JPH0359571B2 - - Google Patents

Info

Publication number
JPH0359571B2
JPH0359571B2 JP57116542A JP11654282A JPH0359571B2 JP H0359571 B2 JPH0359571 B2 JP H0359571B2 JP 57116542 A JP57116542 A JP 57116542A JP 11654282 A JP11654282 A JP 11654282A JP H0359571 B2 JPH0359571 B2 JP H0359571B2
Authority
JP
Japan
Prior art keywords
substrate temperature
mobility
temperature
vapor deposition
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57116542A
Other languages
Japanese (ja)
Other versions
JPS596527A (en
Inventor
Keiji Kuboyama
Takeki Matsui
Takeo Kimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP57116542A priority Critical patent/JPS596527A/en
Publication of JPS596527A publication Critical patent/JPS596527A/en
Publication of JPH0359571B2 publication Critical patent/JPH0359571B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02549Antimonides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Hall/Mr Elements (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

【発明の詳細な説明】 本発明は、優れた移動度を有するインジウム−
アンチモン(InSb)系複合結晶薄膜の製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides indium-
The present invention relates to a method for producing an antimony (InSb)-based composite crystal thin film.

一般にInSbの薄膜は、InSbの移動度が常温で
78000cm2/Vsと大きいために、ホール素子や磁気
抵抗素子の素材として優れていることが知られて
いる。そして最近のダイレクトドライブモーター
用の位置検出素子としてのホール素子や、無接点
ポテンシヨメーターとしての磁気抵抗素子等の発
展にはめざましいものがある。
In general, in InSb thin films, the mobility of InSb is low at room temperature.
It is known to be an excellent material for Hall elements and magnetoresistive elements because of its large value of 78000cm 2 /Vs. Recently, there have been remarkable developments in Hall elements as position detection elements for direct drive motors, magnetoresistive elements as non-contact potentiometers, etc.

本発明者らは先に、ホール素子や磁気抵抗素子
等の素材として大変優れた、新規なInSb系複合
結晶半導体、及びその製造方法を提案した。
The present inventors previously proposed a novel InSb-based composite crystal semiconductor that is excellent as a material for Hall elements, magnetoresistive elements, etc., and a method for manufacturing the same.

本発明はこれらのInSb系複合結晶半導体薄膜
の製造方法をさらに改善したものであり、大幅に
向上した移動度を有する薄膜の効果的製造方法を
提供するものである。
The present invention further improves the method for manufacturing these InSb-based composite crystal semiconductor thin films, and provides an effective method for manufacturing thin films having significantly improved mobility.

InSbは−族化合物半導体としてよく知ら
れた物質であり、ホール素子や磁気抵抗素子とし
て利用するには、インジウム元素(In)のアンチ
モン元素(Sb)に対する原子比が1.00の結晶であ
ることが必要不可欠の条件で、かかる条件の場合
にその特性が高度に発揮されうると考えられてき
たため、この考えを前提として多くの研究がなさ
れてきた。
InSb is a well-known substance as a - group compound semiconductor, and in order to be used as a Hall element or magnetoresistive element, it must be a crystal with an atomic ratio of indium element (In) to antimony element (Sb) of 1.00. It has been thought that this is an essential condition, and that its properties can be exhibited to a high degree under such conditions, and many studies have been conducted based on this idea.

しかし、本発明者らは、先にInとSbの原子比
が厳密に1対1に制御された場合のみ優れた薄膜
が得られるのではなく、Inが過剰の場合にも、特
にInのSbに対する原子比が1.1〜1.7の範囲にある
ならば結晶性に優れ、しかも高い移動度を示す複
合結晶が得られるという従来の技術概念からはと
うてい予測し得ない新事実を見出した。
However, the present inventors have found that excellent thin films are not only obtained when the atomic ratio of In and Sb is strictly controlled to 1:1, but also when In is in excess, especially when the Sb of In is We have discovered a new fact that could not have been predicted from conventional technical concepts: if the atomic ratio to 1.1 to 1.7 is in the range of 1.1 to 1.7, a composite crystal with excellent crystallinity and high mobility can be obtained.

かかる新しい知見に基く優れたInSb系複合結
晶薄膜は、InとSbとをSb原子に対するIn原子の
到達速度比(アライバル・レート・レーシヨ、以
下AIn/Asbと略記する)を1.10〜1.70の条件下
で基板上に蒸着させることによつて製造すること
ができ、さらに蒸着初期の基板温度を、式 1/T=9.98×10-4−5.66×10-5logP 〔ここに、Tは極限の基板温度(絶対温度)Pは
蒸着中の真空度(Torr)である〕 で与えられる極限の基板温度よりも低い温度に設
定することにより、電気特性を向上させることが
できるという知見も得られた。
An excellent InSb-based composite crystal thin film based on this new knowledge is produced by combining In and Sb under conditions where the arrival rate ratio of In atoms to Sb atoms (arrival rate ratio, hereinafter abbreviated as AIn/Asb) is 1.10 to 1.70. It can be manufactured by evaporating on a substrate at Temperature (absolute temperature) P is the degree of vacuum (Torr) during vapor deposition] It was also found that the electrical characteristics can be improved by setting the temperature lower than the ultimate substrate temperature given by .

