JPS596527A - Manufacture of indium-antimony composite crystal thin film with high mobility - Google Patents

Manufacture of indium-antimony composite crystal thin film with high mobility

Info

Publication number
JPS596527A
JPS596527A JP57116542A JP11654282A JPS596527A JP S596527 A JPS596527 A JP S596527A JP 57116542 A JP57116542 A JP 57116542A JP 11654282 A JP11654282 A JP 11654282A JP S596527 A JPS596527 A JP S596527A
Authority
JP
Japan
Prior art keywords
temperature
thin film
evaporation
indium
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57116542A
Other languages
Japanese (ja)
Other versions
JPH0359571B2 (en
Inventor
Keiji Kuboyama
久保山 啓治
Takeki Matsui
雄毅 松居
Takeo Kimura
武夫 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP57116542A priority Critical patent/JPS596527A/en
Publication of JPS596527A publication Critical patent/JPS596527A/en
Publication of JPH0359571B2 publication Critical patent/JPH0359571B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02549Antimonides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Hall/Mr Elements (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To form indium-antimony composite crystal thin film with high mobility by depositing indium and antimony on a substrate under the condition that the velosity ratio of In atom to Sb atom is less than 1.0 in the initial stage of evaporation and the temperature of the substrate is selected so as to be in a prescribed range. CONSTITUTION:''Initial stage of evaporation'' means nucleation process, which is the stage of nucleation until the thickness of film becomes about 500-3,000Angstrom from the beginning of evaporation. Formulas I and II are empirical formulas showing the relation between preset initial temperature and degree of vacuum when thin film with extreme high velocity. The formula I corresponds to the equilibrium evaporation temperature of Sb4 in the region of 10<-6>-10<-3>Torr in the degree of vacuum. The preset initial temperature of substrate is in the wide range because optimum preset temperature varies. It is during the time of nucleation process in the initial stage of evaporation that AIn/ASb should be less than 1.0 in relation to preset temperature, and during the time of grain growth process after that, a good result is obtained by depositing in the range of 1.1- 1.7 of AIn/ASb.

Description

【発明の詳細な説明】 本発明は、優れた移動度を有するインジウム−アンチモ
ン(InSb )系複合結晶薄膜の製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an indium-antimony (InSb) composite crystal thin film having excellent mobility.

一般に工nsbの薄膜は、■nsbの移動度が常温で7
8.000cJ/VB と大きいために、ホール素子や
磁気抵抗素子の素材として優れていることが知られてい
る。そして最近のダイレクトドライブモーター用の位置
検出素子としてのホール素子や、無接点ポテンショメー
ターとしての磁気抵抗素子等の発展にはめざましいもの
がある。
In general, the mobility of ■nsb in a thin film of nnsb is 7 at room temperature.
Due to its large value of 8.000 cJ/VB, it is known to be an excellent material for Hall elements and magnetoresistive elements. Recently, there have been remarkable developments in Hall elements as position detection elements for direct drive motors, magnetoresistive elements as non-contact potentiometers, etc.

本発明者らは先に、ホ゛−ル素子や磁気抵抗素子等の素
材として大変優れた、新規なIn5b系複合結晶半導体
、及びその製造方法を提案した。
The present inventors have previously proposed a novel In5b-based composite crystal semiconductor that is excellent as a material for hall elements, magnetoresistive elements, etc., and a method for manufacturing the same.

本発明はこれらのInSb系複合結晶半導体薄膜の製造
方法をさらに改善したものであり、大幅に向上した移動
度を有する薄膜の効果的製造方法を提供するものである
The present invention further improves the method for manufacturing these InSb-based composite crystal semiconductor thin films, and provides an effective method for manufacturing thin films having significantly improved mobility.

In−8bは璽−V族化合物半導体としてよく知られた
物質であり、ホール素子・や磁気抵抗素子として利用す
るには、インジウム元素(In)のアンチモン元累(S
b)に対する原子比が1.00の結晶であることが必昔
不可欠の条件で、かかる条件の鴨合にその特性が高度に
発揮されつると考えられてきたため、この考えを前提と
して多くの研究がなされて き グこ。
In-8b is a well-known substance as a V-group compound semiconductor, and in order to be used as a Hall element or magnetoresistive element, it is necessary to combine the antimony element (S) of the indium element (In).
A crystal with an atomic ratio of 1.00 to b) has long been an essential condition, and it has been thought that the properties are highly exhibited in kamoai under such conditions, so many studies have been conducted based on this idea. It has been done.

しかし、本発明者らは、先にInとsbの原子比が厳密
に1対1に制御された場合のみ優れた薄膜が得られるの
ではなく、石が過剰の場合にも、特に工nの5bVc対
する県子比が1.1〜1.7の範囲にあるならば結晶性
に優れ、しかも高い移動度を示す複合結晶が得られると
いう従来の技術概念からはとうてい予測し得ない新事実
を見出した。
However, the present inventors found that an excellent thin film could not be obtained only when the atomic ratio of In and sb was strictly controlled to 1:1, but also when there was an excess of stone, especially when the A new fact that cannot be predicted from the conventional technical concept is that if the ratio of Kenshi to 5bVc is in the range of 1.1 to 1.7, a composite crystal with excellent crystallinity and high mobility can be obtained. I found it.

