JPS5927519A - Fabrication of indium-antimony-arsenic system compound semiconductor thin film - Google Patents

Fabrication of indium-antimony-arsenic system compound semiconductor thin film

Info

Publication number
JPS5927519A
JPS5927519A JP57135460A JP13546082A JPS5927519A JP S5927519 A JPS5927519 A JP S5927519A JP 57135460 A JP57135460 A JP 57135460A JP 13546082 A JP13546082 A JP 13546082A JP S5927519 A JPS5927519 A JP S5927519A
Authority
JP
Japan
Prior art keywords
thin film
vacuum
indium
substrate
antimony
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57135460A
Other languages
Japanese (ja)
Other versions
JPH0359572B2 (en
Inventor
Keiji Kuboyama
久保山 啓治
Takeki Matsui
雄毅 松居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP57135460A priority Critical patent/JPS5927519A/en
Publication of JPS5927519A publication Critical patent/JPS5927519A/en
Publication of JPH0359572B2 publication Critical patent/JPH0359572B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02549Antimonides

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Hall/Mr Elements (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To fabricate a semiconductor thin film by vacuum-depositing In and Sb on a substrate in such condition that the transport speed rate of Sb to In is kept at 1.0 or more and a substrate temperature is kept within the particular range in the initial stage of vacuum-deposition, and by vacuum-depositing arsenic etc. after forming a thin film in the particular composition ratio with the speed ratio of 1.0 or less. CONSTITUTION:Both In and Sb are vacuum-deposited on a substrate. In this case, these are deposited in the initial condition in such a condition that the transport speed ratio ASb/AIn of both atoms is set to 1.0 or more and a substrate temperature is kept within the range from the substrate temperature Tc of interface given as a function of a degree of vacuum P to 30 deg.C. After nuclei of InSb is formed in the initial stage of vacuum-deposition, deposition is controlled so that the transport speed ratio ASbAIn is kept to 1.0 or less and an InSb system thin film having the composition ratio (FSb/FIn) in the range of 0.65-0.95 is formed. As is individually vacuum-deposited or both As and In are simultaneously vacuum-deposited on the InSb system thin film having a high mobility. Thereby, an InSb1-xAsx thin film is effectively formed.

Description

【発明の詳細な説明】 本発明は、半導体として各種用途に有用なインジウムー
アンチモンーヒ素(In5bAs )系化合物半導体薄
膜の製造方法、さらに詳しくいえば、極めて高い移動度
を有するIn5bAs系化合物半導体薄膜の製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an indium-antimony-arsenic (In5bAs)-based compound semiconductor thin film that is useful for various purposes as a semiconductor, and more specifically, to a method for manufacturing an In5bAs-based compound semiconductor thin film having extremely high mobility. The present invention relates to a method for manufacturing a thin film.

式 工n5b1−xAsx(ただしXはヒ素の原子比を
示す1未満の数)で示されるIn5bAs系化合物は、
インジウム−アンチモン(InSb )系化合物に比較
して抵抗の温度依存性が小さいので、その原子はInS
b素子に必要とされる温度補償を不要、若しくは極めて
容易にしうる利点を有する。しだがってInSb、−x
AsXは半導体素子材料として極めて有用な物質という
ことができるが、この物質はバルク結晶として得る場合
でも、その製造が困難であるという欠点がある。
The In5bAs-based compound represented by the formula n5b1-xAsx (where X is a number less than 1 indicating the atomic ratio of arsenic) is
Compared to indium-antimony (InSb)-based compounds, the temperature dependence of resistance is smaller, so the atoms in InSb
This has the advantage that the temperature compensation required for the b-element is unnecessary or can be made extremely easy. Therefore InSb, -x
Although AsX can be said to be an extremely useful substance as a semiconductor element material, it has the disadvantage that it is difficult to manufacture even when obtained as a bulk crystal.

一方、この半導体材料を用いて、例えば磁電変換素子や
薄膜電界効果型トランジスターなどの半導体装置とする
場合には、これを薄膜状にする必要があり、従来、この
ような薄膜を形成させる方法として、バルク結晶を切り
出して研磨する方法が知られている。この方法で得られ
た薄膜は優れた特性を有するが、このような単結晶の切
り出しや研磨は多量のロスを生じ、工業的方法としては
必ずしも適当ではない。
On the other hand, when using this semiconductor material to make semiconductor devices such as magnetoelectric transducers and thin film field effect transistors, it is necessary to form it into a thin film, and conventional methods for forming such thin films include , a method of cutting out and polishing a bulk crystal is known. Although the thin film obtained by this method has excellent properties, cutting out and polishing such a single crystal causes a large amount of loss, and is not necessarily suitable as an industrial method.

ところで、工n5b1−xASXの薄膜を製造するだめ
の簡便な方法として、InSbと触とを蒸着用材料とし
て、両者を同時に基板上に蒸着させて薄膜素子を得る方
法が提案されている(西ドイツ公開特許第225219
7号公報)。しかしこの方法によれば、Xのコントロー
ルが困難なため、本発明者らは先にsbとInをその原
子到達速度比(アライバル・レート・レーション) A
sb/AXn  を1以下で蒸着基板上に蒸着させてI
nSb系複合結晶薄膜を形成させたのち、その上にAs
又はAsとInを蒸着させる方法を提案した。
By the way, as a simple method for manufacturing a thin film of InSb1-xASX, a method has been proposed in which InSb and InSb are used as deposition materials and both are simultaneously deposited on a substrate to obtain a thin film element (West German Publication). Patent No. 225219
Publication No. 7). However, according to this method, it is difficult to control X, so the inventors first determined the atomic arrival rate ratio (arrival rate ratio) of sb and In.
I by depositing sb/AXn on a deposition substrate at 1 or less
After forming an nSb composite crystal thin film, As
Alternatively, a method of vapor depositing As and In was proposed.

