements and magnetoresistive elements produced according to the invention have high-quality magnetic sensing parts epitaxially grown on the sapphire C-plane substrate, so that they do not conform to the characteristics of bulk crystals. As a result of this approach, high Hall mobility and high Hall coefficient can be obtained, resulting in a more sensitive device. Additionally, compared to Hall elements that use bulk crystals in the magnetically sensitive part, the film in the magnetically sensitive part can be made thinner, making it possible to simultaneously increase the Hall voltage during constant current drive. In addition, ■-V group mixed crystal film (especially I++G
aSb) can be epitaxially grown on a sapphire C-plane substrate, so if it is applied to a magnetically sensitive part, it is possible to increase output and improve temperature characteristics.

さらに、感磁部が均一に戊膜されるため、ホール素子で
問題となる不平衡電圧の低減が可能となった。
Furthermore, since the magnetic sensing part is coated uniformly, it is possible to reduce unbalanced voltage, which is a problem with Hall elements.

請求項2の発明によれば、Sn, Te等のn型ドーパ
ントは、サファイアC面基板上にエピタキシャル成長し
たat−V族化合物半導体感磁部に対して、温度特性の
大きな改善を可能とするため、温度特性の良いホール素
子等の磁電変換素子を、蒸着、スパッタ、CVD等の一
般的な成膜方法によって供給することができ、磁電変換
素子が優れた量産性の下に安価に供給されることとなっ
た。
According to the invention of claim 2, the n-type dopants such as Sn and Te are used to greatly improve the temperature characteristics of the at-V group compound semiconductor magnetic sensing part epitaxially grown on the sapphire C-plane substrate. , magnetoelectric transducers such as Hall elements with good temperature characteristics can be supplied by common film-forming methods such as evaporation, sputtering, and CVD, and magnetoelectric transducers can be supplied at low cost with excellent mass productivity. It became a thing.

【図面の簡単な説明】[Brief explanation of drawings]

第t図は磁電変換素子の一つであるホール素子の平面図
、第2図は第1図のn−n線断面図、第3図はサファイ
ア基板上に成膜したlnsb膜のX線回折パターンを示
す図である。 l・・サファイアC面基板、2・・感磁部。
Figure t is a plan view of a Hall element, which is one of the magnetoelectric conversion elements, Figure 2 is a sectional view taken along line nn of Figure 1, and Figure 3 is an X-ray diffraction diagram of the lnsb film formed on a sapphire substrate. It is a figure showing a pattern. l...Sapphire C-plane substrate, 2...Magnetic sensitive part.

Claims (2)

【特許請求の範囲】[Claims] (1)III−V族化合物半導体を薄膜形成法によって、
鏡面研磨されたサファイアC面基板上にエピタキシャル
成長させ、成膜された薄膜を感磁部としたことを特徴と
する磁電変換素子。
(1) Group III-V compound semiconductor by thin film formation method,
A magnetoelectric transducer characterized in that a thin film formed by epitaxial growth on a mirror-polished sapphire C-plane substrate serves as a magnetically sensitive part.
(2)III−V族化合物半導体感磁部にn型ドーパント
を併用したことを特徴とする請求項1記載の磁電変換素
子。
(2) The magnetoelectric transducer according to claim 1, characterized in that an n-type dopant is also used in the III-V group compound semiconductor magnetically sensitive portion.
JP1243692A 1989-09-20 1989-09-20 Magnetoelectric transducer Pending JPH03106085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1243692A JPH03106085A (en) 1989-09-20 1989-09-20 Magnetoelectric transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1243692A JPH03106085A (en) 1989-09-20 1989-09-20 Magnetoelectric transducer

Publications (1)

Publication Number Publication Date
JPH03106085A true JPH03106085A (en) 1991-05-02

Family

ID=17107570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1243692A Pending JPH03106085A (en) 1989-09-20 1989-09-20 Magnetoelectric transducer

Country Status (1)

Country Link
JP (1) JPH03106085A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06177453A (en) * 1992-07-28 1994-06-24 Nec Corp Thin film of magnetoresistance effect element
JP2010050467A (en) * 2009-10-01 2010-03-04 Asahi Kasei Electronics Co Ltd Method of manufacturing semiconductor thin-film element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06177453A (en) * 1992-07-28 1994-06-24 Nec Corp Thin film of magnetoresistance effect element
JP2010050467A (en) * 2009-10-01 2010-03-04 Asahi Kasei Electronics Co Ltd Method of manufacturing semiconductor thin-film element

Similar Documents

Publication Publication Date Title
JPH0624184B2 (en) Method of forming low defect single crystal layer on mask
US20200091398A1 (en) Josephson junction using molecular beam epitaxy
Osten et al. Growth of crystalline praseodymium oxide on silicon
US4568905A (en) Magnetoelectric transducer
JP3414833B2 (en) Method for manufacturing semiconductor thin film and method for manufacturing magnetoelectric conversion element
Osten et al. Epitaxial growth of praseodymium oxide on silicon
US5364468A (en) Method for the growth of epitaxial metal-insulator-metal-semiconductor structures
JPH03106085A (en) Magnetoelectric transducer
US5529640A (en) Epitaxial metal-insulator-metal-semiconductor structures
US10770649B1 (en) Lattice matched tunnel barriers for perpendicularly magnetized Heusler alloys
Chen et al. Planar magnetoresistivity and planar hall effect measurements in nickel single-crystal thin films
JP3264962B2 (en) Manufacturing method of magnetoelectric conversion element
JPH0567525A (en) Magnetic laminated body, its manufacture, and manufacture of magneto-resistance effect element
JPS6232609B2 (en)
JPS6142910A (en) Manufacture of semiconductor device
JPS5878418A (en) Preparation of indium-antimony system compound crystal thin film
JPH0574709A (en) Manufacture of semiconductor thin film and semiconductor magnetoresistance element
JPS5973499A (en) Growth of compound semiconductor
Hothersall The recrystallization of epitaxial iron films
JPS5927519A (en) Fabrication of indium-antimony-arsenic system compound semiconductor thin film
JP3399044B2 (en) Hall element and method of manufacturing the same
JPH0239441A (en) Manufacture of compound semiconductor crystal
JP2514091B2 (en) Magnetoelectric conversion element
JP3167350B2 (en) Device manufacturing method
JPH05304097A (en) Manufacture of insb thin film