かかる新しい知見に基〈優れたInSb系複合結晶薄膜
は、Inと鋤とを重原子に対するIn原子の到達速度比
(アライバル・レート・レーショ、以下AIn / A
sbと略記する)を1.10−1.70の条件下で基板
上に蒸着させることによって製造することができ、さら
に蒸着初期の基板温度を、式1式% 〔ここに、Tは極限の基板温度(絶対温度)Pは蒸着中
の真空度(Torr)である〕で与えられる極限の基板
温度よりも低い温度に設定することにより、電気特性を
向上させることができるという知見も得られた。
Based on this new knowledge, an excellent InSb-based composite crystal thin film can be produced by increasing the arrival rate ratio (arrival rate ratio, hereinafter referred to as AIn/A) of In atoms to heavy atoms.
(abbreviated as sb) on a substrate under the conditions of 1.10-1.70, and furthermore, the substrate temperature at the initial stage of vapor deposition is determined by the formula 1 formula % [Here, T is the ultimate It was also found that the electrical characteristics can be improved by setting the temperature lower than the ultimate substrate temperature given by the substrate temperature (absolute temperature) P is the degree of vacuum (Torr) during deposition. .

この方法により得られる薄膜の移動度は24.000C
al向と高く、さらに高い移動度を望む場合には、蒸着
を窒素雰囲気下で実施することにより容易に達成できる
The mobility of the thin film obtained by this method is 24.000C
If a higher mobility than that in the al direction is desired, it can be easily achieved by carrying out the vapor deposition in a nitrogen atmosphere.

しかし、この窒素雰囲気下の蒸着法においても得られる
薄膜の移動度は、F工n/Feb (全インジウムのア
ンチモンに対する原子比)が1.4のとき30.000
 crl/’に程であって、バルクの1nsbの4割程
度の値にすぎないものであった。
However, the mobility of the thin film obtained even with this vapor deposition method under a nitrogen atmosphere is 30.000 when Fn/Feb (atomic ratio of total indium to antimony) is 1.4.
crl/', and the value was only about 40% of 1 nsb of the bulk.

本発明者らは、磁気抵抗素子やホールヘッドの素材とし
て、特に有用な高移動度の1nSb薄膜結晶を得る方法
について多くの実験検討を行い、その過程において、工
nsb複合結晶の形成は、結晶核形成過程と結晶粒成長
過程に大別できること、及びInSbの特性は前段階の
結晶核形成過程に大きく影響されることを知った。
The present inventors have conducted many experimental studies on how to obtain a high-mobility 1nSb thin film crystal, which is particularly useful as a material for magnetoresistive elements and Hall heads. I learned that the process can be roughly divided into a nucleation process and a grain growth process, and that the properties of InSb are greatly influenced by the previous crystal nucleation process.

そこで、本発明者らは、特に蒸着初期の蒸着条件につい
て鋭意研究を続けた結果、蒸着初期におけるAIn /
 Asbと基板温度とが重要な相関関係を有し、それぞ
れの特定の範囲条件を組み合わせるとき、極めて効果的
に高移動度のInSb複合結晶薄膜を製造しうることを
見出し、かかる知見に基づいて本発明を々すに至った。
Therefore, as a result of intensive research on the vapor deposition conditions, especially in the initial stage of vapor deposition, the present inventors found that AIn/
We have discovered that Asb and substrate temperature have an important correlation, and that when the specific range conditions of each are combined, an InSb composite crystal thin film with high mobility can be produced extremely effectively.Based on this knowledge, we have developed this book. This led to many inventions.

すなわち本発明は、蒸着初期におけるsb原子に対する
In原子の到達速度比ft1.0以下、かつ基板温度(
絶対温度)Tを、式 %式% 〔ここに、TCは境界の基板温度(絶対温度)、Pは蒸
着中の真空度(Torr )である。〕で与えられる境
界の基板@度Tcとしたとき、Tc≦T≦Tc +30
          −−− fllの範囲内になるよ
うに選択した条件下でインジウムとアンチモンとを基板
とに蒸着させることを特徴とする高移動度のInSb系
複合結晶薄膜の製造方法を提供するものである。
That is, the present invention provides an attainment velocity ratio of In atoms to sb atoms of 1.0 or less at the initial stage of vapor deposition, and a substrate temperature (
(Absolute temperature) T is expressed by the formula % Formula % [Here, TC is the boundary substrate temperature (absolute temperature), and P is the degree of vacuum (Torr) during vapor deposition. ], Tc≦T≦Tc +30
--- The present invention provides a method for producing a high-mobility InSb-based composite crystal thin film, characterized in that indium and antimony are deposited on a substrate under conditions selected to fall within the range of fll.

本発明において、蒸着初期とは、上記結晶核形成過程を
いい、蒸着開始から膜厚が約500〜3000X程度に
なるまでの初期の結晶核形成段階をし・うが、最終的に
所望する膜厚や初期の蒸着条件及び全体の蒸着時間等に
より、蒸着初期に形成される膜厚やその時間は明確に規
定することは困難である。
In the present invention, the initial stage of evaporation refers to the crystal nucleation process described above, and refers to the initial crystal nucleation stage from the start of evaporation until the film thickness reaches about 500 to 3000X. It is difficult to clearly define the thickness and time of the film formed at the initial stage of deposition, depending on the thickness, initial deposition conditions, overall deposition time, and the like.