この方法では確かにヒ素の原子比(x)のコントロール
は容易となったが、特性的にはバルク結晶から得られる
ものの半分程度の値しか得られない。
This method certainly makes it easier to control the arsenic atomic ratio (x), but in terms of characteristics, the value obtained is only about half of that obtained from bulk crystals.

そこで本発明者らは更に実験検討を繰り返した結果、I
 n S b系複合結晶薄膜段階での蒸着条件に細かな
制限を加えることにより、■n5bAs系化合物半導体
薄膜の特性が極めて優れたものになることを見出し、本
発明を完成するに至った。
As a result of further repeated experimental studies, the inventors found that I
The present inventors have discovered that the properties of ■n5bAs-based compound semiconductor thin films can be made extremely excellent by placing detailed restrictions on the vapor deposition conditions at the nSb-based composite crystal thin film stage, and have completed the present invention.

すなわち、本発明は蒸着初期におけるインジウム原子に
対するアンチモン原子の到達速度比(AI、b/A□n
)をi、o以上、かつ基板温度(絶対温度)Tを、式 %式% 〔ここに、Tcは境界の基板温度(絶対温度)、Pは蒸
着中の真空[(Torr)である〕で与えられる境界の
基板温度Tcとしたとき、Tc≦T≦Tc + 30 の範囲内になるように選択した条件下でインジウムとア
ンチモンとを基板上に蒸着させ、次いで上記到達速度比
(A8b/Aln)を1.0よりも小さくしてインジウ
ムに対するアンチモンの組成比(Fsb/p’+n)が
0.65〜0.95のインジウム−アンチモン系薄膜を
形成させたのち、さらにその上にヒ素単独又はヒ素とイ
ンジウムとを同時に蒸着させることを特徴とする、一般
式 %式% (式中のXはヒ素の原子比を示す1未満の数である) で表わされるインジウムーアンチモンーヒ素系化合物半
導体薄膜の製造方法を提供するものである。
That is, the present invention aims at increasing the arrival velocity ratio (AI, b/A□n) of antimony atoms to indium atoms at the initial stage of vapor deposition.
) is i, o or more, and the substrate temperature (absolute temperature) T is the formula % formula % [Here, Tc is the boundary substrate temperature (absolute temperature), P is the vacuum [(Torr)] during the deposition. When the substrate temperature at the given boundary is Tc, indium and antimony are deposited on the substrate under conditions selected to be within the range of Tc≦T≦Tc + 30, and then the above-mentioned attained velocity ratio (A8b/Aln ) is smaller than 1.0 to form an indium-antimony thin film with a composition ratio of antimony to indium (Fsb/p'+n) of 0.65 to 0.95, and then arsenic alone or arsenic is added on top of it. An indium-antimony-arsenic compound semiconductor represented by the general formula % (X in the formula is a number less than 1 indicating the atomic ratio of arsenic) characterized by the simultaneous vapor deposition of arsenic and indium. A method for manufacturing a thin film is provided.

本発明の方法においては、基板に対し、まずインジウム
(In)とアンチモン(sb)とを蒸着させるが1その
蒸着初期においてはインジウムとアンチモンを両原子の
到達速度比A B b/A□。が1.0以上となるよう
に基板に蒸着させるとともに、蒸着系の真空度P (T
orr)の関数として与えられる境界の基板温度(絶対
温度)Tc以上、そのTcより30℃高い温度以下の範
囲内に基板温度(絶対温度)を保って蒸着させることが
重要である。このInSb系薄膜形成段階における蒸着
初期のInSb核形成後は、上記両原子の基板への到達
速度比Asb/AXnを1.0よりも小さくなるように
コントロールして蒸着させインジウムに対するアンチモ
ンの組成PC(Fe b/FIn )が0.65〜0.
95の範囲内にあるInSb系薄膜を形成させることが
必要であり・さらにこのように形成させた高移動度のI
nSb系薄膜の上にヒ素(As )単独又はAsとIn
とを同時に蒸着させ、その際Inの膜中の又はASと蒸
着させるものとの合計の原子数(F、n)に対し、Sb
の膜中の原子数(Feb)とASの到達原子数との合計
が1.0よりも大きくなるようにAsを蒸着させること
によシ効果的に■n5bl−xAsx薄膜を製造するこ
とができる。
In the method of the present invention, indium (In) and antimony (sb) are first vapor-deposited onto a substrate.1 In the initial stage of vapor deposition, the arrival velocity ratio of both atoms is A B b/A□. is 1.0 or more, and the degree of vacuum P (T
It is important to perform deposition while maintaining the substrate temperature (absolute temperature) within a range of not less than the boundary substrate temperature (absolute temperature) Tc given as a function of Tc and not more than 30° C. higher than Tc. After the formation of InSb nuclei at the initial stage of vapor deposition in this InSb-based thin film formation stage, vapor deposition is performed by controlling the arrival speed ratio Asb/AXn of both atoms to the substrate to be smaller than 1.0, and the composition PC of antimony with respect to indium is controlled. (Feb/FIn) is 0.65 to 0.
It is necessary to form an InSb-based thin film within the range of 95, and furthermore, the high mobility I formed in this way
Arsenic (As) alone or As and In is deposited on the nSb-based thin film.
and the total number of atoms (F, n) in the In film or AS and the material to be deposited
By depositing As such that the sum of the number of atoms in the film (Feb) and the number of atoms reached by AS is greater than 1.0, it is possible to effectively produce a ■n5bl-xAsx thin film. .