この方法により得られる薄膜の移動度は24000
cm2/V・sと高く、さらに高い移動度を望む場合
には、蒸着を窒素雰囲気下で実施することにより
容易に達成できる。
The mobility of the thin film obtained by this method is 24000
If a higher mobility of cm 2 /V·s is desired, it can be easily achieved by carrying out the vapor deposition in a nitrogen atmosphere.

しかし、この窒素雰囲気下の蒸着法においても
得られる薄膜の移動度は、FIo/FSb(全インジウ
ムのアンチモンに対する原子比)が1.4のとき
30000cm2/V・s程であつて、バルクのInSbの4
割程度の値にすぎないものであつた。
However, even with this vapor deposition method under a nitrogen atmosphere, the mobility of the thin film obtained is as low as when F Io /F Sb (atomic ratio of total indium to antimony) is 1.4.
It is about 30000cm 2 /V・s, and 4 of bulk InSb
It was only a small percentage.

本発明者らは、磁気抵抗素子やホールヘツドの
素材として、特に有用な高移動度のInSb薄膜結
晶を得る方法について多くの実験検討を行い、そ
の過程において、InSb複合結晶の形成は、結晶
核形成過程と結晶粒成長過程に大別できること、
及びInSbの特性は前段階の結晶核形成過程に大
きく影響されることを知つた。
The present inventors have conducted many experimental studies on how to obtain a high-mobility InSb thin film crystal, which is particularly useful as a material for magnetoresistive elements and hole heads, and in the process, the formation of InSb composite crystals is based on crystal nucleation. It can be roughly divided into grain growth process and grain growth process.
We found that the properties of InSb and InSb are greatly influenced by the previous crystal nucleation process.

そこで、本発明者らは、特に蒸着初期の蒸着条
件について鋭意研究を続けた結果、蒸着初期にお
けるAIo/ASbと基板温度とが重要な相関関係を有
し、それぞれの特定の範囲条件を組み合わせると
き、極めて効果的に高移動度のInSb複合結晶薄
膜を製造しうることを見出し、かかる知見に基づ
いて本発明をなすに至つた。
Therefore, as a result of intensive research on the evaporation conditions, especially at the initial stage of evaporation, the present inventors discovered that there is an important correlation between A Io /A Sb and the substrate temperature at the initial stage of evaporation. We have discovered that when combined, an InSb composite crystal thin film with high mobility can be produced extremely effectively, and based on this knowledge, we have accomplished the present invention.

すなわち本発明は、蒸着初期におけるSb原子
に対するIn原子の到達速度比を1.0以下、かつ基
板温度(絶対温度)Tを、式 1/Tc=1.29×10-3−3.84×10-5logP
……() 〔ここに、Tcは境界の基板温度(絶対温度)、P
は蒸着中の真空度(Torr)である。〕 で与えられる境界の基板温度Tcとしたとき、 Tc≦T≦Tc+30 ……() の範囲内になるように選択した条件下でインジウ
ムとアンチモンとを基板上に蒸着させることを特
徴とする高移動度のInSb系複合結晶薄膜の製造
方法を提供するものである。
That is, in the present invention, the arrival velocity ratio of In atoms to Sb atoms at the initial stage of vapor deposition is 1.0 or less, and the substrate temperature (absolute temperature) T is set by the formula 1/Tc=1.29×10 -3 −3.84×10 -5 logP
...() [Here, Tc is the boundary substrate temperature (absolute temperature), P
is the degree of vacuum (Torr) during deposition. ] When the substrate temperature at the boundary given by Tc is, Tc≦T≦Tc+30... The present invention provides a method for manufacturing an InSb-based composite crystal thin film with high mobility.

本発明において、蒸着初期とは、上記結晶核形
成過程を行い、蒸着開始から膜厚が約500〜3000
Å程度になるまでの初期の結晶核形成段階をいう
が、最終的に所望する膜厚や初期の蒸着条件及び
全体の蒸着時間等により、蒸着初期に形成される
膜厚やその時間は明確に規定することは困難であ
る。
In the present invention, the initial stage of vapor deposition means that the crystal nucleation process described above is performed and the film thickness is about 500 to 3000 from the start of vapor deposition.
This refers to the initial stage of crystal nucleation up to about 100 Å, but the film thickness formed at the initial stage of vapor deposition and its time are clearly determined depending on the final desired film thickness, initial vapor deposition conditions, overall vapor deposition time, etc. It is difficult to specify.