前記式(11及び(ulは、極めて高い移動度の薄膜が
得られる場合の初期設定温度と真空度との関係を示す実
験式である。式+1)は真空度が特にlO〜10  T
orrの頭載におけるSb4の平衡蒸発温度(Tv)に
対応するものである。事実、この範囲の温度に基板温度
を設定する限り、Sbを蒸NFCより基板上に付着させ
ることはできなかった。このことはストル氏らの熱デー
タ〔廿−モダイナミック・ブロバテイーズ・オブ・ザ・
エレメンソ(Thermodynamic  Prop
erties of  the  Filements
A (S’s6) ]による値ともほぼ対応しているこ
とから容易1c理解できる。
The above formulas (11 and (ul) are experimental formulas that show the relationship between the initial setting temperature and the degree of vacuum when a thin film with extremely high mobility is obtained.Formula +1) is especially true when the degree of vacuum is 1O~10T.
This corresponds to the equilibrium evaporation temperature (Tv) of Sb4 at the head of orr. In fact, as long as the substrate temperature was set within this range, Sb could not be deposited on the substrate by vaporized NFC. This is confirmed by the thermal data of Stoll et al.
Elementso (Thermodynamic Prop
erties of the Filements
It is easy to understand 1c since it almost corresponds to the value obtained by A (S's6) ].

また、式+Illにおいて初期の設定基板温度が幅をも
っているのOま、基板温度や真空度のモニターの位蓋や
蒸着のレート等の要因により、最適な設定温度が変化す
るためである。
In addition, the initial set substrate temperature in the formula +Ill has a range because the optimum set temperature changes depending on factors such as the substrate temperature, the vacuum level monitor, the deposition rate, and the like.

この温度設定と関連して、蒸着初期のAI n/As 
bは1.0以下にすることが重要である。本発明者らは
数多くの実験を行い、極めて高移動度の薄膜が得られる
際の工nとsbのボートのコントロール条件について、
特に蒸着初期の数分間で蒸着を中止し、その時点までの
原子比AI n / As bを測定する実験を繰り返
したところ、人工n / ASbは1.0以下であるこ
とが重要であるとの結論が得られた。
In relation to this temperature setting, AI n/As at the initial stage of vapor deposition
It is important that b be 1.0 or less. The present inventors conducted numerous experiments and determined the control conditions for the boat of n and sb when obtaining a thin film with extremely high mobility.
In particular, repeated experiments in which the evaporation was stopped for several minutes at the beginning of the deposition and the atomic ratio AI n / As b up to that point were measured revealed that it is important that the artificial n / As b be less than 1.0. A conclusion has been reached.

極端な場合にはAIn / ASbが0.5よりも小さ
くなっていた。しかし、人工n / ASbが1.0以
下でなければならないのは、蒸着初期の結晶核形成過程
の時間だけであって、それ以降の結晶粒成長過程も1.
0以下のAIn / ASbで蒸着を行なうときは、結
晶性が悪く移動度の低い薄膜か、あるいはぼろぼろの膜
しか得られなかった。すなわち蒸着時間のうち結晶粒成
長過程に当る時間帯においては、A工n/Asbを1.
1〜1.7の範囲として蒸着するとき好結果が得られた
。特に、AIn / ASbを1.1〜1.5として蒸
着すれば極めてピンホールの少ない薄膜が得られた。
In extreme cases, AIn/ASb was less than 0.5. However, the artificial n/ASb must be 1.0 or less only during the crystal nucleation process at the initial stage of vapor deposition, and also during the subsequent crystal grain growth process.
When vapor deposition was performed with AIn/ASb of 0 or less, only a thin film with poor crystallinity and low mobility or a ragged film was obtained. That is, during the time period corresponding to the grain growth process of the vapor deposition time, A/n/Asb is set to 1.
Good results were obtained when depositing in the range of 1 to 1.7. In particular, when AIn/ASb was evaporated at a ratio of 1.1 to 1.5, a thin film with extremely few pinholes was obtained.

前記の蒸着初期における基板温度とAIn / ASb
の二つの条件が同時に満たされた時、製造されるIn5
b系複合結晶薄膜は、その結晶が肉眼でも観察されるほ
ど大きく成長し高移動度特性を有するものとなる。蒸着
初期の基板温度が境界の基板温度より低い場合には、大
きな結晶はもはや成長しないか、青白い膜となり、その
移動度は25 、000cdi / V、s程度、多く
は15.000 crl/ v−θ以下である。
Substrate temperature and AIn/ASb at the initial stage of vapor deposition
When the two conditions are met at the same time, the produced In5
The b-based composite crystal thin film grows so large that its crystals can be observed with the naked eye, and has high mobility characteristics. If the substrate temperature at the initial stage of deposition is lower than the substrate temperature at the boundary, large crystals will no longer grow or a pale film will be formed, and its mobility will be around 25,000 cdi/V, s, often 15,000 crl/v- It is less than or equal to θ.

初期の基板温度が式[11の範囲より高い場合には、大
きな結晶が観察される場合もあるが、多くはピンホール
の多い透明に見える膜か、白い膜であり、そ些らの移動
度は、はなはだ低い。また、大きな結晶の観察される場
合も、バッチ内及び膜内での膜厚及び移動度のばらつき
が大きく、工業的に採用しがたい。
If the initial substrate temperature is higher than the range of Equation [11], large crystals may be observed, but most of them are transparent films with many pinholes or white films, and their mobility is Wow, that's very low. Further, even when large crystals are observed, there are large variations in film thickness and mobility within a batch and within a film, making it difficult to adopt it industrially.