以下、本発明の方法を技術的にさらに詳細に説明する。The method of the present invention will be described in further technical detail below.

本発明において前半のInSb系薄膜形成段階では、蒸
着初期の基板温度Tは、例えば5 X 10’−6To
rrの真空下で蒸着する場合 670≦T < 700  (0K )の範囲に設定し
、同時にAsb/Ar。を1.0  以上として蒸着を
開始する。そして500〜300OA程度のInSb核
が形成された段階でAsb/Arnを徐々に低下させて
、最終的なFSb/Flnが0.65−0.95となる
ように蒸着を行う。このようにして形成されたInSb
系複合結晶薄膜は、大きなInSb結晶と大きなIn結
晶とから成り、40,000−60,0OOcJ/V、
Sという高移動度特注を示す。
In the first half of the InSb-based thin film formation stage of the present invention, the substrate temperature T at the initial stage of vapor deposition is, for example, 5 x 10'-6To
When vapor deposition is performed under a vacuum of rr, the range is set to 670≦T<700 (0K), and at the same time Asb/Ar. Vapor deposition is started with the value of 1.0 or more. Then, when InSb nuclei of about 500 to 300 OA are formed, Asb/Arn is gradually lowered and vapor deposition is performed so that the final FSb/Fln becomes 0.65 to 0.95. InSb thus formed
The system composite crystal thin film consists of a large InSb crystal and a large In crystal, and has a power of 40,000-60,0OOcJ/V,
Indicates a high-mobility special order called S.

蒸着初期の基板温度を力える境界の基板温度Tcは、真
空度が特に10 ’ 〜1O−8Torrの領域におけ
るsbの平衝蒸気圧と密接な関係がある。事実Tc以上
の温度に基板温度を設定する限り、  sbを蒸着によ
り基板上に付着させることはできなかった。このように
本発明の方法においては、初期に基板に付着しないsb
が存在するから時間にわたっての積分を意味する。実験
誤差内で等号が成立するのは、初期のAsb/At□が
割合に1.0に近い場合である。したがって本発明者ら
のInElb系薄膜形系膜膜形成段階意図するところは
F8b/Flnが0.65−0.95の薄膜を形成させ
ることにあるため、必ずしもAsb/A工。の積分値を
この範囲に収める必要はない。しかし、とFBb/F工
The substrate temperature Tc at the boundary that increases the substrate temperature at the initial stage of vapor deposition is closely related to the equilibrium vapor pressure of sb especially in the region of vacuum degree of 10' to 10-8 Torr. In fact, as long as the substrate temperature was set at a temperature higher than Tc, it was not possible to deposit sb on the substrate by vapor deposition. In this way, in the method of the present invention, sb that does not adhere to the substrate initially
exists, which means integration over time. The equality holds within experimental error when the initial Asb/At□ is close to 1.0. Therefore, since the intention of the present inventors in forming the InElb thin film type film is to form a thin film with F8b/Fln of 0.65-0.95, it is not necessarily the Asb/A process. It is not necessary to keep the integral value within this range. However, FBb/F engineering.

のコントロールまで含めて考えると上記式(1)の等号
が成立するように操作するのが好ましい。
When considering the control including the above, it is preferable to operate so that the equal sign of the above equation (1) is satisfied.

また本発明において、蒸着初期とは工nSb結晶の成長
の核が生成するに必要な時間帯であって、これは、蒸着
開始から膜厚が約500〜3000 A程度になる時間
帯に相当するが、最終的に所望する膜厚や初期の蒸着条
件及び全体の蒸着時間等により、この初期に形成される
膜厚や時間は明確に規定することは困難である。
Furthermore, in the present invention, the early stage of vapor deposition is the time period required for the growth of nSb crystals to form, and this corresponds to the time period from the start of vapor deposition until the film thickness reaches approximately 500 to 3000 A. However, it is difficult to clearly define the film thickness and time to be formed at this initial stage, depending on the final desired film thickness, initial vapor deposition conditions, overall vapor deposition time, and the like.

ASb/Al’nを1.0以上で蒸着させる心安がある
のはこの蒸着初期の時間のみである。もし、InSb系
薄膜形成段階における残りの時間も1.0以上のAsb
/Arnで蒸着を行うときは結晶性が悪く移動度の低い
薄膜か、あるいはほろほろの膜しか得られない。すなわ
ち、この時間帯ではARb/AInを1より小さい比、
特に0.95以下の到達速度比で蒸着することが必要で
ある。
It is only during this initial stage of deposition that it is safe to deposit ASb/Al'n at a concentration of 1.0 or more. If the remaining time in the InSb-based thin film formation stage is 1.0 or more, Asb
When vapor deposition is performed using /Arn, only a thin film with poor crystallinity and low mobility or a crumbly film can be obtained. That is, in this time period, ARb/AIn is a ratio smaller than 1,
In particular, it is necessary to perform vapor deposition at an ultimate velocity ratio of 0.95 or less.