前記式()及び()は、極めて高い移動度
の薄膜が得られる場合の初期設定温度と真空度と
の関係を示す実験式である。式()は真空度が
特に10-6〜10-3Torrの領域におけるSb4の平衡蒸
発温度(Tv)に対応するものである。事実、こ
の範囲の温度に基板温度を設定する限り、Sbを
蒸着により基板上に付着させることはできなかつ
た。このことはストル氏らの熱データ〔サーモダ
イナミツク・プロパテイーズ・オブ・ザ・エレメ
ンツ(Thermodynamic Properties of the
Elements A(S'56)〕による値ともほぼ対応して
いることから容易に理解できる。
The above equations () and () are empirical equations showing the relationship between the initial setting temperature and the degree of vacuum when a thin film with extremely high mobility is obtained. Equation () corresponds to the equilibrium evaporation temperature (Tv) of Sb 4 particularly in the vacuum degree range of 10 -6 to 10 -3 Torr. In fact, as long as the substrate temperature was set within this range, Sb could not be deposited on the substrate by vapor deposition. This is confirmed by Stoll et al.'s thermal data [Thermodynamic Properties of the Elements].
This can be easily understood since it almost corresponds to the value according to Elements A (S'56)].

また、式()において初期の設定基板温度が
幅をもつているのは、基板温度や真空度のモニタ
ーの位置や蒸着のレート等の要因により、最適な
設定温度が変化するためである。
Furthermore, the reason why the initially set substrate temperature in equation () has a range is because the optimum set temperature varies depending on factors such as the substrate temperature, the position of the vacuum level monitor, and the vapor deposition rate.

この温度設定と関連して、蒸着初期のAIo/ASb
は1.0以下にすることが重要である。本発明者ら
は数多くの実験を行い、極めて高移動度の薄膜が
得られる際のInとSbのボートのコントロール条
件について、特に蒸着初期の数分間で蒸着を中止
し、その時点までの原子到達速度比AIo/ASbを測
定する実験を繰り返したところ、AIo/ASbは1.0
以下であることが重要であるとの結論が得られ
た。極端な場合にはAIo/ASbが0.5よりも小さく
なつていた。しかし、AIo/ASbが1.0以下でなけ
ればならないのは、蒸着初期の結晶核形成過程の
時間だけであつて、それ以降の結晶粒成長過程の
時間も1.0以下のAIo/ASbで蒸着を行なうときは、
結晶性が悪く移動度の低い薄膜か、あるいはぼろ
ぼろの膜しか得られなかつた。すなわち蒸着時間
のうち結晶粒成長過程に当る時間帯においては、
AIo/ASbを1.1〜1.7の範囲として蒸着するとき好
結果が得られた。特に、AIo/ASbを1.1〜1.5とし
て蒸着すれば極めてピンホールの少ない薄膜が得
られた。
In relation to this temperature setting, A Io /A Sb at the initial stage of deposition
It is important to keep it below 1.0. The present inventors conducted numerous experiments, and found that the control conditions for In and Sb boats when obtaining extremely high-mobility thin films were determined by stopping the evaporation in the first few minutes of the evaporation process, and by stopping the evaporation process for a few minutes in the initial stage of the evaporation process. When we repeated the experiment to measure the speed ratio A Io /A Sb , A Io /A Sb was 1.0.
It was concluded that the following are important. In extreme cases, A Io /A Sb became smaller than 0.5. However, A Io /A Sb must be 1.0 or less only during the crystal nucleation process at the initial stage of vapor deposition, and the subsequent crystal grain growth process must also be kept at A Io /A Sb of 1.0 or less. When performing vapor deposition,
Only thin films with poor crystallinity and low mobility or ragged films could be obtained. In other words, during the time period corresponding to the grain growth process of the vapor deposition time,
Good results were obtained when depositing A Io /A Sb in the range of 1.1 to 1.7. In particular, a thin film with extremely few pinholes was obtained when deposited with A Io /A Sb of 1.1 to 1.5.

前記の蒸着初期における基板温度とAIo/ASb
二つの条件が同時に満たされた時、製造される
InSb系複合結晶薄膜は、その結晶が肉眼でも観
察されるほど大きく成長し高移動度特性を有する
ものとなる。蒸着初期の基板温度が境界の基板温
度より低い場合には、大きな結晶はもはや成長し
ないか、青白い膜となり、その移動度は25000
cm2/V・s程度、多くは15000cm2/V・s以下で
ある。初期の基板温度が式()の範囲より高い
場合には、大きな結晶が観察される場合もある
が、多くはピホールの多い透明に見える膜か、白
い膜であり、それらの移動度は、はなはだ低い。
また、大きな結晶の観察される場合も、バツチ内
及び膜内での膜厚及び移動度のばらつきが大き
く、工業的に採用しがたい。
Manufactured when the two conditions of substrate temperature and A Io /A Sb at the initial stage of vapor deposition are satisfied simultaneously.
The InSb-based composite crystal thin film grows so large that its crystals can be observed with the naked eye, and has high mobility characteristics. If the substrate temperature at the initial stage of deposition is lower than the substrate temperature at the boundary, large crystals will no longer grow or a pale film will result, with a mobility of 25000
It is about cm 2 /V·s, and in most cases it is less than 15000 cm 2 /V·s. If the initial substrate temperature is higher than the range of formula (), large crystals may be observed, but most of them are transparent or white films with many piholes, and their mobility is extremely low. low.
Further, even when large crystals are observed, there are large variations in film thickness and mobility within batches and within films, making it difficult to adopt them industrially.