本発明の方法における蒸着初期の結晶核形成過程におい
ては、蒸着系を窒素の雰囲気下に真空系内r保つことが
好ましい。窒素の存在は、よりよい結晶核の形成に効果
があるばかりでなく、また窒素の導入量の制御によ9式
(1)の境界の基板の温度を調整することもできないか
らである。
In the crystal nucleation process at the initial stage of vapor deposition in the method of the present invention, it is preferable to maintain the vapor deposition system in a vacuum system under a nitrogen atmosphere. This is because the presence of nitrogen is not only effective in forming better crystal nuclei, but also because the temperature of the substrate at the boundary of Equation 9 (1) cannot be adjusted by controlling the amount of nitrogen introduced.

また、結晶粒成長過程においては、基板温度を上昇させ
ながら蒸着する方が好ましい。結晶の最もよく成長する
温度は、境界の基板温度とは本質的に関係がなく、また
上昇させながら蒸着すれば、基板内に温度勾配を設ける
ことができるので、結晶の成長に極めて好都合である。
Further, in the crystal grain growth process, it is preferable to perform vapor deposition while increasing the substrate temperature. The temperature at which crystals grow best is essentially unrelated to the substrate temperature at the boundary, and if the temperature is increased during deposition, a temperature gradient can be created within the substrate, which is extremely favorable for crystal growth. .

本発明の方法においては、蒸着の全時間帯にわたる平均
したAIn / As bとFIn / Fsbは、A
In /Asbが1,0以ヒであってもすべての点にお
いて必ずしも一致するものではなく、一般的には実験誤
差内で AIn /Asb < F工n/Fsbという関係が成
り立つ。これは境界の温度以上では鋤が単独では基板に
付着しないことに原因があると考えられる。
In the method of the present invention, the averaged AIn/As b and FIn/Fsb over the entire deposition period are A
Even if In /Asb is 1.0 or higher, they do not necessarily match at all points, and generally the relationship AIn /Asb <Fn/Fsb holds within experimental error. This is thought to be due to the fact that the plow alone does not adhere to the substrate above the boundary temperature.

しかし、極めて高い移動度を有する薄膜におし・ても、
その複合結晶はIn、Sb化合物結晶と単体In結晶と
から成り、薄膜全体における平均の原子比F工n/ F
Sbが1.1〜1.7の範囲にあるということは、X線
や原子吸光により確認されており、それらの要件に関す
る限り何ら変わりないものであった0 本発明の方法において用いられる基板は、特に素材に関
しては何ら限定されないが、絶縁性を有しかつ結晶質で
あることが好ましい。かかる物質としてはサファイア、
 CaF2 、 Na1lや雲母等があり、これらは本
発明の方法における基板として好都合に使用できる。し
かして基板としては汚染や欠陥の少ないべき開面を出す
必要があること及び該面を出すだめの研摩やエツチング
等のはん雑な作業を考慮すれば雲母が特に好ましく、工
業的にも極めて有利である。
However, even if it is made into a thin film with extremely high mobility,
The composite crystal is composed of an In, Sb compound crystal and a single In crystal, and the average atomic ratio F/F in the entire thin film is
It has been confirmed by X-rays and atomic absorption that Sb is in the range of 1.1 to 1.7, and there is no change as far as these requirements are concerned. The substrate used in the method of the present invention is Although there are no particular limitations on the material, it is preferably insulating and crystalline. Such materials include sapphire,
Examples include CaF2, Na11 and mica, which can be advantageously used as substrates in the method of the invention. However, mica is particularly preferable as a substrate, considering the need to have an open surface with minimal contamination and defects, and the complicated operations such as polishing and etching required to expose the surface. It's advantageous.

また、蒸着させる蒸発源としては竿体のInとsbを用
いるのが極めて好ましいが、乗置の比に対応するAIn
 / As bを例えばボートへのノくワーをff1l
J御することにより、単体以外のものも使用できる。
Moreover, it is extremely preferable to use In and sb of the rod body as the evaporation source for vapor deposition, but AIn and sb corresponding to the mounting ratio
/ As b, for example, ff1l for the boat.
By controlling J, you can use other items than just a single unit.

従って、例えばsb源としてsb含有化合物例え&イエ
nsbやGarb等を使用することもできる。またIn
やGaはsbに比べて蒸気圧が極めて小さく・力)ら、
これらの化合物をsb源として充分利用することができ
る。
Therefore, for example, sb-containing compounds such as sb and garb can also be used as the sb source. Also In
, Ga has extremely low vapor pressure compared to sb,
These compounds can be fully utilized as sb sources.

本発明の方法を実施する手段&マ、本発明の要旨を逸脱
しない限り如何なる方法を用1.・ることもでき、例え
ば通常の蒸着法(ヒーター力ロ熱、 KBカロ熱。
1. Any method may be used to carry out the method of the present invention as long as it does not depart from the gist of the present invention.・Can also be used, for example, by conventional vapor deposition methods (heater heating, KB heating, etc.).

フラッシュ蒸着等)、スノ(ツタ、Ml 、イオンビー
ム法等が有利に利用できる。また薄膜形成速度は、例え
ばo、t〜100OA / BeCの広範囲にわたって
適用できるが、AIn / Asbの制御のし易さ及び
製品の品質全含む工業的価値を考慮するときし11〜1
g A / secが特に好ましいOこのようにして製
造される薄膜の膜J雫&家、通常1000λ〜10μで
あるが、特性や作業性を考慮すすぎると感度が低下する
し、薄すぎると移動度が低下するので好ましくない。
Flash evaporation, etc.), Ivy (Ivy, Ml), ion beam methods, etc. can be advantageously used.The thin film formation rate can be applied over a wide range, e.g. 11-1 When considering the industrial value, including the quality of the product and the overall quality of the product.
g A / sec is particularly preferable. The thin film produced in this way is usually 1000λ to 10μ, but considering the characteristics and workability, if it is rinsed too much, the sensitivity will decrease, and if it is too thin, it will move. This is not preferable because it lowers the degree of oxidation.