本発明において後半のIn5b1−xARx化の段階で
はAs単独又はAsとInとを同時に蒸着させるが、X
が0.39以下の場合にはAs単独で蒸着させ、Xが0
.35をこえる場合にはAsとInとを同時に蒸着させ
るのが好ましい。この際生成する結晶は大部分がIn5
bl、As、であり、他は微量のInAs及びInであ
る。この場合Xは x = 1− Fsb/FIn     C1)であっ
て、前半の段階で形成されたInSb系薄膜の組成比F
[lb/Finからほぼ自動的に決定される。
In the latter stage of In5b1-xARx formation in the present invention, As alone or As and In are simultaneously deposited.
is 0.39 or less, As alone is evaporated and X is 0.
.. When it exceeds 35, it is preferable to deposit As and In at the same time. Most of the crystals generated at this time are In5
bl, As, and the others are trace amounts of InAs and In. In this case,
[Determined almost automatically from lb/Fin.

ここでXはまだFAI/FX、に等しく、過剰のAsは
基板に付着しないためFAs<Aa&あるから(B)式
と考え合わせてFeb + AAI /Ftn > 1
 、0となるようにAsを蒸着させる必要がある。As
とInとを同時に蒸着させる場合にも、InSb系薄膜
形成段階と工n5bl 、As工にする段階において蒸
着された合計のInの膜中原子数をΣFinで表わすと
きAAa > FAa =ΣFXn  Fsb    
(III)と外る程度にAsを蒸着させる必要がある。
Here, X is still equal to FAI/FX, and since excess As does not adhere to the substrate, FAs < Aa &, considering equation (B), Feb + AAI /Ftn > 1
, 0. It is necessary to deposit As so that , 0. As
Even in the case where In and In are simultaneously deposited, when the total number of In atoms in the film deposited in the InSb thin film formation stage, process n5bl, and As process stage is expressed by ΣFin, AAa > FAa = ΣFXn Fsb
It is necessary to evaporate As to an extent that it is outside of (III).

この式(IIDから明らかなように、Asを十分過剰に
蒸着させておけば、Inとsbのコントロールにより、
In5bl−XAsxの組成を容易にコントロールする
ことができる。しかしくII)式が成立するのは前半に
形成されるInSb系薄膜のF 8 b/F I nが
0.65−0.95のときであって、このFeb/FX
nが0.95より大きい時は2相になったり、InAs
が多くできたりするので好ましくない。また0、65よ
り小さいときハヒンホールの多い本均−な膜となるので
好ましくない。
As is clear from this formula (IID), if As is deposited in sufficient excess, by controlling In and sb,
The composition of In5bl-XAsx can be easily controlled. However, formula II) holds true when F 8 b/F I n of the InSb thin film formed in the first half is 0.65-0.95, and this Feb/FX
When n is larger than 0.95, it becomes two-phase or InAs
This is not preferable as it may cause a lot of. Further, when it is smaller than 0.65, the film becomes uniform with many Hahin holes, which is not preferable.

このようにして製造されたIn5J 、AsX薄膜の特
性は極めて優れたもので、例えばXが0.30において
、ホール移動度は37 、000 crl/ V、sで
あシ、しかも50℃における抵抗の温度依存性は0.9
5%/d、og程度にすきず、微量のInAS及びIn
が特性七人きな影響を与えることは実質的にない。
The properties of the In5J and AsX thin films produced in this way are extremely excellent. For example, when X is 0.30, the hole mobility is 37,000 crl/V, s, and the resistance at 50°C is Temperature dependence is 0.9
5%/d, cracks on the order of og, trace amounts of InAS and In
There are virtually no significant effects on characteristics.

一方、蒸着の初期においてA11b/AInを1.0 
 よりも小さく設定した場合は、形成される膜の状態に
不都合はないが、もはや高移動度のIn5b1゜AsX
薄膜を得ることはできない。また蒸着初期の基板温度が
境界の基板温度Tcより低い温度で蒸着を開始すると、
帯青色のくすんだ膜となるばかシか、特性もはなはだ悪
くなるし、(i’、 c −1−30) ℃より高すぎ
るとばらつきが犬きくなったり、ピンホールが増えたり
して歩どまりが低下し、工業的に大変不利となるので好
ましくない。
On the other hand, A11b/AIn is 1.0 at the initial stage of vapor deposition.
If it is set smaller than , there will be no problem with the state of the formed film, but it will no longer be possible to use In5b1°AsX with high mobility.
It is not possible to obtain thin films. Furthermore, if the evaporation starts at a temperature where the substrate temperature at the initial stage of evaporation is lower than the boundary substrate temperature Tc,
Not only will it result in a dull blue-colored film, but the properties will also deteriorate significantly, and if the temperature is too high above (i', c -1-30°C), the dispersion will become sharp, pinholes will increase, and the yield will decrease. This is not preferable because it lowers the temperature and is very disadvantageous industrially.