本発明の方法における蒸着初期の結晶核形成過
程においては、真空系を窒素の雰囲気下に保つこ
とが好ましい。窒素の存在は、よりよい結晶核の
形成に効果があるばかりでなく、また窒素の導入
量の制御により式()の境界の基板の温度を調
整することもできるからである。
In the crystal nucleation process at the initial stage of vapor deposition in the method of the present invention, it is preferable to maintain the vacuum system under a nitrogen atmosphere. This is because the presence of nitrogen is not only effective in forming better crystal nuclei, but also allows the temperature of the substrate at the boundary of formula () to be adjusted by controlling the amount of nitrogen introduced.

また、結晶粒成長過程においては、基板温度を
上昇させながら蒸着する方が好ましい。結晶の最
もよく成長する温度は、境界の基板温度よりも高
いため、基板温度を上昇させた方が結晶の成長に
とつて好都合である。
Further, in the crystal grain growth process, it is preferable to perform vapor deposition while increasing the substrate temperature. Since the temperature at which crystals grow best is higher than the substrate temperature at the boundary, increasing the substrate temperature is more convenient for crystal growth.

本発明の方法においては、蒸着の全時間帯にわ
たる平均したAIo/ASbとFIo/FSbは、AIo/ASb
1.0以上であつてもすべての点において必ずしも
一致するものではなく、一般的には実験誤差内で AIo/ASbFIo/FSb という関係が成り立つ。これは境界の温度以上で
はSbが単独では基板に付着しないことに原因が
あると考えられる。
In the method of the present invention, A Io /A Sb and F Io /F Sb averaged over the entire deposition time period are
Even if it is 1.0 or more, it does not necessarily match at all points, and generally the relationship A Io /A Sb F Io /F Sb holds within experimental error. This is thought to be due to the fact that Sb alone does not adhere to the substrate at temperatures above the boundary temperature.

しかし、極めて高い移動度を有する薄膜におい
ても、その複合結晶はInSb化合物結晶と単体In
結晶とから成り、薄膜全体における平均の原子比
FIo/FSbが1.1〜1.7の範囲にあるということは、
x線や原子吸光により確認されており、それらの
要件に関する限り何ら変わりのないものであつ
た。
However, even in thin films with extremely high mobility, the composite crystal consists of an InSb compound crystal and a single InSb compound crystal.
The average atomic ratio of the entire thin film is
F Io / F Sb is in the range of 1.1 to 1.7, which means that
It was confirmed by x-rays and atomic absorption, and there was no difference as far as those requirements were concerned.

本発明の方法において用いられる基板は、特に
素材に関しては何ら限定されないが、絶縁性を有
しかつ結晶質であることが好ましい。かかる物質
としてはサフアイア、CaF2、NaClや雲母等があ
り、これらは本発明の方法における基板として好
都合に使用できる。しかして基板としては汚染や
欠陥の少ないへき開面を出す必要があること及び
該面を出すための研摩やエツチング等のはん雑な
作業をな考慮すれば雲母が特に好ましく、工業的
にも極めて有利である。
The substrate used in the method of the present invention is not particularly limited in terms of material, but it is preferably insulating and crystalline. Such materials include sapphire, CaF 2 , NaCl and mica, which can be advantageously used as substrates in the method of the invention. However, mica is particularly preferable as a substrate, considering the need to produce cleavage planes with less contamination and defects, and the complicated operations such as polishing and etching required to produce the cleavage planes. It's advantageous.

また、蒸着させる蒸発源としては単体のInと
Sbを用いるのが極めて好ましいが、飛量の比に
対応するAIo/ASbを例えばボートへのパワーを制
御することにより、単体以外のものも使用でき
る。従つて、例えばSb源としてSb含有化合物例
えばInSbやGaSb等を使用することもできる。ま
たInやGaはSbに比べて蒸気圧が極めて小さいか
ら、これらの化合物をSb源として充分利用する
ことができる。
In addition, as the evaporation source for vapor deposition, single In and
Although it is extremely preferable to use Sb, it is also possible to use other materials than the single one by controlling the power to the boat, for example, by controlling A Io /A Sb , which corresponds to the ratio of flying distance. Therefore, for example, Sb-containing compounds such as InSb and GaSb can also be used as the Sb source. Furthermore, since In and Ga have extremely low vapor pressures compared to Sb, these compounds can be fully utilized as Sb sources.