本発明の方法によれば、例えば40.000〜60 、
000cJ/V、sの極めて高い移動度を有するInS
b系複合結晶薄膜が容易に得られる。このような高移動
度の薄膜は、特に磁電変換素子用素材として優れたもの
であり、ホール素子はもとより、磁気抵抗素子やホール
ヘッド用の素材として広く用いることができる。
According to the method of the present invention, for example, 40.000 to 60,
InS with extremely high mobility of 000 cJ/V, s
A b-based composite crystal thin film can be easily obtained. Such a high-mobility thin film is particularly excellent as a material for magnetoelectric conversion elements, and can be widely used as a material for not only Hall elements but also magnetoresistive elements and Hall heads.

本発明の方法は、特に蒸着初期の結晶核形成段階で特定
の組合せ条件を満足させればよく、その操作は簡単で、
工業的に有利、かつ実用性の優れたものである。
In the method of the present invention, it is only necessary to satisfy a specific combination of conditions particularly in the crystal nucleation stage at the initial stage of vapor deposition, and the operation is simple.
It is industrially advantageous and has excellent practicality.

以下に実施例を挙げて本発明を更に詳細に説明する。The present invention will be explained in more detail with reference to Examples below.

なお、各実施例中の薄膜の電気特性は、パラ法によって
、入1圧1v、印加磁場500Gaus日の条件下で測
定した。
The electrical properties of the thin films in each example were measured by the para method under conditions of an input pressure of 1 V and an applied magnetic field of 500 Gaus per day.

また、薄膜のF工n/Febは、原子吸光による湿式分
析法に従い、薄膜の所定量を希硝酸に溶解し、その溶液
を原子吸光装置(高滓製作所製AA−646)を用いて
In及びsbの吸光度を測定することにより求めたもの
である。
In addition, Fn/Feb of the thin film was determined by dissolving a predetermined amount of the thin film in dilute nitric acid according to the wet analysis method using atomic absorption, and using the atomic absorption spectrometer (AA-646 manufactured by Takasu Seisakusho) to analyze the In and It was determined by measuring the absorbance of sb.

実施例1 装置として6枚のウェハーが設置でき、同心円周上に回
転する基板ホルダーと、2つのポートを有する真空蒸着
装置を使用した。基板温度はウェハー上方10+nmの
位置に、3箇所にPt−Rd廿−モカップルを設け、各
表示温度の最大値と最小値の差が5℃以内になるように
コントロールした。真空度はペルジャーから排気系へ至
るパイプの途中、本川バルブの直後においてB−Aゲー
ジを用いて測定した。
Example 1 As an apparatus, a vacuum evaporation apparatus was used which could accommodate six wafers, had a substrate holder that rotated concentrically, and two ports. The substrate temperature was controlled by providing three Pt-Rd mocouples at positions 10+ nm above the wafer so that the difference between the maximum and minimum values of each display temperature was within 5°C. The degree of vacuum was measured using a BA gauge in the middle of the pipe leading from the Pelger to the exhaust system, immediately after the Honkawa valve.

基板としては雲母を、原料としてはフルウチ化学社製の
半導体用6−NのInとsbとを用いた。
Mica was used as the substrate, and 6-N In and sb for semiconductors manufactured by Furuuchi Chemical Co., Ltd. were used as the raw materials.

まず、真空度を1.5X 10  Torr (境界の
基板温度Tcは387.7℃)とし、基板温度を395
℃に設置した。次に人工n / ASbが最初の8分間
だけ0.9に、残りの時間は1.40となるようにIn
とsbのポートのパワーをそれぞれコントロールし、基
板温度を上昇させなから膜厚が1.2μmVCなる1で
40分間蒸着させた。この場合の最後の基板温度は50
0℃であった。蒸着後、Inとsbの乗置から、蒸着の
全時間帯にわたる平均のAIn / Asbを計算した
ところ、1.37であった。
First, the degree of vacuum is set to 1.5X 10 Torr (substrate temperature Tc at the boundary is 387.7°C), and the substrate temperature is set to 395
It was set at ℃. Next, the artificial n/ASb was set to 0.9 for the first 8 minutes and 1.40 for the remaining time.
By controlling the powers of the and sb ports, the film was deposited for 40 minutes at VC1 to a film thickness of 1.2 μm without raising the substrate temperature. The final substrate temperature in this case is 50
It was 0°C. After vapor deposition, the average AIn/Asb over the entire vapor deposition time period was calculated from the combination of In and sb, and was found to be 1.37.

6枚のウェハーの特性を測定したところ、電気伝導度は
150〜1600 傭 、ホール係数330〜390 
ct/l / O、移動度49,200〜55.700
cJ/ V、sであった。
When the characteristics of six wafers were measured, the electrical conductivity was 150-1600m and the Hall coefficient was 330-390.
ct/l/O, mobility 49,200-55.700
It was cJ/V,s.

この膜は白味を帯びた銀光沢を有し、表面に数十μの島
状の粒子が数多く見られ、また光沢の異方性から肉眼で
も結晶が観察された。
This film had a whitish silver luster, and many island-like particles of several tens of microns were observed on the surface, and crystals were also observed with the naked eye due to the anisotropy of the luster.