本発明の方法において、初期以外の蒸着時間帯において
は、特に基板温度に制限はないが、基板温度を上昇させ
ながら蒸着する方が好ましい。
In the method of the present invention, there is no particular restriction on the substrate temperature during the deposition time period other than the initial stage, but it is preferable to perform the deposition while increasing the substrate temperature.

しかし、前半のInSb系薄膜形成段階では、InSb
の融点である530℃よりは低く、また、後半はIn5
bl−XAsxの融点(Xによシ異なるが800℃前後
)よりは低く設定する必要があることは言うまでもない
However, in the first half of the InSb-based thin film formation stage, InSb
It is lower than the melting point of 530℃, and the latter half is In5
Needless to say, it is necessary to set the melting point lower than the melting point of bl-XAsx (approximately 800° C., although it varies depending on X).

蒸着中の真空度は一般に用いられている1O−8Tor
r以上の減圧度が用いられるが、基板の所望温度との関
連において、Tcとの関係式に照らして適当な真空度が
選択される。その場合、蒸着系に各種のガスを導入した
り、排気速度をコントロールして真空度を変更すること
により境界の基板温度を変えることもできる。このよう
な場合は、例えば窒素ガスを用いて所望の真空度に設定
することが好ましい。
The degree of vacuum during vapor deposition was 1O-8 Tor, which is commonly used.
A degree of vacuum greater than or equal to r is used, but an appropriate degree of vacuum is selected in relation to the desired temperature of the substrate and in light of the relational expression with Tc. In that case, the temperature of the substrate at the boundary can be changed by introducing various gases into the evaporation system or by controlling the pumping speed and changing the degree of vacuum. In such a case, it is preferable to use, for example, nitrogen gas to set the desired degree of vacuum.

また、本発明において、前半のInSb系薄膜形成段階
と後半のIn5bl−2Asz化段階は、連続・的に蒸
着してもよいし、全く別個に、例えば別の真空蒸着装置
を用いて行ってもよい。
Furthermore, in the present invention, the first half of the InSb-based thin film formation stage and the second half of the In5bl-2Asz formation stage may be deposited continuously, or may be performed completely separately, for example, using separate vacuum evaporation equipment. good.

本発明の方法において、蒸着源としては単体の工n 、
 Sb及びAsを用いるのが好ましいが、Sb源として
工nSb 、 Garb等の化合物を用いてもよいし、
まだAs源として工nAs、 GaAl1]等の化合物
を用いることもできる。
In the method of the present invention, the vapor deposition source is a single process n,
Although it is preferable to use Sb and As, compounds such as Sb, Garb, etc. may be used as the Sb source,
However, it is also possible to use compounds such as As, GaAl, and the like as the As source.

蒸着原料に化合物を用いるときは、sbにしろAsにし
ろ、原子到達速度のコントロールを考慮すれば、化合物
を形成する他の金属の単体の1蒸気圧がsb又はAsの
蒸気圧よりもできるだけ小さい金属との化合物類を使用
することが好ましい。
When using a compound as a vapor deposition raw material, whether it is sb or As, the single vapor pressure of the other metals forming the compound should be as small as possible than the vapor pressure of sb or As, considering the control of the atomic arrival velocity. Preference is given to using compounds with metals.

本発明の方法に用いられる蒸着用基板には、特に制限は
なく、一般に慣用されているものが有利に用いられる。
There are no particular limitations on the deposition substrate used in the method of the present invention, and commonly used substrates can be advantageously used.

そのような基板としては、例えばザファイア%  Ca
F2. Na04s雲母、ガラス、Cr−ドープのGa
As 等を挙げることができる。特に好ましいのは結晶
性基板類である。
As such a substrate, for example, Zaphire% Ca
F2. Na04s mica, glass, Cr-doped Ga
Examples include As. Particularly preferred are crystalline substrates.

本発明の方法で得られる蒸着薄膜は、半導体素子として
の用途、さらにその所望特性などに応じ、その特性が保
たれる範囲内の任意の厚さに形成される・通常・数10
00 Aから10μmまでの範囲が工業的に有利に採用
される。
The vapor-deposited thin film obtained by the method of the present invention can be formed to any thickness within a range that maintains the characteristics, depending on the use as a semiconductor device and its desired characteristics.
A range from 00 A to 10 μm is advantageously adopted industrially.

本発明の方法を実施する手段ムいし装置類は、前記の本
発明の技術概念を逸脱しない限り、なんら制限を受けな
い。例えば、蒸着にはヒーター加熱又はKB加熱などの
加熱手段やフラッシュ蒸着などの極めて通常の手段を採
用してもよいし、MBE、イオンビーム法等を適用する
こともできる。
The means and devices for implementing the method of the present invention are not subject to any limitations as long as they do not depart from the technical concept of the present invention described above. For example, heating means such as heater heating or KB heating, or extremely conventional means such as flash vapor deposition may be used for vapor deposition, or MBE, ion beam method, etc. may also be applied.

さらに、本発明の方法による薄膜の蒸着形成速度は、例
えば0.1〜1000 A/ secの広い範囲が採用
できるが、到達速度比のコントロールの容易さから、1
〜100A/sec程度の膜厚形成速度が好ましい。
Furthermore, the deposition rate of the thin film according to the method of the present invention can be in a wide range of, for example, 0.1 to 1000 A/sec, but from the viewpoint of ease of control of the attained rate ratio,
A film thickness formation rate of about 100 A/sec is preferable.