本発明の方法を実施する手段は、本発明の要旨
を逸脱しない限り如何なる方法を用いることもで
き、例えば通常の蒸着法(ヒーター加熱、EB加
熱、フラツシユ蒸着等)、スパツタ、MBE、イオ
ンビーム法等が有利に利用できる。また薄膜形成
速度は、例えば0.1〜1000Å/secの広範囲にわた
つて適用できるが、AIo/ASbの制御のし易さ及び
製品の品質を含む工業的価値を考慮するときは1
〜10Å/secが特に好ましい。
Any method can be used to carry out the method of the present invention as long as it does not depart from the gist of the present invention, such as ordinary vapor deposition methods (heater heating, EB heating, flash vapor deposition, etc.), sputtering, MBE, and ion beam methods. etc. can be used to advantage. In addition, the thin film formation rate can be applied over a wide range of, for example, 0.1 to 1000 Å/sec, but when considering the ease of control of A Io /A Sb and the industrial value including product quality, it is
~10 Å/sec is particularly preferred.

このようにして製造される薄膜の膜厚は、通常
1000Å〜10μであるが、特性や作業性を考慮する
と、5000Å〜5μの範囲のものが好ましい。厚す
ぎると感度が低下するし、薄すぎると移動度が低
下するので好ましくない。
The thickness of the thin film produced in this way is usually
The thickness is 1000 Å to 10 μm, but in consideration of properties and workability, a range of 5000 Å to 5 μm is preferable. If it is too thick, the sensitivity will decrease, and if it is too thin, the mobility will decrease, which is not preferable.

本発明の方法によれば、例えば40000〜60000
cm2/V・sの極めて高い移動度を有するInSb系
複合結晶薄膜が容易に得られる。このような高移
動度の薄膜は、特に磁電変換素子用素材として優
れたものであり、ホール素子はもとより、磁気抵
抗素子やホールヘツド用の素材として広く用いる
ことができる。
According to the method of the present invention, for example, 40,000 to 60,000
An InSb-based composite crystal thin film having an extremely high mobility of cm 2 /V·s can be easily obtained. Such a high-mobility thin film is particularly excellent as a material for magnetoelectric conversion elements, and can be widely used as a material for not only Hall elements but also magnetoresistive elements and Hall heads.

本発明の方法は、特に蒸着初期の結晶核形成段
階で特定の組合せ条件を満足させればよく、その
操作は簡単で、工業的に有利、かつ実用性の優れ
たものである。
The method of the present invention only needs to satisfy a specific combination of conditions, particularly in the crystal nucleation stage at the initial stage of vapor deposition, and its operation is simple, industrially advantageous, and has excellent practicality.

以下に実施例を挙げて本発明を更に詳細に説明
する。
The present invention will be explained in more detail with reference to Examples below.

なお、各実施例中の薄膜の電気特性は、パウ法
によつて、入力電圧1V、印加磁場500Gaussの条
件下で測定した。
The electrical properties of the thin films in each example were measured by the Pau method under conditions of an input voltage of 1 V and an applied magnetic field of 500 Gauss.

また、薄膜のFIo/FSbは、原子吸光による湿式
分析法に従い、薄膜の所定量を希硝酸に溶解し、
その溶液を原子吸光装置(島津製作所製AA−
646)を用いてIn及びSbの吸光度を測定すること
により求めたものである。
In addition, F Io /F Sb of the thin film can be determined by dissolving a predetermined amount of the thin film in dilute nitric acid according to the wet analysis method using atomic absorption.
The solution was measured using an atomic absorption spectrometer (Shimadzu AA-
646) by measuring the absorbance of In and Sb.

実施例 1 装置として6枚のウエハーが設置でき、同心円
周上に回転する基板ホルダーと、2つのボートを
有する真空蒸着装置を使用した。基板温度はウエ
ハー上方10mmの位置に、3箇所にPt−Rdサーモ
カツプルを設け、各表示温度の最大値と最小値の
差が5℃以内になるようにコントロールした。真
空度はベルジヤーから排気系へ至るパイプの途
中、本引バルブの直後においてB−Aゲージを用
いて測定した。
Example 1 A vacuum evaporation apparatus was used that could accommodate six wafers, had a substrate holder that rotated concentrically, and two boats. The substrate temperature was controlled using three Pt-Rd thermocouples placed 10 mm above the wafer so that the difference between the maximum and minimum values of each displayed temperature was within 5°C. The degree of vacuum was measured using a B-A gauge in the middle of the pipe leading from the bell gear to the exhaust system, immediately after the main suction valve.

基板としては雲母を、原料としてはフルウチ化
学社製の半導体用6−NのInとSbとを用いた。
Mica was used as the substrate, and 6-N In and Sb for semiconductors manufactured by Furuuchi Chemical Co., Ltd. were used as the raw materials.