さらに、この膜を原子吸光により分析したところ、FI
n / Fs bは1.36〜1.42であり、またX
線回析によると、薄膜は工nsb結晶とIn結晶とから
成り立っていた。
Furthermore, when this film was analyzed by atomic absorption, it was found that FI
n/Fs b is 1.36 to 1.42, and X
According to line diffraction, the thin film was composed of In crystals and In crystals.

比較例1 蒸着時間の全領域においてAIn/ Asb カ1.3
0となるようにボートのパワーをコントロールする以外
は実施例1と同様にした。得られた薄膜には大きな結晶
は見られず、移動度は19,700〜22.000cJ
 / V、sであった。また、この膜を原子吸光分析し
たところ、F工n/Fsbは1.27〜1.34であっ
た。
Comparative Example 1 AIn/Asb force 1.3 in the entire deposition time range
The procedure was the same as in Example 1 except that the power of the boat was controlled so that the power was 0. No large crystals were observed in the obtained thin film, and the mobility was 19,700 to 22,000 cJ.
/V,s. Further, when this film was subjected to atomic absorption analysis, the Fn/Fsb was 1.27 to 1.34.

比較例2 蒸着初期の基板温度を境界の基板温度より低い380°
Cとする以外は、実施例1と同様にした。平均のA工n
/ASbば1.31であり、原子吸光分析による1(1
工n/FSbは1.25〜1.34であった。この膜は
やや青みがかつていて、移動度は14 、800−16
.200crA2/v・日テアツタ。
Comparative Example 2 The substrate temperature at the initial stage of evaporation was set to 380° lower than the boundary substrate temperature.
The same procedure as in Example 1 was carried out except that C was used. Average A engineering n
/ASb is 1.31, and 1 (1
The engineering n/FSb was 1.25 to 1.34. This film has a slightly bluish tinge and a mobility of 14,800-16
.. 200crA2/v・Nippon ivy.

実施例2 基板、原料、装置は実施例1と同様のものを用イタ。ま
ず真’i度を’2 X 10  Torr(Tcは38
9.7℃)とし、次いでニードルバルブによp4−Hの
窒素を導入して5X10  Torrとし二一ドルノ(
ルプを固定した。次に基板温度を420℃に設定し、A
工n/Asbが最初の6分間は1.0以下となるように
、残りの時間は1.30となるように2つのボートノパ
ワーコントロールを行って基板温度全上昇させながら3
0分間で1.0μmの膜厚になる1で蒸着した。最終の
基板温度は510℃であつ之。また平均の人工n / 
Asbは1.23であった。
Example 2 The same substrate, raw materials, and equipment as in Example 1 were used. First, the true degree is 2 x 10 Torr (Tc is 38
9.7℃), then introduced p4-H nitrogen through a needle valve to 5X10 Torr and heated to 21 Dorno (
fixed loop. Next, set the substrate temperature to 420℃, and
Two boat power controls were carried out so that n/Asb was 1.0 or less for the first 6 minutes and 1.30 for the remaining time, and the substrate temperature was completely raised.
Vapor deposition was performed using 1, which resulted in a film thickness of 1.0 μm in 0 minutes. The final substrate temperature was 510°C. Also, the average artificial n/
Asb was 1.23.

1枚のウェハーにつき4つの部分の電気特性を測定し、
計24点のデータをまとめたところ、ホール係数は42
0±40 ctl/ C%移動度は57,500±3 
* 000 cJ / v= テアツfc。
The electrical characteristics of four parts of one wafer are measured,
When data from a total of 24 points were compiled, the Hall coefficient was 42.
0±40 ctl/C% mobility is 57,500±3
*000 cJ/v=Teatu fc.

この膜は白銀光沢の部分と銀光沢の部分から成り、結晶
は肉眼でも観察される程に成長していた。
This film consisted of a silver luster part and a silver luster part, and the crystals had grown to such an extent that they could be observed with the naked eye.

また、X線回折を行ったところ、■nsb (111)
とIn(101)の強い回折線が見られ、ラウェパター
ンは大変シンプルでめった。さらに、原子吸光分析によ
りFIn / Fs bを求めたところ、1.24〜1
.33であった。
In addition, when X-ray diffraction was performed, ■nsb (111)
Strong diffraction lines of In(101) and In(101) were observed, and the Laue pattern was very simple and rare. Furthermore, when FIn/Fs b was determined by atomic absorption spectrometry, it was found to be 1.24 to 1.
.. It was 33.

実施例3 A工n/Asbが最初の6分間は0.5、次の4分間は
1.0、残りの20分間は1.25となるようにコント
ロールする以外は実施例2と同様にした。実際のInと
8bの乗置から平均のAI n/ As bを計算した
ところ、0.85であった。
Example 3 The same procedure as Example 2 was carried out except that A/Asb was controlled to be 0.5 for the first 6 minutes, 1.0 for the next 4 minutes, and 1.25 for the remaining 20 minutes. . When the average AI n/As b was calculated from the product of actual In and 8b, it was 0.85.

これらの膜には結晶が見られ、その特性はホール係数3
40〜420 crl / O、移動度38.500〜
44,700c、1 / 、V−8であった。
Crystals can be seen in these films, and their characteristics include a Hall coefficient of 3.
40-420 crl/O, mobility 38.500-
It was 44,700c, 1/2, V-8.