次に、実施例により本発明をさらに詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例1 装置として6枚のウニ・・−が設置でき、同心円周上に
回転する基板ホルダーと、2つのボートを有する真空蒸
着装置を使用した。基板温度はウェハー上方10mmの
位置に、3箇所にpt −Rdサーモカップルを設け、
各表示温度の最大値と最小値の差が5℃以内になるよう
忙コントロールした。
Example 1 As an apparatus, a vacuum evaporation apparatus was used, which could accommodate six sea urchins, had a substrate holder that rotated concentrically, and two boats. To control the substrate temperature, pt-Rd thermocouples were installed at three locations 10 mm above the wafer.
The temperature was controlled so that the difference between the maximum and minimum values of each displayed temperature was within 5°C.

真空度はペルジャーから排気系へ至るパイプの途中、水
引パルプの直後においてB−Aゲージを用いて測定した
The degree of vacuum was measured using a B-A gauge in the middle of the pipe from the Pelger to the exhaust system, immediately after the Mizuhiki pulp.

基板としては雲母を、原料としてはフルウチ化学社製の
半導体用6−HのInとsb  とを用いた。
Mica was used as the substrate, and 6-H In and sb for semiconductors manufactured by Furuuchi Chemical Co., Ltd. were used as the raw materials.

壕ず、真空度を5 X 10−’ Torr  (境界
の基板温度Tcは390℃)とし、基板温度を420℃
に設定した。次にAsb/Ax。が最初の5分間だけ1
゜1に、残りの時間は0.63となるようにInとsb
のボートのパワーをそれぞれコントロールし、基板温度
を上昇させなから膜厚が0.8μmになるまで25分間
蒸着させた。このときの基板温度は500℃であった。
The vacuum level was set to 5 x 10-' Torr (substrate temperature Tc at the boundary was 390°C), and the substrate temperature was set to 420°C.
It was set to Next, Asb/Ax. is 1 for the first 5 minutes only.
゜1, the remaining time is 0.63, In and sb
The power of each boat was controlled, and the deposition was carried out for 25 minutes without raising the substrate temperature until the film thickness reached 0.8 μm. The substrate temperature at this time was 500°C.

次いで、基板温度を550℃に上昇させながらAAg/
AAs + A8bが0.35になるようにABを5分
間蒸着した。
Next, while increasing the substrate temperature to 550°C, AAg/
AB was deposited for 5 minutes so that AAs+A8b was 0.35.

得られた薄膜をX線回折で調べたところ、ABの原子比
Xは0.34で、かつInと1nA日はごく微量しか検
知できなかった。
When the obtained thin film was examined by X-ray diffraction, the atomic ratio X of AB was 0.34, and only a trace amount of In and 1 nA could be detected.

6枚のウェーハーの特性をバラ法で測定したところ、移
動度は30,000〜32,000 crl/ V・S
であった。まだ、とのうち3枚の膜について抵抗の温度
依存性を調べたところ、50℃で−0,95%/4eg
であり、In5b系薄膜の−1,5%/deg に比べ
てはるかに小さかった。
When the characteristics of six wafers were measured using the rosette method, the mobility was 30,000 to 32,000 crl/V・S
Met. However, when we investigated the temperature dependence of the resistance of three of the films, we found that -0.95%/4eg at 50°C.
This was much smaller than -1.5%/deg for the In5b-based thin film.

比較例1 InSb系薄膜形成段階において、蒸着の全時間帯でA
 B b /A 1 、、が0.66となるようにボー
トのパワーをコントロールする以外は実施例1と同様の
蒸着を行った。
Comparative Example 1 In the InSb thin film formation stage, A
Vapor deposition was carried out in the same manner as in Example 1, except that the power of the boat was controlled so that B b /A 1 was 0.66.

得られた薄膜は、Asの原子比Xが0.34.ホール移
動度20,000−= 21,500 d/V−8,抵
抗の温度依存性−0,94係/degであった。
The obtained thin film had an As atomic ratio X of 0.34. The Hall mobility was 20,000-=21,500 d/V-8, and the temperature dependence of resistance was -0.94 coefficients/deg.

実施例2 基板、原料、装置は実施例1と同様のものを用いた。ま
ず真空度を2 X−10−’ Torr  とし、次い
でニードルバルブにより4−Hの窒素を導入して5 X
 l O”” Torr (TCは414℃)とし、ニ
ードルパルプを固定した。次に基板温度を430℃に設
定し、A s b /A I 11  が最初の6分間
は1.0以上となるように、残りの時間は0.84とな
るように2つのボニトのパワーコントロールを行って基
板温度を上昇させながら30分間で1.0μmの膜厚に
なるまで蒸着した。その時点の基板温度は510℃であ
った。
Example 2 The same substrate, raw materials, and equipment as in Example 1 were used. First, the degree of vacuum was set to 2 X-10-' Torr, and then 4-H nitrogen was introduced with a needle valve to 5 X
The needle pulp was fixed at 1 O"" Torr (TC: 414° C.). Next, set the substrate temperature to 430°C, and control the power of the two Bonitos so that A s b /A I 11 is 1.0 or more for the first 6 minutes and 0.84 for the remaining time. The film was deposited to a film thickness of 1.0 μm in 30 minutes while increasing the substrate temperature. The substrate temperature at that point was 510°C.