まず、真空度を1.5×10-6Torr(境界の基板温度
Tcは387.7℃)とし、基板温度を395℃に設定し
た。次にAIo/ASbが最初の8分間だけ0.9に、残
りの時間は1.40となるようにInとSbのボートのパ
ワーをそれぞれコントロールし、基板温度を上昇
させながら膜厚が1.2μmになるまで40分間蒸着さ
せた。この場合の最後の基板温度は500℃であつ
た。蒸着後、InとSbの飛量から、蒸着の全時間
帯にわたる平均のAIo/ASbを計算したところ、
1.37であつた。
First, the degree of vacuum is set to 1.5×10 -6 Torr (substrate temperature at the boundary).
Tc was set at 387.7°C), and the substrate temperature was set at 395°C. Next, the power of the In and Sb boats was controlled respectively so that A Io /A Sb was 0.9 for the first 8 minutes and 1.40 for the remaining time, and the film thickness was increased to 1.2 μm while increasing the substrate temperature. It was deposited for 40 minutes. The final substrate temperature in this case was 500°C. After the deposition, the average A Io /A Sb over the entire deposition time period was calculated from the flying amounts of In and Sb.
It was 1.37.

6枚のウエハーの特性を測定したところ、電気
伝導度は150〜160Ω-1cm-1、ホール係数330〜390
cm3/C、移動度49200〜55700cm2/V.sであつた。
When the characteristics of six wafers were measured, the electrical conductivity was 150 to 160Ω -1 cm -1 and the Hall coefficient was 330 to 390.
cm 3 /C, and the mobility was 49200 to 55700 cm 2 /Vs.

この膜は白味を帯びた銀光沢を有し、表面に数
十μの島状の粒子が数多く見られ、また光沢の異
方性から肉眼でも結晶が確認された。
This film had a whitish silver luster, and many island-like particles of several tens of microns were observed on the surface, and crystals were also visible to the naked eye from the anisotropy of the luster.

さらに、この膜を原子吸光により分析したとこ
ろ、FIo/FSbは1.36〜1.42であり、またx線回析
によると、薄膜はInSb結晶とIn結晶とから成り
立つていた。
Furthermore, when this film was analyzed by atomic absorption, F Io /F Sb was 1.36 to 1.42, and x-ray diffraction revealed that the thin film was composed of InSb crystals and In crystals.

比較例 1 蒸着時間の全領域においてAIo/ASbが1.30とな
るようにボートのパワーをコントロールする以外
は実施例1と同様にした。得られた薄膜には大き
な結晶は見られず、移動度は19700〜22000cm2
V.sであつた。また、この膜を原子吸光分析した
ところ、FIo/FSbは1.27〜1.34であつた。
Comparative Example 1 The same procedure as Example 1 was carried out except that the power of the boat was controlled so that A Io /A Sb was 1.30 over the entire deposition time range. No large crystals were observed in the obtained thin film, and the mobility was 19,700 to 22,000 cm 2 /
It was Vs. Further, when this film was subjected to atomic absorption analysis, F Io /F Sb was 1.27 to 1.34.

比較例 2 蒸着初期の基板温度を境界の基板温度より低い
380℃とする以外は、実施例1と同様にした。平
均のAIo/ASbは1.31であり、原子吸光分析による
FIo/FSbは1.25〜1.34であつた。この膜はやや青
みがかつていて、移動度は14800〜16200cm2/V.s
であつた。
Comparative example 2 The substrate temperature at the initial stage of evaporation is lower than the substrate temperature at the boundary.
The same procedure as in Example 1 was carried out except that the temperature was 380°C. The average A Io /A Sb is 1.31, determined by atomic absorption spectrometry.
F Io /F Sb was 1.25 to 1.34. This film has a slightly bluish color and has a mobility of 14,800 to 16,200 cm 2 /Vs
It was hot.

実施例 2 基板、原料、装置は実施例1と同様のものを用
いた。まず真空度を2×10-6Torrとし、次いで
ニードルバルブにより4−Nの窒素を導入して5
×10-5Torr(Tcは414℃)とし、ニードルバルブ
を固定した。次に基板温度を420℃に設定し、
AIo/ASbが最初の6分間は1.0以下となるように、
残りの時間は1.30となるように2つのボートのパ
ワーコントロールを行つて基板温度を上昇させな
がら30分間で1.0μmの膜厚になるまで蒸着した。
最終の基板温度は510℃であつた。また平均の
AIo/ASbは1.23であつた。
Example 2 The same substrate, raw materials, and equipment as in Example 1 were used. First, the degree of vacuum was set to 2 × 10 -6 Torr, and then 4-N nitrogen was introduced using a needle valve.
×10 -5 Torr (Tc is 414°C), and the needle valve was fixed. Next, set the substrate temperature to 420℃,
So that A Io /A Sb is less than 1.0 for the first 6 minutes.
For the remaining time, the power of the two boats was controlled so that the temperature was 1.30, and the substrate temperature was increased while vapor deposition was carried out to a film thickness of 1.0 μm in 30 minutes.
The final substrate temperature was 510°C. Also the average
A Io /A Sb was 1.23.

1枚のウエハーにつき4つの部分の電気特性を
測定し、計24点のデータをまとめたところ、ホー
ル係数は420±40cm3/C、移動度は57500±3000
cm2/Vsであつた。
When we measured the electrical characteristics of four parts on one wafer and compiled the data from a total of 24 points, we found that the Hall coefficient was 420±40cm 3 /C and the mobility was 57500±3000.
It was cm 2 /Vs.