さらに、F工n/FSbを測定したところ、1.24〜
1.36であり、平均のAIn / ASI)よりはる
かに大きかった。
Furthermore, when F engineering n/FSb was measured, it was 1.24~
1.36, which was much larger than the average AIn/ASI).

比較例3 初期の基板温度を400℃とする他は実施例3と同様に
した。平均のA工n/Asbは0.88であり1できた
膜は青っぽい色をしていた。
Comparative Example 3 The same procedure as Example 3 was carried out except that the initial substrate temperature was 400°C. The average A/Asb was 0.88, and the resulting film had a bluish color.

この膜のFIn / Fsbと、移動度を測定したとこ
ろ、それぞれ1.00〜1.02.4,500〜7,2
00CFI/v・8であった。
When the FIn/Fsb and mobility of this film were measured, they were 1.00-1.02.4,500-7.2, respectively.
00CFI/v・8.

比較例4 初期の基板温度を445℃とする以外は実施例、3と同
様の蒸着を行った。平均のAIH/ Asbは帆82で
あったが、できた膜には結晶の部分と透明な部分があっ
た。また結晶の部分もピンホールが多く、膜厚も10チ
以上ばらついていた。
Comparative Example 4 Vapor deposition was carried out in the same manner as in Example 3, except that the initial substrate temperature was 445°C. The average AIH/Asb was 82, but the resulting film had crystalline and transparent parts. There were also many pinholes in the crystal part, and the film thickness varied by more than 10 inches.

この膜の結晶部分のFIn / Fsbと移動度を測定
したところ、それぞれ1.43〜1.59 、18,0
00〜33.600 crl / V−eであり、ばら
つきが大きかったり実施例4 基板、原料、装置は実施fl11と同様とし、4−Nの
窒素を用いて真空度fi=8×10  Torr (T
cは412℃)とした。次に基板温度を425℃とし、
AI n / As bが最初の5分間は1.0以下、
残りの時間は1.45となるようにボートのパワーをコ
ントロールして、基板温度を上昇させながら30分間で
0.9μmになるまで蒸着した。最終の基板温度は51
0℃、平均のAIn / Asbは1.38であった。
When the FIn/Fsb and mobility of the crystalline part of this film were measured, they were 1.43-1.59 and 18.0, respectively.
00 to 33.600 crl/V-e, and there was a large variation.Example 4 The substrate, raw materials, and equipment were the same as in Example fl11, and the degree of vacuum was fi = 8 × 10 Torr (T
c was 412°C). Next, the substrate temperature was set to 425°C,
AI n / As b is less than 1.0 for the first 5 minutes,
For the remaining time, the power of the boat was controlled so that the thickness was 1.45, and the deposition was carried out in 30 minutes until the thickness was 0.9 μm while increasing the substrate temperature. The final board temperature is 51
At 0 °C, the average AIn/Asb was 1.38.

6枚のウェハーは、大変均一に結晶ができていて、その
F工n/FSbは1.36〜1.46であった。そホー
ル係数350〜430CrI/C1移動度48,700
〜56.600 crl/V’Bであった。
The six wafers had very uniform crystals, and the F-factor n/FSb was 1.36 to 1.46. Hall coefficient 350-430 CrI/C1 mobility 48,700
~56.600 crl/V'B.

特許出願人 旭化成工業株式会社 代理人 阿 形  明 手続補正書 1.4S(qの表示 昭和57年特許願!116542号 z、qB+1′)名m  高移動度のインジウム−アン
チモン系複合結晶薄膜の製造方法 3 補正をする者 事件との関係 特許出願人 住 所大阪府大阪市北区堂島浜1丁目2番6号4代 理
 人 〒104東京都中央区銀座6丁目4番5号土屋ビル5階
7補正の対象 明細書の発明の詳細な説明の欄8、補正
の内容 (1)明細書第7ページ第13行目の「原子比」を、「
原子到達速度比」に訂正します。
Patent Applicant Asahi Kasei Industries Co., Ltd. Agent A Formation Amendment 1.4S (Indication of q, Patent Application No. 116542 116542 z, qB+1') Name m Manufacture of high mobility indium-antimony based composite crystal thin film Method 3 Relationship with the case of the person making the amendment Patent Applicant Address: 4th Representative, Dojimahama 1-2-6, Kita-ku, Osaka-shi, Osaka Address: 5th floor, 7th floor, Tsuchiya Building, 6-4-5, Ginza, Chuo-ku, Tokyo 104 Subject of amendment Column 8 of the detailed explanation of the invention in the specification, Contents of amendment (1) Change the ``atomic ratio'' in the 13th line of page 7 of the specification to ``
Corrected to ``Atomic Arrival Velocity Ratio.''

(2)同第7ページ第19行目の「結晶粒成長過程も」
ヲ、「結晶粒成長過程の時間も」に訂正します。
(2) “Also the crystal grain growth process” on page 7, line 19
Wow, I'll correct it to "the time for the grain growth process."

(3)同第9ページ第4〜5行目の「蒸着系を・・・保
つこと」ヲ、「真空系を窒素の雰囲気下に保つこと」に
訂正します。
(3) On page 9, lines 4 and 5, "to maintain the evaporation system..." has been corrected to "to maintain the vacuum system in a nitrogen atmosphere."

(4)  同第9ページ第8行目の「できないから」を
、「できるから」に訂正します。
(4) In the 8th line of page 9, ``Because I can't'' will be corrected to ``Because I can.''