次いでABを大量に蒸着しながら、基板温度を550℃
まで上昇させ、1.1μm厚の工n SbAθ系薄膜全
薄膜。
Next, while depositing a large amount of AB, the substrate temperature was increased to 550°C.
The total thickness of the SbAθ-based thin film was increased to 1.1 μm.

得られた薄膜をX#回折によって調べたところ、x =
 0.14であり、若干の1nAsとInとが検出され
た。
When the obtained thin film was examined by X# diffraction, it was found that x =
0.14, and some 1nAs and In were detected.

この膜のホール移動度と]loo (ホール係数の温度
依存性より割算したO’にでのバンドギャップ)を調べ
たところ、それぞれ45,000CJ/ v−8、0,
21eVであった。
When we investigated the Hall mobility and ]loo (band gap at O' divided by the temperature dependence of the Hall coefficient) of this film, we found that they were 45,000 CJ/v-8, 0, and 45,000 CJ/v-8, respectively.
It was 21 eV.

比較例2 初期の基板温度を410℃とする以外は実施例2と同様
とした。
Comparative Example 2 The same procedure as Example 2 was carried out except that the initial substrate temperature was 410°C.

得られた薄膜は、x = 0.08であり、工nAs 
も若干多く検知された。また外観的にはくすんだ色をし
ており、ホール移動度も?、000CJ/V・Sと低か
った。
The obtained thin film has x = 0.08 and nAs
were also detected slightly more frequently. Also, the color is dull in appearance, and the hole mobility is also poor. , 000CJ/V・S.

比較例3 InSb系薄膜形成段階において、蒸着の全時間帯でA
 s b /A I nがi、o以上となるようにボー
トのパワーをコントロールする以外は実施例2と同様の
蒸着を行った。
Comparative Example 3 In the InSb thin film formation stage, A was maintained during the entire vapor deposition period.
Vapor deposition was carried out in the same manner as in Example 2, except that the power of the boat was controlled so that s b /A I n was equal to or greater than i, o.

得られた薄膜のXはX線回折では検知できないほど小さ
く、ABは結晶中にほとんど入っていなかった。
The X of the obtained thin film was so small that it could not be detected by X-ray diffraction, and AB was hardly contained in the crystal.

比較例4 初期の基板温度を450℃とする以外は実施例2と同様
の条件で蒸着を行った。
Comparative Example 4 Vapor deposition was performed under the same conditions as in Example 2 except that the initial substrate temperature was 450°C.

得られた薄膜には透明な部分が多くみられ、X=0.2
1で、6枚の膜は八〇の付着電がばらついていた。この
6枚のホール移動度を測定したところ、16.300〜
32,500 c4/ V’S であった。
There were many transparent parts in the obtained thin film, and X = 0.2
1, the six films had a variation in adhesion charge of 80. When we measured the hole mobility of these six sheets, it was 16.300 ~
It was 32,500 c4/V'S.

実施例3 基板、原料、装置は実施例1と同様とし、4−Nの窒素
を用いて真空度を8 X 1O−5Torr (TOは
418℃)とした。次に基板温度を435℃とし、A 
e b /A I・ を最初の5分間は1.0で、残り
の時間は0.・7と力るようにボートのパワーをコント
ロールして、基板温度を515℃まで上昇させながら3
0分間蒸着した。次いで10分間、基板温度を570℃
まで上昇させながら、AAs/AAs ” A8 bが
0.5となるようにA、を蒸着した。
Example 3 The substrate, raw materials, and equipment were the same as in Example 1, and the degree of vacuum was set to 8×1O−5 Torr (TO: 418° C.) using 4-N nitrogen. Next, the substrate temperature was set to 435°C, and A
e b /A I・ is 1.0 for the first 5 minutes and 0.0 for the remaining time.・Control the power of the boat so as to press 7, raise the board temperature to 515℃, and press 3.
It was deposited for 0 minutes. Then, the substrate temperature was increased to 570°C for 10 minutes.
A was vapor-deposited so that AAs/AAs''A8b was 0.5.

得られた薄膜はx = 0.30であり、帯青色の銀光
沢を有するもので、光の反射の具合から大きな結晶であ
ることが認められた。
The obtained thin film had x = 0.30, had a blueish silver luster, and was recognized to be large crystals based on the way it reflected light.

この膜のホール移動度と50℃における抵抗の温度依存
性を調べたところ、それぞれ37,000c4/ V’
S 、 −0,95%/degであシ、磁電変換素子の
素材として大変すぐれたものであった。
When we investigated the temperature dependence of the hole mobility and resistance of this film at 50°C, we found that they were 37,000c4/V', respectively.
S, -0.95%/deg, and was an excellent material for magnetoelectric conversion elements.