この膜は白銀光沢の部分と銀光沢の部分から成
り、結晶は肉眼でも観察される程に成長してい
た。また、x線回折を行つたところ、InSb(111)
とIn(101)の強い回折線が見られ、ラウエパター
ンは大変シンプルであつた。さらに、原子吸光分
析によりFIo/FSbを求めたところ、1.24〜1.33で
あつた。
This film consisted of a silver luster part and a silver luster part, and the crystals had grown to such an extent that they could be observed with the naked eye. In addition, when we performed x-ray diffraction, we found that InSb(111)
Strong diffraction lines of In(101) and In(101) were observed, and the Laue pattern was very simple. Furthermore, when F Io /F Sb was determined by atomic absorption spectrometry, it was 1.24 to 1.33.

実施例 3 AIo/ASbが最初の6分間は0.5、次の4分間は
1.0、残りの20分間は1.25となるようにコントロ
ールする以外は実施例2と同様にした。実際の
InSbの飛量から平均のAIo/ASbを計算したとこ
ろ、0.85であつた。
Example 3 A Io /A Sb is 0.5 for the first 6 minutes and for the next 4 minutes.
The same procedure as in Example 2 was carried out except that the control was carried out to be 1.0 and 1.25 for the remaining 20 minutes. actual
When the average A Io /A Sb was calculated from the flying distance of InSb, it was 0.85.

これらの膜には結晶が見られ、その特性はホー
ル係数340〜420cm3/C、移動度38500〜44700cm2
V.sであつた。
Crystals are observed in these films, and their characteristics include a Hall coefficient of 340 to 420 cm 3 /C and a mobility of 38500 to 44700 cm 2 /C.
It was Vs.

さらに、FIo/FSbを測定したところ、1.24〜
1.36であり、平均のAIo/ASbよりはるかに大きか
つた。
Furthermore, when F Io /F Sb was measured, it was found to be 1.24~
1.36, which was much larger than the average A Io /A Sb .

比較例 3 初期の基板温度を400℃とする他は実施例3と
同様にした。平均のAIo/ASbは0.88であり、でき
た膜は青つぽい色をしていた。
Comparative Example 3 The same procedure as Example 3 was carried out except that the initial substrate temperature was 400°C. The average A Io /A Sb was 0.88, and the resulting film had a bluish color.

この膜のFIo/FSbと、移動度を測定したとこ
ろ、それぞれ1.00〜1.02,4500〜7200cm2/V.sで
あつた。
When the F Io /F Sb and mobility of this film were measured, they were 1.00 to 1.02 and 4500 to 7200 cm 2 /Vs, respectively.

比較例 4 初期の基板温度を445℃とする以外は実施例3
と同様の蒸着を行つた。平均のAIo/ASbは0.82で
あつたが、できた膜には結晶の部分と透明な部分
があつた。また結晶の部分もピンホールが多く、
膜厚も10%以上ばらついていた。
Comparative Example 4 Example 3 except that the initial substrate temperature was 445°C
The same vapor deposition was performed. The average A Io /A Sb was 0.82, but the resulting film had crystalline parts and transparent parts. Also, the crystal part has many pinholes,
The film thickness also varied by more than 10%.

この膜の結晶部分のFIo/FSbと移動度を測定し
たところ、それぞれ1.43〜1.59,18000〜33600
cm2/V.sであり、ばらつきが大きかつた。
When the F Io /F Sb and mobility of the crystalline part of this film were measured, they were 1.43 to 1.59 and 18000 to 33600, respectively.
cm 2 /Vs, with large variations.

実施例 4 基板、原料、装置は実施例1と同様とし、4−
Nの窒素を用いて真空度を8×10-5Torr(Tcは
418℃)とした。次に基板温度を425℃とし、
AIo/ASbが最初の5分間は1.0以下、残りの時間
は1.45となるようにボートのパワーをコントロー
ルして、基板温度を上昇させながら30分間で0.9μ
mになるまで蒸着した。最終の基板温度は510℃、
平均のAIo/ASbは1.38であつた。
Example 4 The substrate, raw materials, and equipment were the same as in Example 1, and 4-
The vacuum level was set to 8×10 -5 Torr (Tc is
418℃). Next, set the substrate temperature to 425℃,
The power of the boat was controlled so that A Io /A Sb was less than 1.0 for the first 5 minutes and 1.45 for the remaining time, and the temperature decreased to 0.9μ in 30 minutes while increasing the substrate temperature.
It was deposited until it reached m. The final substrate temperature is 510℃,
The average A Io /A Sb was 1.38.