(5]  同第9ページ第11〜14行目の「境界の基
板温度・・・極めて好都合である。」を、「境界の基板
温度よりも高いため、基板温度を上昇させた方が結晶の
成長にとって好都合である。」に訂正します。
(5) On page 9, lines 11 to 14, "Boundary substrate temperature... is very convenient." was changed to "Because it is higher than the boundary substrate temperature, it would be better to raise the substrate temperature for crystal growth." It is favorable for growth.''

(6]  同第15ページ第14〜15行目の「(TC
は389.7℃)」全削除し、第16行目の「Torr
Jのあとに「(TCは414℃)」全加入します。
(6) “(TC
is 389.7°C)" and delete all "Torr" on the 16th line.
After J, "(TC is 414 degrees Celsius)" will all be added.

(7)同第18ページ第6行目の「412℃」を、「4
18℃」に訂正します。
(7) Change “412℃” in the 6th line of page 18 to “4
Corrected to 18℃.

Claims (1)

【特許請求の範囲】 1 蒸着初期におけるアンチモン原子に対するインジウ
ム原子の到達速度比を1.0以下、かつ基板温度(絶対
温度)Tを、式 %式% 〔ここに、TCは境界の基板温度(絶対温度)、Pは蒸
着中の真窒度(Torr )である〕で与えられる境界
の基板温度Tcとしたとき、Tc≦T≦Tc+30 の範囲門になるように選択した条件下でインジウムとア
ンチモンとを基板上に蒸着させるeとを特徴とする高移
動度のインジウム−アンチモン系複合結晶薄膜の製造方
法。 2 アンチモン原子に対するインジウム原子の結晶薄膜
全体における平均原子比を1.1〜1.7の範囲に蒸着
させる特許請求の範囲第1項記載の方法。
[Claims] 1. The arrival velocity ratio of indium atoms to antimony atoms at the initial stage of vapor deposition is 1.0 or less, and the substrate temperature (absolute temperature) T is expressed by the formula %. [Here, TC is the boundary substrate temperature ( Indium and antimony under conditions selected to be in the range Tc≦T≦Tc+30, where 1. A method for producing a high-mobility indium-antimony composite crystal thin film, characterized by e. depositing and on a substrate. 2. The method according to claim 1, wherein the average atomic ratio of indium atoms to antimony atoms in the entire crystal thin film is in the range of 1.1 to 1.7.
JP57116542A 1982-07-05 1982-07-05 Manufacture of indium-antimony composite crystal thin film with high mobility Granted JPS596527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57116542A JPS596527A (en) 1982-07-05 1982-07-05 Manufacture of indium-antimony composite crystal thin film with high mobility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57116542A JPS596527A (en) 1982-07-05 1982-07-05 Manufacture of indium-antimony composite crystal thin film with high mobility

Publications (2)

Publication Number Publication Date
JPS596527A true JPS596527A (en) 1984-01-13
JPH0359571B2 JPH0359571B2 (en) 1991-09-11

Family

ID=14689691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57116542A Granted JPS596527A (en) 1982-07-05 1982-07-05 Manufacture of indium-antimony composite crystal thin film with high mobility

Country Status (1)

Country Link
JP (1) JPS596527A (en)

Also Published As

Publication number Publication date
JPH0359571B2 (en) 1991-09-11

Similar Documents

Publication Publication Date Title
Noro et al. The thermoelectric properties and crystallography of Bi‐Sb‐Te‐Se thin films grown by ion beam sputtering
Oliveira et al. High textured AlN thin films grown by RF magnetron sputtering; composition, structure, morphology and hardness
JP5055554B2 (en) Method for producing superconducting magnesium boride thin film
JPS596527A (en) Manufacture of indium-antimony composite crystal thin film with high mobility
Bae et al. Novel sol-gel processing for polycrystalline and epitaxial thin films of La 0.67 Ca 0.33 MnO 3 with colossal magnetoresistance
Leca Heteroepitaxial growth of copper oxide superconductors by pulsed laser deposition
JP2715667B2 (en) Apparatus for producing oxide superconducting thin film and method for producing oxide superconducting single crystal thin film
KR860000161B1 (en) In-sb compound crystal semiconductor and method of its manufacturing
JPS5927519A (en) Fabrication of indium-antimony-arsenic system compound semiconductor thin film
JPS5878418A (en) Preparation of indium-antimony system compound crystal thin film
Grünbaum et al. Thickness dependence of phase changes in Cobalt films
US20210249331A1 (en) Low-Temperature Deposition of High-Quality Aluminum Nitride Films for Heat Spreading Applications
JPH01167912A (en) Sheathing material of superconducting material and manufacture thereof
US4539178A (en) Indium-antimony complex crystal semiconductor and process for production thereof
JP4752049B2 (en) Method for producing magnesium diboride
JPS595620A (en) Manufacture of indium-gallium-antimony compound thin film
JPH01183496A (en) Production of single crystal oxide superconducting thin film
JP2958645B2 (en) Oxide superconductor element and method for producing oxide superconductor thin film
Nakazawa et al. Preparation of thin films of greigite, Fe3S4, and its preferred orientation on a sodium chloride crystal
JPH02233595A (en) Ti based oxide superconducting thin film
JPS63235462A (en) Formation of thin oxide film with k2nif4-type crystalline structure
Krishnan et al. Synthesis, Tailored Microstructures and “Colossal” Magnetoresistance in Oxide Thin Films
JPH01320291A (en) Production of single crystal thin film
JPH0425718B2 (en)
JPH0113211B2 (en)