特許出願人 旭化成工業株式会社 代理人 阿 形  明Patent applicant: Asahi Kasei Industries, Ltd. Agent Akira Agata

Claims (1)

【特許請求の範囲】 1 蒸着初期におけるインジウム原子に対するアンチモ
ン原子の到達速度比を1.0以上、かつ基板温度(絶対
温度)Tを、式 %式% 〔ここに、TCは境界の基板温度(絶対温度)、Pは蒸
着中の真空度(Torr)である〕で与えられる境界の
基板温度Tcとしたとき、Tc≦T≦Tc + 30 の範囲内になるように選択した条件下でインジウムとア
ンチモンとを基板上に蒸着させ、次いで上記到達速度比
を1.0よりも小さくしてインジウムに対するアンチモ
ンの組成比(F8b/FIn)が0.65〜0.95の
インジウム−アンチモン系薄膜を形成させたのち、さら
にその上にヒ素単独又はヒ素とインジウムとを同時に蒸
着させることを特徴とする、一般式 %式% (式中のXはヒ素の原子比を示す1未満の数である) で表わされるインジウムーアンチモンーヒ素系化合物半
導体薄膜の製造方法。
[Claims] 1. The arrival velocity ratio of antimony atoms to indium atoms at the initial stage of vapor deposition is 1.0 or more, and the substrate temperature (absolute temperature) T is expressed by the formula %. [Here, TC is the boundary substrate temperature ( (absolute temperature), P is the degree of vacuum during deposition (Torr)], and P is the degree of vacuum (Torr) during deposition. and antimony on the substrate, and then reduce the above-mentioned attained velocity ratio to less than 1.0 to form an indium-antimony based thin film with a composition ratio of antimony to indium (F8b/FIn) of 0.65 to 0.95. After that, arsenic alone or arsenic and indium are simultaneously vapor-deposited thereon, with the general formula % formula % (X in the formula is a number less than 1 indicating the atomic ratio of arsenic). A method for manufacturing the indium-antimony-arsenic compound semiconductor thin film described above.
JP57135460A 1982-08-03 1982-08-03 Fabrication of indium-antimony-arsenic system compound semiconductor thin film Granted JPS5927519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57135460A JPS5927519A (en) 1982-08-03 1982-08-03 Fabrication of indium-antimony-arsenic system compound semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57135460A JPS5927519A (en) 1982-08-03 1982-08-03 Fabrication of indium-antimony-arsenic system compound semiconductor thin film

Publications (2)

Publication Number Publication Date
JPS5927519A true JPS5927519A (en) 1984-02-14
JPH0359572B2 JPH0359572B2 (en) 1991-09-11

Family

ID=15152225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57135460A Granted JPS5927519A (en) 1982-08-03 1982-08-03 Fabrication of indium-antimony-arsenic system compound semiconductor thin film

Country Status (1)

Country Link
JP (1) JPS5927519A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4761300A (en) * 1983-06-29 1988-08-02 Stauffer Chemical Company Method of vacuum depostion of pnictide films on a substrate using a pnictide bubbler and a sputterer
JPH06170262A (en) * 1992-12-03 1994-06-21 Nissei Plastics Ind Co Pulverizer and cleaning method
JP2014157994A (en) * 2013-02-18 2014-08-28 Asahi Kasei Corp Compound semiconductor laminate and manufacturing method of the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4761300A (en) * 1983-06-29 1988-08-02 Stauffer Chemical Company Method of vacuum depostion of pnictide films on a substrate using a pnictide bubbler and a sputterer
JPH06170262A (en) * 1992-12-03 1994-06-21 Nissei Plastics Ind Co Pulverizer and cleaning method
JP2014157994A (en) * 2013-02-18 2014-08-28 Asahi Kasei Corp Compound semiconductor laminate and manufacturing method of the same

Also Published As

Publication number Publication date
JPH0359572B2 (en) 1991-09-11

Similar Documents

Publication Publication Date Title
Asano et al. Heteroepitaxial growth of group-IIa-fluoride films on Si substrates
Noro et al. The thermoelectric properties and crystallography of Bi‐Sb‐Te‐Se thin films grown by ion beam sputtering
US5205871A (en) Monocrystalline germanium film on sapphire
Hohnke et al. Epitaxial PbSe and Pb1− x Sn x Se: Growth and electrical properties
JPS5927519A (en) Fabrication of indium-antimony-arsenic system compound semiconductor thin film
JPH06232058A (en) Preparation of epitaxial semiconductor structure
Ohyama et al. Growth, optical and structural characterization of layered GaS films prepared by reactive RF sputtering method
JPS5840820A (en) Formation of silicon single crystal film
Abduev et al. Preferred oriented ZnO films growth on nonoriented substrates by CVD
JPS5878418A (en) Preparation of indium-antimony system compound crystal thin film
JPH05171417A (en) Manufacture of tantalum metallic thin film
JPH0247850B2 (en)
Gardes et al. Epitaxial growth of thin films of V 2 VI 3 semiconductors
JPS596527A (en) Manufacture of indium-antimony composite crystal thin film with high mobility
KR860000161B1 (en) In-sb compound crystal semiconductor and method of its manufacturing
Kashyap et al. Characterization of flash evaporated Hg1− xZnxTe films
Chou Surface‐energy‐driven secondary grain growth in thin Sb films
JPH04188717A (en) Diamond substrate and manufacture thereof
JPH0359570B2 (en)
JPH03252307A (en) Polycrystal silicon carbide
Sharma et al. The preparation of InSb films
JPH0425718B2 (en)
SEAWARD SPUTTERING SILICON-CARBIDE THIN FILMS WITH SURFACE MOBILITY ENHANCEMENT (SEMICONDUCTOR, SINGLE-CRYSTAL, HIGH TEMPERATURE)
JPS63235462A (en) Formation of thin oxide film with k2nif4-type crystalline structure
JP2522618B2 (en) Phosphorus alloyed cubic boron nitride film