6枚のウエハーは、大変均一に結晶ができてい
て、そのFIo/FSbは1.36〜1.46であつた。その電
気特性は、電気伝導度130〜140Ω-1cm-1、ホール
係数350〜430cm3/C、移動度48700〜56600cm2
V.sであつた。
The six wafers had very uniform crystals, and the F Io /F Sb was 1.36 to 1.46. Its electrical properties include electrical conductivity of 130 to 140 Ω -1 cm -1 , Hall coefficient of 350 to 430 cm 3 /C, and mobility of 48,700 to 56,600 cm 2 /C .
It was Vs.

Claims (1)

【特許請求の範囲】 1 蒸着初期におけるアンチモン原子に対するイ
ンジウム原子の到達速度比を1.0以下、かつ基板
温度(絶対温度)Tを、式 1/Tc=1.29×10-3−3.84×10-5logP 〔ここに、Tcは境界の基板温度(絶対温度)、P
は蒸着中の真空度(Torr)である〕 で与えられる境界の基板温度Tcとしたとき、 Tc≦T≦Tc+30 の範囲内になるように選択した条件下でインジウ
ムとアンチモンとを基板上に蒸着させることを特
徴とする高移動度のインジウム−アンチモン系複
合結晶薄膜の製造方法。 2 アンチモン原子に対するインジウム原子の結
晶薄膜全体における平均原子比を1.1〜1.7の範囲
に蒸着させる特許請求の範囲第1項記載の方法。
[Claims] 1. The arrival velocity ratio of indium atoms to antimony atoms at the initial stage of vapor deposition is 1.0 or less, and the substrate temperature (absolute temperature) T is expressed by the formula 1/Tc=1.29×10 -3 −3.84×10 -5 logP [Here, Tc is the substrate temperature (absolute temperature) at the boundary, P
is the degree of vacuum during deposition (Torr)] Indium and antimony are evaporated onto a substrate under conditions selected so that Tc ≦ T ≦ Tc + 30, where Tc is the boundary substrate temperature given by . 1. A method for producing a high-mobility indium-antimony composite crystal thin film. 2. The method according to claim 1, wherein the average atomic ratio of indium atoms to antimony atoms in the entire crystal thin film is in the range of 1.1 to 1.7.
JP57116542A 1982-07-05 1982-07-05 Manufacture of indium-antimony composite crystal thin film with high mobility Granted JPS596527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57116542A JPS596527A (en) 1982-07-05 1982-07-05 Manufacture of indium-antimony composite crystal thin film with high mobility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57116542A JPS596527A (en) 1982-07-05 1982-07-05 Manufacture of indium-antimony composite crystal thin film with high mobility

Publications (2)

Publication Number Publication Date
JPS596527A JPS596527A (en) 1984-01-13
JPH0359571B2 true JPH0359571B2 (en) 1991-09-11

Family

ID=14689691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57116542A Granted JPS596527A (en) 1982-07-05 1982-07-05 Manufacture of indium-antimony composite crystal thin film with high mobility

Country Status (1)

Country Link
JP (1) JPS596527A (en)

Also Published As

Publication number Publication date
JPS596527A (en) 1984-01-13

Similar Documents

Publication Publication Date Title
Noro et al. The thermoelectric properties and crystallography of Bi‐Sb‐Te‐Se thin films grown by ion beam sputtering
Ichikawa Structural study of ultrathin Sn layers deposited onto Ge (111) and Si (111) surfaces by RHEED
JP5055554B2 (en) Method for producing superconducting magnesium boride thin film
Mansingh et al. Preparation and properties of thermally evaporated lead germanate films
JPH0359571B2 (en)
Żdanowicz et al. Effect of deposition parameters on the structure of vacuum-evaporated cadmium arsenide films
KR860000161B1 (en) In-sb compound crystal semiconductor and method of its manufacturing
Ohyama et al. Growth, optical and structural characterization of layered GaS films prepared by reactive RF sputtering method
JPH0359572B2 (en)
Abduev et al. Preferred oriented ZnO films growth on nonoriented substrates by CVD
McCarthy et al. Thickness dependent phase transition of Bi films quench condensed on semiconducting surfaces
US4539178A (en) Indium-antimony complex crystal semiconductor and process for production thereof
JPH08165188A (en) Composite substrate and production of single crystal substrate with the same
Nakazawa et al. Preparation of thin films of greigite, Fe3S4, and its preferred orientation on a sodium chloride crystal
JPS5878418A (en) Preparation of indium-antimony system compound crystal thin film
Gardes et al. Epitaxial growth of thin films of V 2 VI 3 semiconductors
Ismailov et al. Epitaxy of thallium chalcogenide films on ionic crystal surfaces
Yogo et al. Synthesis of Ba2NaNb5O15 powders and thin films using metal alkoxides
JPH0247850B2 (en)
JPH01320291A (en) Production of single crystal thin film
JPH0425718B2 (en)
JPS595620A (en) Manufacture of indium-gallium-antimony compound thin film
JPH01167912A (en) Sheathing material of superconducting material and manufacture thereof
Kuriyama et al. Preparation and characterization of the filled tetrahedral semiconductor LiZnP film on quartz
Sharma et al. The preparation of InSb films